Optimizing Drone Deployment for Maximized User Connectivity in Areas of Interest Via Deep Reinforcement Learning

In areas with limited communication capabilities, such as disaster zones, network service providers can deploy groups of Unmanned Aerial Vehicles (UAVs), commonly referred to as drones, serving as Drone Base Stations (DBSs) to temporarily supplement traditional communication infrastructure. In these...

Full description

Saved in:
Bibliographic Details
Published inJournal of network and systems management Vol. 33; no. 3; p. 49
Main Authors Rajashekar, Kolichala, Garg, Ashutosh, M. Baswade, Anand, Sidhanta, Subhajit
Format Journal Article
LanguageEnglish
Published New York Springer US 01.07.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1064-7570
1573-7705
DOI10.1007/s10922-025-09924-1

Cover

Abstract In areas with limited communication capabilities, such as disaster zones, network service providers can deploy groups of Unmanned Aerial Vehicles (UAVs), commonly referred to as drones, serving as Drone Base Stations (DBSs) to temporarily supplement traditional communication infrastructure. In these regions, people who have survived the disaster adapt their positions to seek protection as the affected area gradually expands. Therefore, it is necessary to change the relative position of the DBSs to ensure adequate network performance and uninterrupted connectivity for users. This objective involves continuously updating the DBS position, which is subject to a long-term objective. To achieve this objective, we use Deep Reinforcement Learning (DRL) to adaptively modify the position of the DBS in response to the varying location of the User Equipment (UE). To this end, we design a Markov Decision Process (MDP) accounting for the continuous nature of the DBS position and the DBS 360-degree movement in the horizontal plane. This allows our solution to actively explore various positions of the DBSs, leading to significantly enhanced connectivity and bandwidth for the non-stationary user equipment (UEs). This work is the first to utilize action-space normalization in a continuous action space, using linear interpolation-based techniques commonly employed in robotics and related research fields. This approach allows for a comprehensive exploration of the continuous space, resulting in significantly enhanced optimization. We demonstrate that our approach can improve on previous research in this area while considering a much more complex optimization problem while providing uninterrupted connectivity to mobile UEs using multiple DBSs while maintaining stable bandwidth.
AbstractList In areas with limited communication capabilities, such as disaster zones, network service providers can deploy groups of Unmanned Aerial Vehicles (UAVs), commonly referred to as drones, serving as Drone Base Stations (DBSs) to temporarily supplement traditional communication infrastructure. In these regions, people who have survived the disaster adapt their positions to seek protection as the affected area gradually expands. Therefore, it is necessary to change the relative position of the DBSs to ensure adequate network performance and uninterrupted connectivity for users. This objective involves continuously updating the DBS position, which is subject to a long-term objective. To achieve this objective, we use Deep Reinforcement Learning (DRL) to adaptively modify the position of the DBS in response to the varying location of the User Equipment (UE). To this end, we design a Markov Decision Process (MDP) accounting for the continuous nature of the DBS position and the DBS 360-degree movement in the horizontal plane. This allows our solution to actively explore various positions of the DBSs, leading to significantly enhanced connectivity and bandwidth for the non-stationary user equipment (UEs). This work is the first to utilize action-space normalization in a continuous action space, using linear interpolation-based techniques commonly employed in robotics and related research fields. This approach allows for a comprehensive exploration of the continuous space, resulting in significantly enhanced optimization. We demonstrate that our approach can improve on previous research in this area while considering a much more complex optimization problem while providing uninterrupted connectivity to mobile UEs using multiple DBSs while maintaining stable bandwidth.
ArticleNumber 49
Author Sidhanta, Subhajit
M. Baswade, Anand
Rajashekar, Kolichala
Garg, Ashutosh
Author_xml – sequence: 1
  givenname: Kolichala
  surname: Rajashekar
  fullname: Rajashekar, Kolichala
  email: kolichalar@iitbhilai.ac.in
  organization: Department of Computer Science and Engineering, Indian Institute of Technology Bhilai
– sequence: 2
  givenname: Ashutosh
  surname: Garg
  fullname: Garg, Ashutosh
  organization: SDE, Amazon Inc
– sequence: 3
  givenname: Anand
  surname: M. Baswade
  fullname: M. Baswade, Anand
  organization: Department of Computer Science and Engineering, Indian Institute of Technology Bhilai
– sequence: 4
  givenname: Subhajit
  surname: Sidhanta
  fullname: Sidhanta, Subhajit
  organization: Department of Industrial and Systems Engineering, Indian Institute of Technology Kharagpur
BookMark eNp9kFtLAzEQhYNUsFb_gE8Bn1dz22T3sbReCpWCWF9Dmp0tKW12TbZi_fWmXcE3YWAG5pxvhnOJBr7xgNANJXeUEHUfKSkZywjLM1KWTGT0DA1prnimFMkHaSZSZCpX5AJdxrghhBS8zIeoXbSd27lv59d4GhIUT6HdNocd-A7XTcAv5uu4hwovIwQ8abwH27lP1x2w83gcwETc1HjmOwgQO_zuTGJAi1_B-USwcGLNwQSfrlyh89psI1z_9hFaPj68TZ6z-eJpNhnPM8sU6zK2Mitbi0oIYUGQnEnKrJGyoLWoKeOyYGXBZFUDZZUFamVlqFGghGFUcsNH6LbntqH52KfH9KbZB59Oas5oKqk4TyrWq2xoYgxQ6za4nQkHTYk-Jqv7ZHVKVp-S1TSZeG-KSezXEP7Q_7h-AJPRfnc
Cites_doi 10.1145/3404663.3404668
10.1109/PIMRC.2018.8580746
10.1109/TVT.2023.3259688
10.1109/ICRA.2017.7989732
10.1109/ICCW.2018.8403633
10.1109/WCNC.2018.8377340
10.1023/A:1022672621406
10.1109/GLOCOM.2015.7417609
10.1109/TVT.2020.3041929
10.1155/2021/5589605
10.1109/LCOMM.2016.2578312
10.1016/j.cor.2021.105400
10.1109/PERCOMW.2019.8730845
10.1109/TNSE.2019.2942266
10.3390/drones6020045
10.2991/978-94-6463-370-2_3
10.1007/s12518-013-0120-x
10.1109/LCOMM.2019.2940191
10.1016/j.iot.2023.100867
10.1109/ISWCS.2019.8877247
10.1016/j.comnet.2017.05.021
10.1109/TVT.2019.2922849
10.1109/JSAC.2018.2864376
10.1109/ACCESS.2018.2817799
10.1109/TNSE.2022.3233004
10.1007/s11432-020-3170-2
10.1016/j.iot.2023.100726
10.1109/ICCC49849.2020.9238795
10.1109/JIOT.2022.3182633
10.1155/2019/7521513
10.3389/frsip.2022.915567
10.1007/s12559-018-9559-8
10.1109/TVT.2020.3014788
10.1109/TVT.2019.2927425
10.1016/j.iot.2023.100985
10.1109/LRA.2022.3154019
10.1109/VTCFall.2016.7881122
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s10922-025-09924-1
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7705
ExternalDocumentID 10_1007_s10922_025_09924_1
GroupedDBID -~C
.86
.DC
.VR
06D
0R~
0VY
1N0
203
29L
2J2
2JN
2JY
2KG
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
77K
7WY
8FL
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BENPR
BGNMA
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
LAK
LLZTM
M1O
M4Y
MA-
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
VC2
W23
W48
WK8
YLTOR
Z45
ZMTXR
~A9
~EX
-Y2
.4S
1SB
2.D
28-
2P1
2VQ
5QI
77I
8AO
8FE
8FG
8FW
AAAVM
AAOBN
AARHV
AAYTO
AAYXX
ABQSL
ABULA
ABUWG
ACBXY
ADHKG
ADMLS
AEBTG
AEFIE
AEKMD
AFEXP
AFGCZ
AFKRA
AGGDS
AGQPQ
AJBLW
ARCSS
AZQEC
BBWZM
BDATZ
BEZIV
BGLVJ
BPHCQ
CAG
CCPQU
CITATION
CNYFK
COF
DWQXO
EDO
EJD
FINBP
FRNLG
FSGXE
GNUQQ
GROUPED_ABI_INFORM_RESEARCH
H13
I-F
IHE
K6V
K7-
KOW
M0C
N2Q
NDZJH
O9-
OVD
P62
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PRQQA
PUEGO
Q2X
R4E
RNI
RZC
RZE
RZK
S26
S28
SCJ
SCLPG
T16
TEORI
TUS
UZXMN
VFIZW
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c272t-2babcf4d444ce4052612ca6681f4f1236829826dfe12dce1c6da1a7e74a2163a3
IEDL.DBID AGYKE
ISSN 1064-7570
IngestDate Sat Aug 16 21:22:02 EDT 2025
Wed Oct 01 05:36:17 EDT 2025
Sat Jul 19 01:10:42 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Drone base station
Deep reinforcement learning
DBS deployment
Soft actor-critic (SAC) algorithm
Normalized continuous action space for reinforcement learning
Drone disaster emergency communications
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-2babcf4d444ce4052612ca6681f4f1236829826dfe12dce1c6da1a7e74a2163a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3213216733
PQPubID 32329
ParticipantIDs proquest_journals_3213216733
crossref_primary_10_1007_s10922_025_09924_1
springer_journals_10_1007_s10922_025_09924_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of network and systems management
PublicationTitleAbbrev J Netw Syst Manage
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References 9924_CR45
J Shi (9924_CR12) 2020; 69
9924_CR44
9924_CR47
9924_CR46
S Jiao (9924_CR24) 2022; 2
9924_CR40
9924_CR43
L Yu (9924_CR5) 2023; 10
D Wu (9924_CR4) 2020; 7
9924_CR7
RS Sutton (9924_CR41) 2018
GB Tarekegn (9924_CR6) 2022; 9
Q Wang (9924_CR8) 2019; 23
PV Klaine (9924_CR16) 2018; 10
9924_CR34
H Hasselt (9924_CR48) 2010; 23
9924_CR36
RJ Williams (9924_CR42) 1992; 8
9924_CR35
M Mozaffari (9924_CR26) 2016; 20
S Zhang (9924_CR31) 2023; 22
M Erdelj (9924_CR2) 2017; 124
X Lu (9924_CR28) 2021; 65
X Li (9924_CR19) 2019; 68
9924_CR38
9924_CR37
9924_CR39
9924_CR23
9924_CR22
Y Zhang (9924_CR15) 2020; 69
E Tuba (9924_CR20) 2018
H Shakhatreh (9924_CR25) 2021; 2021
9924_CR21
D-C Dang (9924_CR11) 2021; 35
S Zhang (9924_CR30) 2023; 24
H Zhao (9924_CR32) 2018; 36
N Mazyavkina (9924_CR13) 2021; 134
X Liu (9924_CR33) 2019; 68
M Shurrab (9924_CR29) 2023; 23
A Raffin (9924_CR49) 2021; 22
M Parvini (9924_CR14) 2023; 72
9924_CR50
A Devo (9924_CR10) 2022; 7
AB Siddiqui (9924_CR27) 2022
F Nex (9924_CR1) 2014; 6
A Fotouhi (9924_CR9) 2018; 6
V Mayor (9924_CR3) 2019; 2019
9924_CR18
9924_CR17
References_xml – volume: 35
  start-page: 12275
  year: 2021
  ident: 9924_CR11
  publication-title: Proc. AAAI Conf. Artif. Intell.
– ident: 9924_CR39
  doi: 10.1145/3404663.3404668
– ident: 9924_CR35
– ident: 9924_CR7
  doi: 10.1109/PIMRC.2018.8580746
– volume: 72
  start-page: 9880
  year: 2023
  ident: 9924_CR14
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2023.3259688
– ident: 9924_CR18
  doi: 10.1109/ICRA.2017.7989732
– ident: 9924_CR37
  doi: 10.1109/ICCW.2018.8403633
– ident: 9924_CR23
  doi: 10.1109/WCNC.2018.8377340
– volume: 8
  start-page: 229
  year: 1992
  ident: 9924_CR42
  publication-title: Mach. Learn.
  doi: 10.1023/A:1022672621406
– ident: 9924_CR22
  doi: 10.1109/GLOCOM.2015.7417609
– start-page: 167
  volume-title: Hybrid Intelligent Systems
  year: 2018
  ident: 9924_CR20
– volume: 69
  start-page: 16067
  year: 2020
  ident: 9924_CR12
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2020.3041929
– volume: 2021
  start-page: 5589605
  year: 2021
  ident: 9924_CR25
  publication-title: Wirel. Commun. Mob. Comput.
  doi: 10.1155/2021/5589605
– volume: 20
  start-page: 1647
  year: 2016
  ident: 9924_CR26
  publication-title: IEEE Commun. Lett.
  doi: 10.1109/LCOMM.2016.2578312
– ident: 9924_CR45
– volume: 134
  year: 2021
  ident: 9924_CR13
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2021.105400
– ident: 9924_CR21
  doi: 10.1109/PERCOMW.2019.8730845
– volume: 23
  start-page: 2613
  year: 2010
  ident: 9924_CR48
  publication-title: Adv. Neural Inf. Process. Syst.
– volume-title: Reinforcement Learning: An Introduction
  year: 2018
  ident: 9924_CR41
– volume: 7
  start-page: 1597
  year: 2020
  ident: 9924_CR4
  publication-title: IEEE Trans. Netw. Sci. Eng.
  doi: 10.1109/TNSE.2019.2942266
– volume: 22
  start-page: 1
  year: 2021
  ident: 9924_CR49
  publication-title: J. Mach. Learn. Res.
– year: 2022
  ident: 9924_CR27
  publication-title: Drones
  doi: 10.3390/drones6020045
– ident: 9924_CR46
  doi: 10.2991/978-94-6463-370-2_3
– volume: 6
  start-page: 1
  year: 2014
  ident: 9924_CR1
  publication-title: Appl. Geomat.
  doi: 10.1007/s12518-013-0120-x
– volume: 23
  start-page: 2243
  year: 2019
  ident: 9924_CR8
  publication-title: IEEE Commun. Lett.
  doi: 10.1109/LCOMM.2019.2940191
– volume: 23
  year: 2023
  ident: 9924_CR29
  publication-title: Internet Things
  doi: 10.1016/j.iot.2023.100867
– ident: 9924_CR34
  doi: 10.1109/ISWCS.2019.8877247
– volume: 124
  start-page: 72
  year: 2017
  ident: 9924_CR2
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2017.05.021
– volume: 68
  start-page: 8036
  year: 2019
  ident: 9924_CR33
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2019.2922849
– volume: 36
  start-page: 2015
  year: 2018
  ident: 9924_CR32
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2018.2864376
– volume: 6
  start-page: 19530
  year: 2018
  ident: 9924_CR9
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2817799
– volume: 10
  start-page: 1659
  year: 2023
  ident: 9924_CR5
  publication-title: IEEE Trans. Netw. Sci. Eng.
  doi: 10.1109/TNSE.2022.3233004
– volume: 65
  year: 2021
  ident: 9924_CR28
  publication-title: Sci. China Inf. Sci.
  doi: 10.1007/s11432-020-3170-2
– ident: 9924_CR47
– ident: 9924_CR43
– volume: 22
  year: 2023
  ident: 9924_CR31
  publication-title: Internet Things
  doi: 10.1016/j.iot.2023.100726
– ident: 9924_CR17
  doi: 10.1109/ICCC49849.2020.9238795
– volume: 9
  start-page: 21899
  year: 2022
  ident: 9924_CR6
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2022.3182633
– ident: 9924_CR38
– volume: 2019
  start-page: 7521513
  year: 2019
  ident: 9924_CR3
  publication-title: Wirel. Commun. Mob. Comput.
  doi: 10.1155/2019/7521513
– ident: 9924_CR40
– volume: 2
  start-page: 915567
  year: 2022
  ident: 9924_CR24
  publication-title: Front. Signal Process.
  doi: 10.3389/frsip.2022.915567
– volume: 10
  start-page: 790
  year: 2018
  ident: 9924_CR16
  publication-title: Cognit. Comput.
  doi: 10.1007/s12559-018-9559-8
– volume: 69
  start-page: 11599
  year: 2020
  ident: 9924_CR15
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2020.3014788
– volume: 68
  start-page: 9098
  year: 2019
  ident: 9924_CR19
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2019.2927425
– ident: 9924_CR50
– ident: 9924_CR44
– volume: 24
  year: 2023
  ident: 9924_CR30
  publication-title: Internet Things
  doi: 10.1016/j.iot.2023.100985
– volume: 7
  start-page: 5031
  year: 2022
  ident: 9924_CR10
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2022.3154019
– ident: 9924_CR36
  doi: 10.1109/VTCFall.2016.7881122
SSID ssj0008395
Score 2.3571873
Snippet In areas with limited communication capabilities, such as disaster zones, network service providers can deploy groups of Unmanned Aerial Vehicles (UAVs),...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 49
SubjectTerms Bandwidths
Communications Engineering
Computer Communication Networks
Computer Science
Computer Systems Organization and Communication Networks
Connectivity
Deep learning
Disasters
Drone aircraft
Drones
Information Systems and Communication Service
Markov processes
Networks
Operations Research/Decision Theory
Optimization
Robotics
Unmanned aerial vehicles
Title Optimizing Drone Deployment for Maximized User Connectivity in Areas of Interest Via Deep Reinforcement Learning
URI https://link.springer.com/article/10.1007/s10922-025-09924-1
https://www.proquest.com/docview/3213216733
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-7705
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008395
  issn: 1064-7570
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-7705
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008395
  issn: 1064-7570
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-7705
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008395
  issn: 1064-7570
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgXODAeIrxUg7coGhJ02Y9TjwFAiREEZyqNHXQhNgmNiS0X4-TtgwQHDhWqfKw8_ic2J8B9kJFINUaMlOTMiSnCBLR1oHmEYqCJybuuADnq-v4PJUXD9FDFRQ2qr3d6ydJv1N_CXZLyHBy6VcJ1QgZkM0z5_m2GjDXPXu8PPncgenQj_wrZywDFal2FSzzey3fD6QpyvzxMOrPm9MmpHVPSzeT58O3cX5oJj9IHP87lCVYrAAo65YzZhlmsL8CzTq5A6vW-gosfGEqXIXhDW0tL70JfbDj10Ef2TG6VMHubpER7mVX-t2VY8FSmtTM-8-YMjMF6_WpOdQjNrDM30DSyNl9T1MdOGS36Mlbjb-nZBXf69MapKcnd0fnQZWsITBCiXEgcp0bKwsppUHpWGS4MDqOO9xK6yheOiIhU6awyEVhkJu40FwrVFILwoQ6XIdGn7q_ASxvc1ShdmxcKBNpc5Mg5iq2NuooFdkW7Ncay4YlJ0c2ZV92os1ItJkXbcZbsF0rNavW5ygLBVnhPFZh2IKDWkfT4r9r2_zf71swL7yanX_vNjTGr2-4QyhmnO9Wk3YXZlPR_QCxd-jL
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG6MHtSDP1AjitqDN11Cu25lRyISVMDEMMNt6bpXw0EggInxr_e12wSNHjwuXdqmr33ve-173yPk0pcIUo1GNzXKU3IyL-J15SkWAM9YpMOGTXDu9cNOLO6HwbBICpuX0e7lk6TT1CvJbhE6Trb8KqIaLjz0eTYsgZVlzI9580v_oskP3BtnKDwZyHqRKvN7H9_N0RJj_ngWddamvUd2CphIm7lc98kajCtktyzBQIsTWSHbK3yCB2T6iArgdfSBH7Q1m4yBtsAW9LU3gBTRKe2pd9sOGY1x61EX5aLz-hF0NMbhQM3pxFB3T4gzpM8jhX3AlD6Bo1jV7jaRFqysL4ckbt8ObjpeUVLB01zyhcdTlWojMiGEBmG5XhjXKgwbzAhjiVgaPEKHIzPAeKaB6TBTTEmQQnFEbso_IutjnP4xoWmdgfSV5cwCEQmT6ggglaExQUPKwFTJVbmyyTRnzkiWHMlWDgnKIXFySFiV1MrFT4pTNE98jr4yC6XvV8l1KZBl89-9nfzv9wuy2Rn0ukn3rv9wSra42x82IrdG1hezNzhD3LFIz902-wT6d83L
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI7QkBAceAwQgwE5cIOKJU2b9ogY03hsIMQQtypNHbQDZYIiIX49TtqygeDAsUrlRLETf07iz4Qc-BJBqtEYpsZlSk7mxbyjPMUC4BmLdRjZBOfBMOyPxMVD8DCTxe9eu9dXkmVOg2VpyovjSWaOZxLfYgyibClWRDhceBj_zAtLlIAWPeInX3sxuv_A3XeGwpOB7FRpM7_L-O6apnjzxxWp8zy9VbJcQUZ6Uup4jcxB3iQrdTkGWq3OJlma4RZcJ5Nr3Ayexh_4QbsvzznQLtjivvY0kCJSpQP1btshoyM0Q-pevOiylgQd59gdqFf6bKg7M8QR0vuxQhkwobfg6Fa1O1mkFUPr4wYZ9c7uTvteVV7B01zywuOpSrURmRBCg7C8L4xrFYYRM8JYUpaIxxh8ZAYYzzQwHWaKKQlSKI4oTvmbpJHj8LcITTsMpK8sfxaIWJhUxwCpDI0JIikD0yKH9cwmk5JFI5nyJVs9JKiHxOkhYS3Sric_qVbUa-JzjJtZKH2_RY5qhUyb_5a2_b_f98nCTbeXXJ0PL3fIInfmYR_ntkmjeHmDXYQgRbrnrOwTDAfSBw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+Drone+Deployment+for+Maximized+User+Connectivity+in+Areas+of+Interest+Via+Deep+Reinforcement+Learning&rft.jtitle=Journal+of+network+and+systems+management&rft.au=Rajashekar%2C+Kolichala&rft.au=Garg%2C+Ashutosh&rft.au=M.+Baswade%2C+Anand&rft.au=Sidhanta%2C+Subhajit&rft.date=2025-07-01&rft.pub=Springer+Nature+B.V&rft.issn=1064-7570&rft.eissn=1573-7705&rft.volume=33&rft.issue=3&rft.spage=49&rft_id=info:doi/10.1007%2Fs10922-025-09924-1&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1064-7570&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1064-7570&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1064-7570&client=summon