LINEAR MULTIFRACTIONAL STOCHASTIC VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS

In this paper we prove the variation of parameters formula for linear Volterra integro-differential equations driven by multifractional Brownian motion. To do this, an approximation result for the Stratonovich stochastic integral with respect to the multifractional Brownian motion is given. Based on...

Full description

Saved in:
Bibliographic Details
Published inTaiwanese journal of mathematics Vol. 17; no. 1; pp. 333 - 350
Main Author Dung, Nguyen Tien
Format Journal Article
LanguageEnglish
Published Mathematical Society of the Republic of China 01.02.2013
Subjects
Online AccessGet full text
ISSN1027-5487
2224-6851
2224-6851
DOI10.11650/tjm.17.2013.1728

Cover

Abstract In this paper we prove the variation of parameters formula for linear Volterra integro-differential equations driven by multifractional Brownian motion. To do this, an approximation result for the Stratonovich stochastic integral with respect to the multifractional Brownian motion is given. Based on our obtained results we study the almost sure exponential convergence of the solution. Also, the existence and uniqueness of the solution of a multifractional Volterra integro-differential equation with time delay are proved. 2010Mathematics Subject Classification: 45D05, 60G22, 60H07. Key words and phrases: Volterra integro-differential equations, Variation of parameters formula, Multifractional Brownian motion, Malliavin calculus.
AbstractList In this paper we prove the variation of parameters formula for linear Volterra integro-differential equations driven by multifractional Brownian motion. To do this, an approximation result for the Stratonovich stochastic integral with respect to the multifractional Brownian motion is given. Based on our obtained results we study the almost sure exponential convergence of the solution. Also, the existence and uniqueness of the solution of a multifractional Volterra integro-differential equation with time delay are proved. 2010Mathematics Subject Classification: 45D05, 60G22, 60H07. Key words and phrases: Volterra integro-differential equations, Variation of parameters formula, Multifractional Brownian motion, Malliavin calculus.
Author Dung, Nguyen Tien
Author_xml – sequence: 1
  givenname: Nguyen Tien
  surname: Dung
  fullname: Dung, Nguyen Tien
BookMark eNqNkDtPwzAURi1UJErhB7BlY0q5duJHRis4raWQiNRltdw2EY36UhJU9d-TUMTMXb7lnDucezQ6HA8lQk8YphgzCi9dvZ9iPiWAg36JuEFjQkjoM0HxCI0xEO7TUPA7dN-2NQARDLMx0qnOlCy8t2VqdFLI2Og8k6m3MHk8lwujY-8jT40qCunpzKhZkfuvOklUoTKje1C9L-XgLB7QbeV2bfn4uxO0TJSJ536az3QsU39NOOl8wsimwgRWDgBCJyoXccEJBIIH0CNUBFHoIsoYc5UrxSZiG7wKS7aiHGjoggki179fh5O7nN1uZ0_Ndu-ai8Vgf2LYPobF3A4x7BCjl_BVWjfHtm3K6l_O89Wp2-7Y_Amd257rves-BxrboL9vMi5rcA
Cites_doi 10.1080/17442509808834172
10.1007/s11009-010-9188-5
10.3150/10-BEJ261
10.57262/die/1372700426
10.1088/0305-4470/34/7/306
10.1214/EJP.v8-179
10.1214/aop/1008956692
10.1090/S0002-9939-1969-0247016-9
ContentType Journal Article
Copyright 2013 Mathematical Society of the Republic of China
Copyright_xml – notice: 2013 Mathematical Society of the Republic of China
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.11650/tjm.17.2013.1728
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2224-6851
EndPage 350
ExternalDocumentID 10.11650/tjm.17.2013.1728
10_11650_tjm_17_2013_1728
taiwjmath.17.1.333
GroupedDBID -~X
123
29Q
2WC
AAFWJ
AAHSX
ABBHK
ABXSQ
ACHDO
ACIPV
ACMTB
ACTMH
ADULT
AEHFS
AELHJ
AENEX
AEUPB
AFBOV
AFFOW
AFOWJ
AGLNM
AIHAF
ALMA_UNASSIGNED_HOLDINGS
ALRMG
E3Z
EBS
ECEWR
EJD
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
OK1
OVT
RBV
RPE
SA0
XSB
AAYXX
CITATION
ADTOC
C1A
TR2
UNPAY
ID FETCH-LOGICAL-c272t-262df120ba0004a8fa97872038730c2758394a95666afae8d96d1b4e6b57054a3
IEDL.DBID UNPAY
ISSN 1027-5487
2224-6851
IngestDate Wed Oct 01 16:22:07 EDT 2025
Tue Jul 01 02:33:53 EDT 2025
Thu Jul 03 21:19:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-262df120ba0004a8fa97872038730c2758394a95666afae8d96d1b4e6b57054a3
OpenAccessLink https://proxy.k.utb.cz/login?url=https://projecteuclid.org/journals/taiwanese-journal-of-mathematics/volume-17/issue-1/LINEAR-MULTIFRACTIONAL-STOCHASTIC-VOLTERRA-INTEGRO-DIFFERENTIAL-EQUATIONS/10.11650/tjm.17.2013.1728.pdf
PageCount 18
ParticipantIDs unpaywall_primary_10_11650_tjm_17_2013_1728
crossref_primary_10_11650_tjm_17_2013_1728
jstor_primary_taiwjmath_17_1_333
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-02-01
PublicationDateYYYYMMDD 2013-02-01
PublicationDate_xml – month: 02
  year: 2013
  text: 2013-02-01
  day: 01
PublicationDecade 2010
PublicationTitle Taiwanese journal of mathematics
PublicationYear 2013
Publisher Mathematical Society of the Republic of China
Publisher_xml – name: Mathematical Society of the Republic of China
References 11
1
12
2
3
4
5
6
7
8
9
10
References_xml – ident: 12
  doi: 10.1080/17442509808834172
– ident: 3
  doi: 10.1007/s11009-010-9188-5
– ident: 4
– ident: 5
  doi: 10.3150/10-BEJ261
– ident: 10
  doi: 10.57262/die/1372700426
– ident: 8
  doi: 10.1088/0305-4470/34/7/306
– ident: 11
– ident: 2
  doi: 10.1214/EJP.v8-179
– ident: 9
– ident: 7
– ident: 1
  doi: 10.1214/aop/1008956692
– ident: 6
  doi: 10.1090/S0002-9939-1969-0247016-9
SSID ssj0028616
Score 1.9357713
Snippet In this paper we prove the variation of parameters formula for linear Volterra integro-differential equations driven by multifractional Brownian motion. To do...
SourceID unpaywall
crossref
jstor
SourceType Open Access Repository
Index Database
Publisher
StartPage 333
SubjectTerms Brownian motion
Calculus
Mathematical independent variables
Mathematical integrals
Stochastic processes
Uniqueness
Volterra equations
Title LINEAR MULTIFRACTIONAL STOCHASTIC VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS
URI https://www.jstor.org/stable/taiwjmath.17.1.333
https://projecteuclid.org/journals/taiwanese-journal-of-mathematics/volume-17/issue-1/LINEAR-MULTIFRACTIONAL-STOCHASTIC-VOLTERRA-INTEGRO-DIFFERENTIAL-EQUATIONS/10.11650/tjm.17.2013.1728.pdf
UnpaywallVersion publishedVersion
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEGU
  databaseName: Project Euclid Open Access Journals
  customDbUrl:
  eissn: 2224-6851
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0028616
  issn: 1027-5487
  databaseCode: RBV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://projecteuclid.org/Search
  providerName: Project Euclid
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb5tAEB4lzqHNIX2rTtqIQ0-tFrywLM6RuFAT-VERHKUntMuC1NRxrAQrj_-Wv9Lf0lnAzkORqh57RaPVp9nX9zGzMwCfuGBMSOYSpVCuMuQkRFLUPLzjSNRinqxf8Q9HvD9hB8fu8RrcLt_CNP8f8kU2_amqSH7j0wsLpfKl0G0ZSfOJnBXkdFXc9MKq9zOhnlVhJtQaRKPAj8lwMkiiMK7TMvwBOUzGvb5_mEQ9cjQeIG2MfaIr0H6Lx-RrFIZBHIySCA0DpJXVa976cEE2Y5Unpyb1dE6YY-reTuZcFeuwwV2UAi3YmIy--z-qCKvtEa0GdHM7vCYJR2rTRFWfHOfBvVinRm7Cs8VsLq4vxXR679ILX8Dve-66ujZ_mYtSmtnNo0qS_60_X8JWQ8cNv94_r2Atn72GzeEdvDcQ1XCMR3CMOzjGEo7xFBxjBectTMIg6fVJ04CCZLZnl8Tmtiqo3ZFCU1_RLQRqbh237uK5iCYusksmUGFyLgqRd9UeV1SynEvXQyosnHfQmp3N8vdgILFTe0zhN9SnSCFFZhdUc92O4JLxrA2fl9Ofzus6I2mlz9BHKfoopV6qfZRqH7XBqBbIylJP5YmeOm1GU8dx2vBltXb-PuD2P1nvwHO7agqik3o-QKs8X-QfkZqVchfW4_2j3WYb_AEiISk8
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB7RcGg50NKHCLSVD5xarZ211-twtILduMqjMk5FT9au15YKIUTgiMd_46_wW5i1nUARUtVjr9Zo9Wn29X2e2RmAPS4YE5K5RCmUqww5CZEUNQ_vOBK1mCfrV_zDEe9P2Pcj92gNbpdvYZr_D_kim_5WVSS_8emFhVL5Uui2jKT5RM4Kcroqbnph1fuZUM-qMBNqDaJR4MdkOBkkURjXaRn-gBwm417fP0yiHvk5HiBtjH2iK9B-i8fkIArDIA5GSYSGAdLK6jVvfbggm7HK41OTejonzDF1bydzrooXsM5dlAItWJ-Mfvi_qgir7RGtBnRzO7wmCUdq00RVnx3nj3uxTo3cgJeL2VxcX4rp9NGlF76Gu0fuuro2T8xFKc3s5kklyf_Wn29gs6Hjhl_vny1Yy2dvYWP4AO8dRDUc4wkc4wGOsYRjPAfHWMF5D5MwSHp90jSgIJnt2SWxua0Kanek0NRXdAuBmlvHrbt4LqKJi-ySCVSYnItC5F21zxWVLOfS9ZAKC-cDtGZns3wbDCR2ap8p_Ib6FCmkyOyCaq7bEVwynrXhy3L603ldZySt9Bn6KEUfpdRLtY9S7aM2GNUCWVnqqTzWU6fNaOo4Thu-rtbO3wfc-SfrXXhlV01BdFLPR2iV54v8E1KzUn5uNsA9MCQoMQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LINEAR+MULTIFRACTIONAL+STOCHASTIC+VOLTERRA+INTEGRO-DIFFERENTIAL+EQUATIONS&rft.jtitle=Taiwanese+journal+of+mathematics&rft.au=Nguyen%2C+Tien+Dung&rft.date=2013-02-01&rft.issn=1027-5487&rft.volume=17&rft.issue=1&rft_id=info:doi/10.11650%2Ftjm.17.2013.1728&rft.externalDBID=n%2Fa&rft.externalDocID=10_11650_tjm_17_2013_1728
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1027-5487&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1027-5487&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1027-5487&client=summon