Optimizing Drone Deployment for Maximized User Connectivity in Areas of Interest Via Deep Reinforcement Learning
In areas with limited communication capabilities, such as disaster zones, network service providers can deploy groups of Unmanned Aerial Vehicles (UAVs), commonly referred to as drones, serving as Drone Base Stations (DBSs) to temporarily supplement traditional communication infrastructure. In these...
Saved in:
| Published in | Journal of network and systems management Vol. 33; no. 3; p. 49 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.07.2025
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1064-7570 1573-7705 |
| DOI | 10.1007/s10922-025-09924-1 |
Cover
| Abstract | In areas with limited communication capabilities, such as disaster zones, network service providers can deploy groups of Unmanned Aerial Vehicles (UAVs), commonly referred to as drones, serving as Drone Base Stations (DBSs) to temporarily supplement traditional communication infrastructure. In these regions, people who have survived the disaster adapt their positions to seek protection as the affected area gradually expands. Therefore, it is necessary to change the relative position of the DBSs to ensure adequate network performance and uninterrupted connectivity for users. This objective involves continuously updating the DBS position, which is subject to a long-term objective. To achieve this objective, we use Deep Reinforcement Learning (DRL) to adaptively modify the position of the DBS in response to the varying location of the User Equipment (UE). To this end, we design a Markov Decision Process (MDP) accounting for the continuous nature of the DBS position and the DBS 360-degree movement in the horizontal plane. This allows our solution to actively explore various positions of the DBSs, leading to significantly enhanced connectivity and bandwidth for the non-stationary user equipment (UEs). This work is the first to utilize action-space normalization in a continuous action space, using linear interpolation-based techniques commonly employed in robotics and related research fields. This approach allows for a comprehensive exploration of the continuous space, resulting in significantly enhanced optimization. We demonstrate that our approach can improve on previous research in this area while considering a much more complex optimization problem while providing uninterrupted connectivity to mobile UEs using multiple DBSs while maintaining stable bandwidth. |
|---|---|
| AbstractList | In areas with limited communication capabilities, such as disaster zones, network service providers can deploy groups of Unmanned Aerial Vehicles (UAVs), commonly referred to as drones, serving as Drone Base Stations (DBSs) to temporarily supplement traditional communication infrastructure. In these regions, people who have survived the disaster adapt their positions to seek protection as the affected area gradually expands. Therefore, it is necessary to change the relative position of the DBSs to ensure adequate network performance and uninterrupted connectivity for users. This objective involves continuously updating the DBS position, which is subject to a long-term objective. To achieve this objective, we use Deep Reinforcement Learning (DRL) to adaptively modify the position of the DBS in response to the varying location of the User Equipment (UE). To this end, we design a Markov Decision Process (MDP) accounting for the continuous nature of the DBS position and the DBS 360-degree movement in the horizontal plane. This allows our solution to actively explore various positions of the DBSs, leading to significantly enhanced connectivity and bandwidth for the non-stationary user equipment (UEs). This work is the first to utilize action-space normalization in a continuous action space, using linear interpolation-based techniques commonly employed in robotics and related research fields. This approach allows for a comprehensive exploration of the continuous space, resulting in significantly enhanced optimization. We demonstrate that our approach can improve on previous research in this area while considering a much more complex optimization problem while providing uninterrupted connectivity to mobile UEs using multiple DBSs while maintaining stable bandwidth. |
| ArticleNumber | 49 |
| Author | Sidhanta, Subhajit M. Baswade, Anand Rajashekar, Kolichala Garg, Ashutosh |
| Author_xml | – sequence: 1 givenname: Kolichala surname: Rajashekar fullname: Rajashekar, Kolichala email: kolichalar@iitbhilai.ac.in organization: Department of Computer Science and Engineering, Indian Institute of Technology Bhilai – sequence: 2 givenname: Ashutosh surname: Garg fullname: Garg, Ashutosh organization: SDE, Amazon Inc – sequence: 3 givenname: Anand surname: M. Baswade fullname: M. Baswade, Anand organization: Department of Computer Science and Engineering, Indian Institute of Technology Bhilai – sequence: 4 givenname: Subhajit surname: Sidhanta fullname: Sidhanta, Subhajit organization: Department of Industrial and Systems Engineering, Indian Institute of Technology Kharagpur |
| BookMark | eNp9kFtLAzEQhYNUsFb_gE8Bn1dz22T3sbReCpWCWF9Dmp0tKW12TbZi_fWmXcE3YWAG5pxvhnOJBr7xgNANJXeUEHUfKSkZywjLM1KWTGT0DA1prnimFMkHaSZSZCpX5AJdxrghhBS8zIeoXbSd27lv59d4GhIUT6HdNocd-A7XTcAv5uu4hwovIwQ8abwH27lP1x2w83gcwETc1HjmOwgQO_zuTGJAi1_B-USwcGLNwQSfrlyh89psI1z_9hFaPj68TZ6z-eJpNhnPM8sU6zK2Mitbi0oIYUGQnEnKrJGyoLWoKeOyYGXBZFUDZZUFamVlqFGghGFUcsNH6LbntqH52KfH9KbZB59Oas5oKqk4TyrWq2xoYgxQ6za4nQkHTYk-Jqv7ZHVKVp-S1TSZeG-KSezXEP7Q_7h-AJPRfnc |
| Cites_doi | 10.1145/3404663.3404668 10.1109/PIMRC.2018.8580746 10.1109/TVT.2023.3259688 10.1109/ICRA.2017.7989732 10.1109/ICCW.2018.8403633 10.1109/WCNC.2018.8377340 10.1023/A:1022672621406 10.1109/GLOCOM.2015.7417609 10.1109/TVT.2020.3041929 10.1155/2021/5589605 10.1109/LCOMM.2016.2578312 10.1016/j.cor.2021.105400 10.1109/PERCOMW.2019.8730845 10.1109/TNSE.2019.2942266 10.3390/drones6020045 10.2991/978-94-6463-370-2_3 10.1007/s12518-013-0120-x 10.1109/LCOMM.2019.2940191 10.1016/j.iot.2023.100867 10.1109/ISWCS.2019.8877247 10.1016/j.comnet.2017.05.021 10.1109/TVT.2019.2922849 10.1109/JSAC.2018.2864376 10.1109/ACCESS.2018.2817799 10.1109/TNSE.2022.3233004 10.1007/s11432-020-3170-2 10.1016/j.iot.2023.100726 10.1109/ICCC49849.2020.9238795 10.1109/JIOT.2022.3182633 10.1155/2019/7521513 10.3389/frsip.2022.915567 10.1007/s12559-018-9559-8 10.1109/TVT.2020.3014788 10.1109/TVT.2019.2927425 10.1016/j.iot.2023.100985 10.1109/LRA.2022.3154019 10.1109/VTCFall.2016.7881122 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1007/s10922-025-09924-1 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1573-7705 |
| ExternalDocumentID | 10_1007_s10922_025_09924_1 |
| GroupedDBID | -~C .86 .DC .VR 06D 0R~ 0VY 1N0 203 29L 2J2 2JN 2JY 2KG 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 77K 7WY 8FL 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHHG ADHIR ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALSLI ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BENPR BGNMA BSONS CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI ESBYG FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV LAK LLZTM M1O M4Y MA- NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P P9O PF0 PT4 PT5 QOK QOS R89 R9I RHV RNS ROL RPX RSV S16 S1Z S27 S3B SAP SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX VC2 W23 W48 WK8 YLTOR Z45 ZMTXR ~A9 ~EX -Y2 .4S 1SB 2.D 28- 2P1 2VQ 5QI 77I 8AO 8FE 8FG 8FW AAAVM AAOBN AARHV AAYTO AAYXX ABQSL ABULA ABUWG ACBXY ADHKG ADMLS AEBTG AEFIE AEKMD AFEXP AFGCZ AFKRA AGGDS AGQPQ AJBLW ARCSS AZQEC BBWZM BDATZ BEZIV BGLVJ BPHCQ CAG CCPQU CITATION CNYFK COF DWQXO EDO EJD FINBP FRNLG FSGXE GNUQQ GROUPED_ABI_INFORM_RESEARCH H13 I-F IHE K6V K7- KOW M0C N2Q NDZJH O9- OVD P62 PHGZM PHGZT PQBIZ PQBZA PQGLB PQQKQ PROAC PRQQA PUEGO Q2X R4E RNI RZC RZE RZK S26 S28 SCJ SCLPG T16 TEORI TUS UZXMN VFIZW 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c272t-2babcf4d444ce4052612ca6681f4f1236829826dfe12dce1c6da1a7e74a2163a3 |
| IEDL.DBID | AGYKE |
| ISSN | 1064-7570 |
| IngestDate | Sat Aug 16 21:22:02 EDT 2025 Wed Oct 01 05:36:17 EDT 2025 Sat Jul 19 01:10:42 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Drone base station Deep reinforcement learning DBS deployment Soft actor-critic (SAC) algorithm Normalized continuous action space for reinforcement learning Drone disaster emergency communications |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c272t-2babcf4d444ce4052612ca6681f4f1236829826dfe12dce1c6da1a7e74a2163a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3213216733 |
| PQPubID | 32329 |
| ParticipantIDs | proquest_journals_3213216733 crossref_primary_10_1007_s10922_025_09924_1 springer_journals_10_1007_s10922_025_09924_1 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-07-01 |
| PublicationDateYYYYMMDD | 2025-07-01 |
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Journal of network and systems management |
| PublicationTitleAbbrev | J Netw Syst Manage |
| PublicationYear | 2025 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | 9924_CR45 J Shi (9924_CR12) 2020; 69 9924_CR44 9924_CR47 9924_CR46 S Jiao (9924_CR24) 2022; 2 9924_CR40 9924_CR43 L Yu (9924_CR5) 2023; 10 D Wu (9924_CR4) 2020; 7 9924_CR7 RS Sutton (9924_CR41) 2018 GB Tarekegn (9924_CR6) 2022; 9 Q Wang (9924_CR8) 2019; 23 PV Klaine (9924_CR16) 2018; 10 9924_CR34 H Hasselt (9924_CR48) 2010; 23 9924_CR36 RJ Williams (9924_CR42) 1992; 8 9924_CR35 M Mozaffari (9924_CR26) 2016; 20 S Zhang (9924_CR31) 2023; 22 M Erdelj (9924_CR2) 2017; 124 X Lu (9924_CR28) 2021; 65 X Li (9924_CR19) 2019; 68 9924_CR38 9924_CR37 9924_CR39 9924_CR23 9924_CR22 Y Zhang (9924_CR15) 2020; 69 E Tuba (9924_CR20) 2018 H Shakhatreh (9924_CR25) 2021; 2021 9924_CR21 D-C Dang (9924_CR11) 2021; 35 S Zhang (9924_CR30) 2023; 24 H Zhao (9924_CR32) 2018; 36 N Mazyavkina (9924_CR13) 2021; 134 X Liu (9924_CR33) 2019; 68 M Shurrab (9924_CR29) 2023; 23 A Raffin (9924_CR49) 2021; 22 M Parvini (9924_CR14) 2023; 72 9924_CR50 A Devo (9924_CR10) 2022; 7 AB Siddiqui (9924_CR27) 2022 F Nex (9924_CR1) 2014; 6 A Fotouhi (9924_CR9) 2018; 6 V Mayor (9924_CR3) 2019; 2019 9924_CR18 9924_CR17 |
| References_xml | – volume: 35 start-page: 12275 year: 2021 ident: 9924_CR11 publication-title: Proc. AAAI Conf. Artif. Intell. – ident: 9924_CR39 doi: 10.1145/3404663.3404668 – ident: 9924_CR35 – ident: 9924_CR7 doi: 10.1109/PIMRC.2018.8580746 – volume: 72 start-page: 9880 year: 2023 ident: 9924_CR14 publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2023.3259688 – ident: 9924_CR18 doi: 10.1109/ICRA.2017.7989732 – ident: 9924_CR37 doi: 10.1109/ICCW.2018.8403633 – ident: 9924_CR23 doi: 10.1109/WCNC.2018.8377340 – volume: 8 start-page: 229 year: 1992 ident: 9924_CR42 publication-title: Mach. Learn. doi: 10.1023/A:1022672621406 – ident: 9924_CR22 doi: 10.1109/GLOCOM.2015.7417609 – start-page: 167 volume-title: Hybrid Intelligent Systems year: 2018 ident: 9924_CR20 – volume: 69 start-page: 16067 year: 2020 ident: 9924_CR12 publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2020.3041929 – volume: 2021 start-page: 5589605 year: 2021 ident: 9924_CR25 publication-title: Wirel. Commun. Mob. Comput. doi: 10.1155/2021/5589605 – volume: 20 start-page: 1647 year: 2016 ident: 9924_CR26 publication-title: IEEE Commun. Lett. doi: 10.1109/LCOMM.2016.2578312 – ident: 9924_CR45 – volume: 134 year: 2021 ident: 9924_CR13 publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2021.105400 – ident: 9924_CR21 doi: 10.1109/PERCOMW.2019.8730845 – volume: 23 start-page: 2613 year: 2010 ident: 9924_CR48 publication-title: Adv. Neural Inf. Process. Syst. – volume-title: Reinforcement Learning: An Introduction year: 2018 ident: 9924_CR41 – volume: 7 start-page: 1597 year: 2020 ident: 9924_CR4 publication-title: IEEE Trans. Netw. Sci. Eng. doi: 10.1109/TNSE.2019.2942266 – volume: 22 start-page: 1 year: 2021 ident: 9924_CR49 publication-title: J. Mach. Learn. Res. – year: 2022 ident: 9924_CR27 publication-title: Drones doi: 10.3390/drones6020045 – ident: 9924_CR46 doi: 10.2991/978-94-6463-370-2_3 – volume: 6 start-page: 1 year: 2014 ident: 9924_CR1 publication-title: Appl. Geomat. doi: 10.1007/s12518-013-0120-x – volume: 23 start-page: 2243 year: 2019 ident: 9924_CR8 publication-title: IEEE Commun. Lett. doi: 10.1109/LCOMM.2019.2940191 – volume: 23 year: 2023 ident: 9924_CR29 publication-title: Internet Things doi: 10.1016/j.iot.2023.100867 – ident: 9924_CR34 doi: 10.1109/ISWCS.2019.8877247 – volume: 124 start-page: 72 year: 2017 ident: 9924_CR2 publication-title: Comput. Netw. doi: 10.1016/j.comnet.2017.05.021 – volume: 68 start-page: 8036 year: 2019 ident: 9924_CR33 publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2019.2922849 – volume: 36 start-page: 2015 year: 2018 ident: 9924_CR32 publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/JSAC.2018.2864376 – volume: 6 start-page: 19530 year: 2018 ident: 9924_CR9 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2817799 – volume: 10 start-page: 1659 year: 2023 ident: 9924_CR5 publication-title: IEEE Trans. Netw. Sci. Eng. doi: 10.1109/TNSE.2022.3233004 – volume: 65 year: 2021 ident: 9924_CR28 publication-title: Sci. China Inf. Sci. doi: 10.1007/s11432-020-3170-2 – ident: 9924_CR47 – ident: 9924_CR43 – volume: 22 year: 2023 ident: 9924_CR31 publication-title: Internet Things doi: 10.1016/j.iot.2023.100726 – ident: 9924_CR17 doi: 10.1109/ICCC49849.2020.9238795 – volume: 9 start-page: 21899 year: 2022 ident: 9924_CR6 publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2022.3182633 – ident: 9924_CR38 – volume: 2019 start-page: 7521513 year: 2019 ident: 9924_CR3 publication-title: Wirel. Commun. Mob. Comput. doi: 10.1155/2019/7521513 – ident: 9924_CR40 – volume: 2 start-page: 915567 year: 2022 ident: 9924_CR24 publication-title: Front. Signal Process. doi: 10.3389/frsip.2022.915567 – volume: 10 start-page: 790 year: 2018 ident: 9924_CR16 publication-title: Cognit. Comput. doi: 10.1007/s12559-018-9559-8 – volume: 69 start-page: 11599 year: 2020 ident: 9924_CR15 publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2020.3014788 – volume: 68 start-page: 9098 year: 2019 ident: 9924_CR19 publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2019.2927425 – ident: 9924_CR50 – ident: 9924_CR44 – volume: 24 year: 2023 ident: 9924_CR30 publication-title: Internet Things doi: 10.1016/j.iot.2023.100985 – volume: 7 start-page: 5031 year: 2022 ident: 9924_CR10 publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2022.3154019 – ident: 9924_CR36 doi: 10.1109/VTCFall.2016.7881122 |
| SSID | ssj0008395 |
| Score | 2.3571873 |
| Snippet | In areas with limited communication capabilities, such as disaster zones, network service providers can deploy groups of Unmanned Aerial Vehicles (UAVs),... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 49 |
| SubjectTerms | Bandwidths Communications Engineering Computer Communication Networks Computer Science Computer Systems Organization and Communication Networks Connectivity Deep learning Disasters Drone aircraft Drones Information Systems and Communication Service Markov processes Networks Operations Research/Decision Theory Optimization Robotics Unmanned aerial vehicles |
| Title | Optimizing Drone Deployment for Maximized User Connectivity in Areas of Interest Via Deep Reinforcement Learning |
| URI | https://link.springer.com/article/10.1007/s10922-025-09924-1 https://www.proquest.com/docview/3213216733 |
| Volume | 33 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-7705 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008395 issn: 1064-7570 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-7705 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008395 issn: 1064-7570 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-7705 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008395 issn: 1064-7570 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgXODAeIrxUg7coGhJ02Y9TjwFAiREEZyqNHXQhNgmNiS0X4-TtgwQHDhWqfKw8_ic2J8B9kJFINUaMlOTMiSnCBLR1oHmEYqCJybuuADnq-v4PJUXD9FDFRQ2qr3d6ydJv1N_CXZLyHBy6VcJ1QgZkM0z5_m2GjDXPXu8PPncgenQj_wrZywDFal2FSzzey3fD6QpyvzxMOrPm9MmpHVPSzeT58O3cX5oJj9IHP87lCVYrAAo65YzZhlmsL8CzTq5A6vW-gosfGEqXIXhDW0tL70JfbDj10Ef2TG6VMHubpER7mVX-t2VY8FSmtTM-8-YMjMF6_WpOdQjNrDM30DSyNl9T1MdOGS36Mlbjb-nZBXf69MapKcnd0fnQZWsITBCiXEgcp0bKwsppUHpWGS4MDqOO9xK6yheOiIhU6awyEVhkJu40FwrVFILwoQ6XIdGn7q_ASxvc1ShdmxcKBNpc5Mg5iq2NuooFdkW7Ncay4YlJ0c2ZV92os1ItJkXbcZbsF0rNavW5ygLBVnhPFZh2IKDWkfT4r9r2_zf71swL7yanX_vNjTGr2-4QyhmnO9Wk3YXZlPR_QCxd-jL |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG6MHtSDP1AjitqDN11Cu25lRyISVMDEMMNt6bpXw0EggInxr_e12wSNHjwuXdqmr33ve-173yPk0pcIUo1GNzXKU3IyL-J15SkWAM9YpMOGTXDu9cNOLO6HwbBICpuX0e7lk6TT1CvJbhE6Trb8KqIaLjz0eTYsgZVlzI9580v_oskP3BtnKDwZyHqRKvN7H9_N0RJj_ngWddamvUd2CphIm7lc98kajCtktyzBQIsTWSHbK3yCB2T6iArgdfSBH7Q1m4yBtsAW9LU3gBTRKe2pd9sOGY1x61EX5aLz-hF0NMbhQM3pxFB3T4gzpM8jhX3AlD6Bo1jV7jaRFqysL4ckbt8ObjpeUVLB01zyhcdTlWojMiGEBmG5XhjXKgwbzAhjiVgaPEKHIzPAeKaB6TBTTEmQQnFEbso_IutjnP4xoWmdgfSV5cwCEQmT6ggglaExQUPKwFTJVbmyyTRnzkiWHMlWDgnKIXFySFiV1MrFT4pTNE98jr4yC6XvV8l1KZBl89-9nfzv9wuy2Rn0ukn3rv9wSra42x82IrdG1hezNzhD3LFIz902-wT6d83L |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI7QkBAceAwQgwE5cIOKJU2b9ogY03hsIMQQtypNHbQDZYIiIX49TtqygeDAsUrlRLETf07iz4Qc-BJBqtEYpsZlSk7mxbyjPMUC4BmLdRjZBOfBMOyPxMVD8DCTxe9eu9dXkmVOg2VpyovjSWaOZxLfYgyibClWRDhceBj_zAtLlIAWPeInX3sxuv_A3XeGwpOB7FRpM7_L-O6apnjzxxWp8zy9VbJcQUZ6Uup4jcxB3iQrdTkGWq3OJlma4RZcJ5Nr3Ayexh_4QbsvzznQLtjivvY0kCJSpQP1btshoyM0Q-pevOiylgQd59gdqFf6bKg7M8QR0vuxQhkwobfg6Fa1O1mkFUPr4wYZ9c7uTvteVV7B01zywuOpSrURmRBCg7C8L4xrFYYRM8JYUpaIxxh8ZAYYzzQwHWaKKQlSKI4oTvmbpJHj8LcITTsMpK8sfxaIWJhUxwCpDI0JIikD0yKH9cwmk5JFI5nyJVs9JKiHxOkhYS3Sric_qVbUa-JzjJtZKH2_RY5qhUyb_5a2_b_f98nCTbeXXJ0PL3fIInfmYR_ntkmjeHmDXYQgRbrnrOwTDAfSBw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+Drone+Deployment+for+Maximized+User+Connectivity+in+Areas+of+Interest+Via+Deep+Reinforcement+Learning&rft.jtitle=Journal+of+network+and+systems+management&rft.au=Rajashekar%2C+Kolichala&rft.au=Garg%2C+Ashutosh&rft.au=M.+Baswade%2C+Anand&rft.au=Sidhanta%2C+Subhajit&rft.date=2025-07-01&rft.pub=Springer+Nature+B.V&rft.issn=1064-7570&rft.eissn=1573-7705&rft.volume=33&rft.issue=3&rft.spage=49&rft_id=info:doi/10.1007%2Fs10922-025-09924-1&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1064-7570&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1064-7570&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1064-7570&client=summon |