LINEAR MULTIFRACTIONAL STOCHASTIC VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS
In this paper we prove the variation of parameters formula for linear Volterra integro-differential equations driven by multifractional Brownian motion. To do this, an approximation result for the Stratonovich stochastic integral with respect to the multifractional Brownian motion is given. Based on...
        Saved in:
      
    
          | Published in | Taiwanese journal of mathematics Vol. 17; no. 1; pp. 333 - 350 | 
|---|---|
| Main Author | |
| Format | Journal Article | 
| Language | English | 
| Published | 
            Mathematical Society of the Republic of China
    
        01.02.2013
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1027-5487 2224-6851 2224-6851  | 
| DOI | 10.11650/tjm.17.2013.1728 | 
Cover
| Abstract | In this paper we prove the variation of parameters formula for linear Volterra integro-differential equations driven by multifractional Brownian motion. To do this, an approximation result for the Stratonovich stochastic integral with respect to the multifractional Brownian motion is given. Based on our obtained results we study the almost sure exponential convergence of the solution. Also, the existence and uniqueness of the solution of a multifractional Volterra integro-differential equation with time delay are proved.
2010Mathematics Subject Classification: 45D05, 60G22, 60H07.
Key words and phrases: Volterra integro-differential equations, Variation of parameters formula, Multifractional Brownian motion, Malliavin calculus. | 
    
|---|---|
| AbstractList | In this paper we prove the variation of parameters formula for linear Volterra integro-differential equations driven by multifractional Brownian motion. To do this, an approximation result for the Stratonovich stochastic integral with respect to the multifractional Brownian motion is given. Based on our obtained results we study the almost sure exponential convergence of the solution. Also, the existence and uniqueness of the solution of a multifractional Volterra integro-differential equation with time delay are proved.
2010Mathematics Subject Classification: 45D05, 60G22, 60H07.
Key words and phrases: Volterra integro-differential equations, Variation of parameters formula, Multifractional Brownian motion, Malliavin calculus. | 
    
| Author | Dung, Nguyen Tien | 
    
| Author_xml | – sequence: 1 givenname: Nguyen Tien surname: Dung fullname: Dung, Nguyen Tien  | 
    
| BookMark | eNqNkDtPwzAURi1UJErhB7BlY0q5duJHRis4raWQiNRltdw2EY36UhJU9d-TUMTMXb7lnDucezQ6HA8lQk8YphgzCi9dvZ9iPiWAg36JuEFjQkjoM0HxCI0xEO7TUPA7dN-2NQARDLMx0qnOlCy8t2VqdFLI2Og8k6m3MHk8lwujY-8jT40qCunpzKhZkfuvOklUoTKje1C9L-XgLB7QbeV2bfn4uxO0TJSJ536az3QsU39NOOl8wsimwgRWDgBCJyoXccEJBIIH0CNUBFHoIsoYc5UrxSZiG7wKS7aiHGjoggki179fh5O7nN1uZ0_Ndu-ai8Vgf2LYPobF3A4x7BCjl_BVWjfHtm3K6l_O89Wp2-7Y_Amd257rves-BxrboL9vMi5rcA | 
    
| Cites_doi | 10.1080/17442509808834172 10.1007/s11009-010-9188-5 10.3150/10-BEJ261 10.57262/die/1372700426 10.1088/0305-4470/34/7/306 10.1214/EJP.v8-179 10.1214/aop/1008956692 10.1090/S0002-9939-1969-0247016-9  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2013 Mathematical Society of the Republic of China | 
    
| Copyright_xml | – notice: 2013 Mathematical Society of the Republic of China | 
    
| DBID | AAYXX CITATION ADTOC UNPAY  | 
    
| DOI | 10.11650/tjm.17.2013.1728 | 
    
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Mathematics | 
    
| EISSN | 2224-6851 | 
    
| EndPage | 350 | 
    
| ExternalDocumentID | 10.11650/tjm.17.2013.1728 10_11650_tjm_17_2013_1728 taiwjmath.17.1.333  | 
    
| GroupedDBID | -~X 123 29Q 2WC AAFWJ AAHSX ABBHK ABXSQ ACHDO ACIPV ACMTB ACTMH ADULT AEHFS AELHJ AENEX AEUPB AFBOV AFFOW AFOWJ AGLNM AIHAF ALMA_UNASSIGNED_HOLDINGS ALRMG E3Z EBS ECEWR EJD IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST OK1 OVT RBV RPE SA0 XSB AAYXX CITATION ADTOC C1A TR2 UNPAY  | 
    
| ID | FETCH-LOGICAL-c272t-262df120ba0004a8fa97872038730c2758394a95666afae8d96d1b4e6b57054a3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 1027-5487 2224-6851  | 
    
| IngestDate | Wed Oct 01 16:22:07 EDT 2025 Tue Jul 01 02:33:53 EDT 2025 Thu Jul 03 21:19:27 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c272t-262df120ba0004a8fa97872038730c2758394a95666afae8d96d1b4e6b57054a3 | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://projecteuclid.org/journals/taiwanese-journal-of-mathematics/volume-17/issue-1/LINEAR-MULTIFRACTIONAL-STOCHASTIC-VOLTERRA-INTEGRO-DIFFERENTIAL-EQUATIONS/10.11650/tjm.17.2013.1728.pdf | 
    
| PageCount | 18 | 
    
| ParticipantIDs | unpaywall_primary_10_11650_tjm_17_2013_1728 crossref_primary_10_11650_tjm_17_2013_1728 jstor_primary_taiwjmath_17_1_333  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2013-02-01 | 
    
| PublicationDateYYYYMMDD | 2013-02-01 | 
    
| PublicationDate_xml | – month: 02 year: 2013 text: 2013-02-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | Taiwanese journal of mathematics | 
    
| PublicationYear | 2013 | 
    
| Publisher | Mathematical Society of the Republic of China | 
    
| Publisher_xml | – name: Mathematical Society of the Republic of China | 
    
| References | 11 1 12 2 3 4 5 6 7 8 9 10  | 
    
| References_xml | – ident: 12 doi: 10.1080/17442509808834172 – ident: 3 doi: 10.1007/s11009-010-9188-5 – ident: 4 – ident: 5 doi: 10.3150/10-BEJ261 – ident: 10 doi: 10.57262/die/1372700426 – ident: 8 doi: 10.1088/0305-4470/34/7/306 – ident: 11 – ident: 2 doi: 10.1214/EJP.v8-179 – ident: 9 – ident: 7 – ident: 1 doi: 10.1214/aop/1008956692 – ident: 6 doi: 10.1090/S0002-9939-1969-0247016-9  | 
    
| SSID | ssj0028616 | 
    
| Score | 1.9357713 | 
    
| Snippet | In this paper we prove the variation of parameters formula for linear Volterra integro-differential equations driven by multifractional Brownian motion. To do... | 
    
| SourceID | unpaywall crossref jstor  | 
    
| SourceType | Open Access Repository Index Database Publisher  | 
    
| StartPage | 333 | 
    
| SubjectTerms | Brownian motion Calculus Mathematical independent variables Mathematical integrals Stochastic processes Uniqueness Volterra equations  | 
    
| Title | LINEAR MULTIFRACTIONAL STOCHASTIC VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS | 
    
| URI | https://www.jstor.org/stable/taiwjmath.17.1.333 https://projecteuclid.org/journals/taiwanese-journal-of-mathematics/volume-17/issue-1/LINEAR-MULTIFRACTIONAL-STOCHASTIC-VOLTERRA-INTEGRO-DIFFERENTIAL-EQUATIONS/10.11650/tjm.17.2013.1728.pdf  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 17 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEGU databaseName: Project Euclid Open Access Journals customDbUrl: eissn: 2224-6851 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0028616 issn: 1027-5487 databaseCode: RBV dateStart: 19970101 isFulltext: true titleUrlDefault: https://projecteuclid.org/Search providerName: Project Euclid  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb5tAEB4lzqHNIX2rTtqIQ0-tFrywLM6RuFAT-VERHKUntMuC1NRxrAQrj_-Wv9Lf0lnAzkORqh57RaPVp9nX9zGzMwCfuGBMSOYSpVCuMuQkRFLUPLzjSNRinqxf8Q9HvD9hB8fu8RrcLt_CNP8f8kU2_amqSH7j0wsLpfKl0G0ZSfOJnBXkdFXc9MKq9zOhnlVhJtQaRKPAj8lwMkiiMK7TMvwBOUzGvb5_mEQ9cjQeIG2MfaIr0H6Lx-RrFIZBHIySCA0DpJXVa976cEE2Y5Unpyb1dE6YY-reTuZcFeuwwV2UAi3YmIy--z-qCKvtEa0GdHM7vCYJR2rTRFWfHOfBvVinRm7Cs8VsLq4vxXR679ILX8Dve-66ujZ_mYtSmtnNo0qS_60_X8JWQ8cNv94_r2Atn72GzeEdvDcQ1XCMR3CMOzjGEo7xFBxjBectTMIg6fVJ04CCZLZnl8Tmtiqo3ZFCU1_RLQRqbh237uK5iCYusksmUGFyLgqRd9UeV1SynEvXQyosnHfQmp3N8vdgILFTe0zhN9SnSCFFZhdUc92O4JLxrA2fl9Ofzus6I2mlz9BHKfoopV6qfZRqH7XBqBbIylJP5YmeOm1GU8dx2vBltXb-PuD2P1nvwHO7agqik3o-QKs8X-QfkZqVchfW4_2j3WYb_AEiISk8 | 
    
| linkProvider | Unpaywall | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB7RcGg50NKHCLSVD5xarZ211-twtILduMqjMk5FT9au15YKIUTgiMd_46_wW5i1nUARUtVjr9Zo9Wn29X2e2RmAPS4YE5K5RCmUqww5CZEUNQ_vOBK1mCfrV_zDEe9P2Pcj92gNbpdvYZr_D_kim_5WVSS_8emFhVL5Uui2jKT5RM4Kcroqbnph1fuZUM-qMBNqDaJR4MdkOBkkURjXaRn-gBwm417fP0yiHvk5HiBtjH2iK9B-i8fkIArDIA5GSYSGAdLK6jVvfbggm7HK41OTejonzDF1bydzrooXsM5dlAItWJ-Mfvi_qgir7RGtBnRzO7wmCUdq00RVnx3nj3uxTo3cgJeL2VxcX4rp9NGlF76Gu0fuuro2T8xFKc3s5kklyf_Wn29gs6Hjhl_vny1Yy2dvYWP4AO8dRDUc4wkc4wGOsYRjPAfHWMF5D5MwSHp90jSgIJnt2SWxua0Kanek0NRXdAuBmlvHrbt4LqKJi-ySCVSYnItC5F21zxWVLOfS9ZAKC-cDtGZns3wbDCR2ap8p_Ib6FCmkyOyCaq7bEVwynrXhy3L603ldZySt9Bn6KEUfpdRLtY9S7aM2GNUCWVnqqTzWU6fNaOo4Thu-rtbO3wfc-SfrXXhlV01BdFLPR2iV54v8E1KzUn5uNsA9MCQoMQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LINEAR+MULTIFRACTIONAL+STOCHASTIC+VOLTERRA+INTEGRO-DIFFERENTIAL+EQUATIONS&rft.jtitle=Taiwanese+journal+of+mathematics&rft.au=Nguyen%2C+Tien+Dung&rft.date=2013-02-01&rft.issn=1027-5487&rft.volume=17&rft.issue=1&rft_id=info:doi/10.11650%2Ftjm.17.2013.1728&rft.externalDBID=n%2Fa&rft.externalDocID=10_11650_tjm_17_2013_1728 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1027-5487&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1027-5487&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1027-5487&client=summon |