Altered Whole‐Brain Functional Networks in Drug‐Naïve, First‐Episode Adolescents With Major Depression Disorder
Background Neuroimaging studies have demonstrated disrupted brain functional networks in major depression disorder (MDD); however, alterations to whole‐brain networks specifically associated with adolescent MDD remain poorly understood. Purpose To investigate the topological architecture of intrinsi...
        Saved in:
      
    
          | Published in | Journal of magnetic resonance imaging Vol. 52; no. 6; pp. 1790 - 1798 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Hoboken, USA
          John Wiley & Sons, Inc
    
        01.12.2020
     Wiley Subscription Services, Inc  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1053-1807 1522-2586 1522-2586  | 
| DOI | 10.1002/jmri.27270 | 
Cover
| Abstract | Background
Neuroimaging studies have demonstrated disrupted brain functional networks in major depression disorder (MDD); however, alterations to whole‐brain networks specifically associated with adolescent MDD remain poorly understood.
Purpose
To investigate the topological architecture of intrinsic brain functional networks in drug‐naïve, first‐episode adolescent MDD patients using graph theoretical analysis.
Study type
Prospective.
Subjects
In all, 109 adolescent MDD patients and 70 healthy control subjects.
Field Strength/Sequences
3.0T; gradient‐echo echo‐planar imaging sequence.
Assessment
After the construction of whole‐brain functional networks by thresholding partial correlation matrices of 90 brain regions, we calculated the topological properties (eg, small‐world, efficiency, and nodal centrality) using graph theoretical analysis.
Statistical Tests
A chi‐squared test was used to compare the gender‐ratio difference, and a two‐sample t‐test was used in the comparison of age. We compared network measures between the two groups using nonparametric permutation tests. Exploratory partial correlation analyses were used to determine the relationships between the topological metrics showing significant between‐group differences and the clinical variables for adolescent MDD patients.
Results
Small‐world architecture in brain functional networks was identified for both the MDD and control groups. However, depressed adolescents exhibited lower characteristic path length, normalized characteristic path length and clustering coefficient, and higher global efficiency than controls (false discovery rate [FDR] q < 0.05). Compared with controls, depressed adolescents exhibited increased nodal centralities in the default mode regions, including the right anterior cingulate and paracingulate gyri, left posterior cingulate gyrus, right superior frontal gyrus (medial part), bilateral hippocampus, and bilateral parahippocampal gyrus, and decreased nodal centralities in the orbitofrontal, temporal, and occipital regions (FDR q < 0.05).
Data Conclusion
This study indicated that drug‐naïve, first‐episode adolescent MDD patients exhibit disruptions in whole‐brain functional networks.
Level of Evidence
1
Technical Efficacy Stage
2 J. MAGN. RESON. IMAGING 2020;52:1790–1798. | 
    
|---|---|
| AbstractList | Background
Neuroimaging studies have demonstrated disrupted brain functional networks in major depression disorder (MDD); however, alterations to whole‐brain networks specifically associated with adolescent MDD remain poorly understood.
Purpose
To investigate the topological architecture of intrinsic brain functional networks in drug‐naïve, first‐episode adolescent MDD patients using graph theoretical analysis.
Study type
Prospective.
Subjects
In all, 109 adolescent MDD patients and 70 healthy control subjects.
Field Strength/Sequences
3.0T; gradient‐echo echo‐planar imaging sequence.
Assessment
After the construction of whole‐brain functional networks by thresholding partial correlation matrices of 90 brain regions, we calculated the topological properties (eg, small‐world, efficiency, and nodal centrality) using graph theoretical analysis.
Statistical Tests
A chi‐squared test was used to compare the gender‐ratio difference, and a two‐sample t‐test was used in the comparison of age. We compared network measures between the two groups using nonparametric permutation tests. Exploratory partial correlation analyses were used to determine the relationships between the topological metrics showing significant between‐group differences and the clinical variables for adolescent MDD patients.
Results
Small‐world architecture in brain functional networks was identified for both the MDD and control groups. However, depressed adolescents exhibited lower characteristic path length, normalized characteristic path length and clustering coefficient, and higher global efficiency than controls (false discovery rate [FDR] q < 0.05). Compared with controls, depressed adolescents exhibited increased nodal centralities in the default mode regions, including the right anterior cingulate and paracingulate gyri, left posterior cingulate gyrus, right superior frontal gyrus (medial part), bilateral hippocampus, and bilateral parahippocampal gyrus, and decreased nodal centralities in the orbitofrontal, temporal, and occipital regions (FDR q < 0.05).
Data Conclusion
This study indicated that drug‐naïve, first‐episode adolescent MDD patients exhibit disruptions in whole‐brain functional networks.
Level of Evidence
1
Technical Efficacy Stage
2 J. MAGN. RESON. IMAGING 2020;52:1790–1798. Neuroimaging studies have demonstrated disrupted brain functional networks in major depression disorder (MDD); however, alterations to whole-brain networks specifically associated with adolescent MDD remain poorly understood. To investigate the topological architecture of intrinsic brain functional networks in drug-naïve, first-episode adolescent MDD patients using graph theoretical analysis. Prospective. In all, 109 adolescent MDD patients and 70 healthy control subjects. 3.0T; gradient-echo echo-planar imaging sequence. After the construction of whole-brain functional networks by thresholding partial correlation matrices of 90 brain regions, we calculated the topological properties (eg, small-world, efficiency, and nodal centrality) using graph theoretical analysis. A chi-squared test was used to compare the gender-ratio difference, and a two-sample t-test was used in the comparison of age. We compared network measures between the two groups using nonparametric permutation tests. Exploratory partial correlation analyses were used to determine the relationships between the topological metrics showing significant between-group differences and the clinical variables for adolescent MDD patients. Small-world architecture in brain functional networks was identified for both the MDD and control groups. However, depressed adolescents exhibited lower characteristic path length, normalized characteristic path length and clustering coefficient, and higher global efficiency than controls (false discovery rate [FDR] q < 0.05). Compared with controls, depressed adolescents exhibited increased nodal centralities in the default mode regions, including the right anterior cingulate and paracingulate gyri, left posterior cingulate gyrus, right superior frontal gyrus (medial part), bilateral hippocampus, and bilateral parahippocampal gyrus, and decreased nodal centralities in the orbitofrontal, temporal, and occipital regions (FDR q < 0.05). This study indicated that drug-naïve, first-episode adolescent MDD patients exhibit disruptions in whole-brain functional networks. 1 TECHNICAL EFFICACY STAGE: 2 J. MAGN. RESON. IMAGING 2020;52:1790-1798. Neuroimaging studies have demonstrated disrupted brain functional networks in major depression disorder (MDD); however, alterations to whole-brain networks specifically associated with adolescent MDD remain poorly understood.BACKGROUNDNeuroimaging studies have demonstrated disrupted brain functional networks in major depression disorder (MDD); however, alterations to whole-brain networks specifically associated with adolescent MDD remain poorly understood.To investigate the topological architecture of intrinsic brain functional networks in drug-naïve, first-episode adolescent MDD patients using graph theoretical analysis.PURPOSETo investigate the topological architecture of intrinsic brain functional networks in drug-naïve, first-episode adolescent MDD patients using graph theoretical analysis.Prospective.STUDY TYPEProspective.In all, 109 adolescent MDD patients and 70 healthy control subjects.SUBJECTSIn all, 109 adolescent MDD patients and 70 healthy control subjects.3.0T; gradient-echo echo-planar imaging sequence.FIELD STRENGTH/SEQUENCES3.0T; gradient-echo echo-planar imaging sequence.After the construction of whole-brain functional networks by thresholding partial correlation matrices of 90 brain regions, we calculated the topological properties (eg, small-world, efficiency, and nodal centrality) using graph theoretical analysis.ASSESSMENTAfter the construction of whole-brain functional networks by thresholding partial correlation matrices of 90 brain regions, we calculated the topological properties (eg, small-world, efficiency, and nodal centrality) using graph theoretical analysis.A chi-squared test was used to compare the gender-ratio difference, and a two-sample t-test was used in the comparison of age. We compared network measures between the two groups using nonparametric permutation tests. Exploratory partial correlation analyses were used to determine the relationships between the topological metrics showing significant between-group differences and the clinical variables for adolescent MDD patients.STATISTICAL TESTSA chi-squared test was used to compare the gender-ratio difference, and a two-sample t-test was used in the comparison of age. We compared network measures between the two groups using nonparametric permutation tests. Exploratory partial correlation analyses were used to determine the relationships between the topological metrics showing significant between-group differences and the clinical variables for adolescent MDD patients.Small-world architecture in brain functional networks was identified for both the MDD and control groups. However, depressed adolescents exhibited lower characteristic path length, normalized characteristic path length and clustering coefficient, and higher global efficiency than controls (false discovery rate [FDR] q < 0.05). Compared with controls, depressed adolescents exhibited increased nodal centralities in the default mode regions, including the right anterior cingulate and paracingulate gyri, left posterior cingulate gyrus, right superior frontal gyrus (medial part), bilateral hippocampus, and bilateral parahippocampal gyrus, and decreased nodal centralities in the orbitofrontal, temporal, and occipital regions (FDR q < 0.05).RESULTSSmall-world architecture in brain functional networks was identified for both the MDD and control groups. However, depressed adolescents exhibited lower characteristic path length, normalized characteristic path length and clustering coefficient, and higher global efficiency than controls (false discovery rate [FDR] q < 0.05). Compared with controls, depressed adolescents exhibited increased nodal centralities in the default mode regions, including the right anterior cingulate and paracingulate gyri, left posterior cingulate gyrus, right superior frontal gyrus (medial part), bilateral hippocampus, and bilateral parahippocampal gyrus, and decreased nodal centralities in the orbitofrontal, temporal, and occipital regions (FDR q < 0.05).This study indicated that drug-naïve, first-episode adolescent MDD patients exhibit disruptions in whole-brain functional networks.DATA CONCLUSIONThis study indicated that drug-naïve, first-episode adolescent MDD patients exhibit disruptions in whole-brain functional networks.1 TECHNICAL EFFICACY STAGE: 2 J. MAGN. RESON. IMAGING 2020;52:1790-1798.LEVEL OF EVIDENCE1 TECHNICAL EFFICACY STAGE: 2 J. MAGN. RESON. IMAGING 2020;52:1790-1798. BackgroundNeuroimaging studies have demonstrated disrupted brain functional networks in major depression disorder (MDD); however, alterations to whole‐brain networks specifically associated with adolescent MDD remain poorly understood.PurposeTo investigate the topological architecture of intrinsic brain functional networks in drug‐naïve, first‐episode adolescent MDD patients using graph theoretical analysis.Study typeProspective.SubjectsIn all, 109 adolescent MDD patients and 70 healthy control subjects.Field Strength/Sequences3.0T; gradient‐echo echo‐planar imaging sequence.AssessmentAfter the construction of whole‐brain functional networks by thresholding partial correlation matrices of 90 brain regions, we calculated the topological properties (eg, small‐world, efficiency, and nodal centrality) using graph theoretical analysis.Statistical TestsA chi‐squared test was used to compare the gender‐ratio difference, and a two‐sample t‐test was used in the comparison of age. We compared network measures between the two groups using nonparametric permutation tests. Exploratory partial correlation analyses were used to determine the relationships between the topological metrics showing significant between‐group differences and the clinical variables for adolescent MDD patients.ResultsSmall‐world architecture in brain functional networks was identified for both the MDD and control groups. However, depressed adolescents exhibited lower characteristic path length, normalized characteristic path length and clustering coefficient, and higher global efficiency than controls (false discovery rate [FDR] q < 0.05). Compared with controls, depressed adolescents exhibited increased nodal centralities in the default mode regions, including the right anterior cingulate and paracingulate gyri, left posterior cingulate gyrus, right superior frontal gyrus (medial part), bilateral hippocampus, and bilateral parahippocampal gyrus, and decreased nodal centralities in the orbitofrontal, temporal, and occipital regions (FDR q < 0.05).Data ConclusionThis study indicated that drug‐naïve, first‐episode adolescent MDD patients exhibit disruptions in whole‐brain functional networks.Level of Evidence1Technical Efficacy Stage2 J. MAGN. RESON. IMAGING 2020;52:1790–1798.  | 
    
| Author | Wu, Baolin Li, Xuekun Zhang, Meng Long, Qingyun Zhou, Jun  | 
    
| Author_xml | – sequence: 1 givenname: Baolin orcidid: 0000-0003-4574-9747 surname: Wu fullname: Wu, Baolin email: wbllin0129@163.com organization: West China Hospital of Sichuan University – sequence: 2 givenname: Xuekun surname: Li fullname: Li, Xuekun organization: The First Affiliated Hospital of Xinxiang Medical University – sequence: 3 givenname: Jun surname: Zhou fullname: Zhou, Jun organization: Zhongnan Hospital of Wuhan University – sequence: 4 givenname: Meng surname: Zhang fullname: Zhang, Meng organization: The First Affiliated Hospital of Xinxiang Medical University – sequence: 5 givenname: Qingyun surname: Long fullname: Long, Qingyun organization: Zhongnan Hospital of Wuhan University  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32618061$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNp9kU9u1DAYxS1URP-x4QDIEhuESLEd25Msh04HWrVFQpW6tBznC_WQiQfbadUdR-AmHIKbcBK-6bSbCnVl-_PvPdnv7ZKtIQxAyCvODjhj4sNiGf2BmIgJe0Z2uBKiEKrSW7hnqix4xSbbZDelBWOsrqV6QbZLoXGs-Q65nvYZIrT08ir08Pfnr4_R-oHOx8FlHwbb03PINyF-TxTHszh-Q-bc_vl9De_p3MeU8Xy08im0QKcteiQHQ0700ucremYXIdIZrCKkhHZ0hmBsIe6T553tE7y8X_fIxfzo4vBzcfrl0_Hh9LRw-B9WSG0dn4CsGtWUUFdCMbzopObWNaJxTkvrSgVd6VplueWytpqDq9tG6a4u98jbje0qhh8jpGyWHt_X93aAMCYjpGBcMskrRN88QhdhjBjAmtKca60qidTre2psltCaVfRLG2_NQ6AIsA3gYkgpQmecz3YdZcZge8OZWXdm1p2Zu85Q8u6R5MH1vzDfwDe-h9snSHNy9vV4o_kHwbKrLg | 
    
| CitedBy_id | crossref_primary_10_1093_cercor_bhad461 crossref_primary_10_1186_s12888_025_06609_6 crossref_primary_10_1017_S0033291723003719 crossref_primary_10_1016_j_brainresbull_2024_111187 crossref_primary_10_1016_j_jad_2023_02_126 crossref_primary_10_1002_jnr_25047 crossref_primary_10_3390_jpm13030405 crossref_primary_10_1016_j_neubiorev_2021_06_003 crossref_primary_10_1016_j_psychres_2023_115557 crossref_primary_10_1016_j_heliyon_2024_e33833 crossref_primary_10_1093_psyrad_kkad017 crossref_primary_10_3389_fnana_2025_1457557 crossref_primary_10_1007_s00787_023_02314_5 crossref_primary_10_1016_j_bpsc_2022_03_008 crossref_primary_10_1016_j_jadohealth_2024_01_015 crossref_primary_10_1016_j_neuroscience_2021_05_021 crossref_primary_10_3390_brainsci13071006 crossref_primary_10_1007_s00406_024_01847_3 crossref_primary_10_1186_s12888_022_04450_9 crossref_primary_10_1109_ACCESS_2024_3521249 crossref_primary_10_1002_brb3_2076 crossref_primary_10_3389_fnins_2022_852822 crossref_primary_10_5498_wjp_v13_i6_386 crossref_primary_10_1016_j_pscychresns_2024_111880 crossref_primary_10_1111_jon_13155 crossref_primary_10_12677_acm_2025_152456 crossref_primary_10_1002_jmri_28651 crossref_primary_10_5498_wjp_v12_i9_1141 crossref_primary_10_3389_fpsyt_2024_1516846  | 
    
| Cites_doi | 10.1016/j.jad.2011.05.057 10.1016/j.jad.2016.04.001 10.1001/jamapsychiatry.2015.0071 10.1002/mrm.1910340409 10.1007/s12021-016-9299-4 10.1016/j.ebiom.2017.06.013 10.1093/brain/awn018 10.1016/j.jad.2018.10.113 10.1016/j.neubiorev.2015.07.014 10.1006/nimg.2001.0978 10.1038/mp.2016.72 10.1038/515185a 10.1371/journal.pone.0013788 10.1371/journal.pone.0048658 10.1001/archpsyc.1988.01800320058007 10.1016/j.neulet.2005.04.088 10.1038/30918 10.1038/s41386-019-0563-9 10.1016/j.neulet.2010.05.075 10.1196/annals.1401.006 10.1016/j.jad.2016.12.032 10.1016/j.neuropsychologia.2017.09.021 10.1097/WNR.0000000000000263 10.1016/j.neuroimage.2009.10.003 10.1176/ajp.2007.164.5.823 10.1016/j.biopsych.2011.05.018 10.1196/annals.1440.011 10.1016/S0140-6736(12)61552-9 10.1098/rstb.2001.0915 10.1097/WCO.0b013e32833aa567 10.1016/j.neuroimage.2011.09.035 10.1002/hbm.24743 10.1006/nimg.2001.1037 10.1523/JNEUROSCI.0333-10.2010 10.1103/PhysRevLett.87.198701  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2020 International Society for Magnetic Resonance in Medicine 2020 International Society for Magnetic Resonance in Medicine.  | 
    
| Copyright_xml | – notice: 2020 International Society for Magnetic Resonance in Medicine – notice: 2020 International Society for Magnetic Resonance in Medicine.  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7TK 8FD FR3 K9. P64 7X8  | 
    
| DOI | 10.1002/jmri.27270 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest Health & Medical Complete (Alumni)  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine | 
    
| EISSN | 1522-2586 | 
    
| EndPage | 1798 | 
    
| ExternalDocumentID | 32618061 10_1002_jmri_27270 JMRI27270  | 
    
| Genre | article Research Support, Non-U.S. Gov't Journal Article  | 
    
| GroupedDBID | --- -DZ .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABOCM ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TWZ UB1 V2E V8K V9Y W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR XG1 XV2 ZXP ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION CGR CUY CVF ECM EIF NPM 7QO 7TK 8FD FR3 K9. P64 7X8  | 
    
| ID | FETCH-LOGICAL-c2720-46ac17e48b5b3e98250c27f461acb2bcc64ac35ef3cd5a1a149a61ec9db56f93 | 
    
| IEDL.DBID | DR2 | 
    
| ISSN | 1053-1807 1522-2586  | 
    
| IngestDate | Thu Oct 02 10:50:38 EDT 2025 Tue Oct 07 06:27:53 EDT 2025 Wed Feb 19 02:29:49 EST 2025 Wed Oct 01 04:37:07 EDT 2025 Thu Apr 24 22:51:15 EDT 2025 Wed Jan 22 16:33:16 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 6 | 
    
| Keywords | resting-state functional magnetic resonance imaging brain functional networks major depressive disorder small-world graph theoretical analysis  | 
    
| Language | English | 
    
| License | 2020 International Society for Magnetic Resonance in Medicine. | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c2720-46ac17e48b5b3e98250c27f461acb2bcc64ac35ef3cd5a1a149a61ec9db56f93 | 
    
| Notes | Contract grant sponsor: Henan Province Medical Science and Technology Research Project; Contract grant number: 2018020349. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0003-4574-9747 | 
    
| PMID | 32618061 | 
    
| PQID | 2461166584 | 
    
| PQPubID | 1006400 | 
    
| PageCount | 9 | 
    
| ParticipantIDs | proquest_miscellaneous_2420140418 proquest_journals_2461166584 pubmed_primary_32618061 crossref_citationtrail_10_1002_jmri_27270 crossref_primary_10_1002_jmri_27270 wiley_primary_10_1002_jmri_27270_JMRI27270  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | December 2020 2020-12-00 20201201  | 
    
| PublicationDateYYYYMMDD | 2020-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2020 text: December 2020  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Hoboken, USA | 
    
| PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: Nashville  | 
    
| PublicationSubtitle | JMRI | 
    
| PublicationTitle | Journal of magnetic resonance imaging | 
    
| PublicationTitleAlternate | J Magn Reson Imaging | 
    
| PublicationYear | 2020 | 
    
| Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc  | 
    
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc  | 
    
| References | 2014; 515 2015; 56 2002; 15 2004; 29 2007; 1121 2015; 72 2017; 22 1995; 34 2017; 21 2007; 164 1997 2014; 25 2019; 245 2010; 480 2019; 128 2012; 59 2017; 210 2015; 9 2013; 381 2016; 14 1998; 393 2011; 134 2001; 87 2010; 23 2009; 34 2019; 40 2008; 1124 2005; 384 2011; 70 1988; 45 2016; 199 2020; 45 2012; 7 2010; 5 2010; 4 2008; 131 2010; 52 2010; 30 2001; 356 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 Wang J (e_1_2_7_10_1) 2010; 4 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 Wang J (e_1_2_7_18_1) 2015; 9 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 MacQueen GM (e_1_2_7_33_1) 2009; 34 First MSR (e_1_2_7_14_1) 1997 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 Campbell S (e_1_2_7_31_1) 2004; 29  | 
    
| References_xml | – volume: 7 year: 2012 article-title: Amplitude of low‐frequency oscillations in first‐episode, treatment‐naïve patients with major depressive disorder: A resting‐state functional MRI study publication-title: PloS One – volume: 45 start-page: 742 year: 1988 end-page: 747 article-title: A structured interview guide for the Hamilton depression rating scale publication-title: Arch Gen Psychiatry – volume: 21 start-page: 228 year: 2017 end-page: 235 article-title: Gray matter abnormalities in non‐comorbid medication‐naïve patients with major depressive disorder or social anxiety disorder publication-title: EBioMedicine – volume: 87 year: 2001 article-title: Efficient behavior of small‐world networks publication-title: Phys Rev Lett – volume: 1121 start-page: 546 year: 2007 end-page: 561 article-title: The role of the orbitofrontal cortex in anxiety disorders publication-title: Ann N Y Acad Sci – volume: 56 start-page: 330 year: 2015 end-page: 344 article-title: Resting‐state functional connectivity in major depressive disorder: A review publication-title: Neurosci Biobehav Rev – volume: 480 start-page: 30 year: 2010 end-page: 34 article-title: Brain volume alteration and the correlations with the clinical characteristics in drug‐naïve first‐episode MDD patients: A voxel‐based morphometry study publication-title: Neurosci Lett – volume: 164 start-page: 823 year: 2007 end-page: 826 article-title: White matter abnormalities in first‐episode, treatment‐naïve young adults with major depressive disorder publication-title: Am J Psychiatry – volume: 23 start-page: 341 year: 2010 end-page: 350 article-title: Graph theoretical modeling of brain connectivity publication-title: Curr Opin Neurol – volume: 72 start-page: 603 year: 2015 end-page: 611 article-title: Large‐scale network dysfunction in major depressive disorder: A meta‐analysis of resting‐state functional connectivity publication-title: JAMA Psychiat – volume: 9 start-page: 386 year: 2015 article-title: GRETNA: A graph theoretical network analysis toolbox for imaging connectomics publication-title: Front Hum Neurosci – volume: 393 start-page: 440 year: 1998 end-page: 442 article-title: Collective dynamics of 'small‐world' networks publication-title: Nature – volume: 515 start-page: 185 year: 2014 end-page: 187 article-title: Depression: A change of mind publication-title: Nature – volume: 29 start-page: 417 year: 2004 end-page: 426 article-title: The role of the hippocampus in the pathophysiology of major depression publication-title: J Psychiatry Neurosci – volume: 45 start-page: 703 year: 2020 end-page: 712 article-title: Meta‐analysis of cortical thickness abnormalities in medication‐free patients with major depressive disorder publication-title: Neuropsychopharmacology – volume: 381 start-page: 375 year: 2013 end-page: 384 article-title: Cognitive behavioural therapy as an adjunct to pharmacotherapy for primary care based patients with treatment resistant depression: Results of the CoBalT randomised controlled trial publication-title: Lancet – volume: 131 start-page: 945 year: 2008 end-page: 961 article-title: Disrupted small‐world networks in schizophrenia publication-title: Brain – volume: 15 start-page: 870 year: 2002 end-page: 878 article-title: Thresholding of statistical maps in functional neuroimaging using the false discovery rate publication-title: Neuroimage – volume: 25 start-page: 1302 year: 2014 end-page: 1307 article-title: Altered spontaneous neural activity in first‐episode, unmedicated patients with major depressive disorder publication-title: Neuroreport – volume: 245 start-page: 63 year: 2019 end-page: 71 article-title: Aberrant brain regional homogeneity in first‐episode drug‐naïve patients with major depressive disorder: A voxel‐wise meta‐analysis publication-title: J Affect Disord – volume: 356 start-page: 1293 year: 2001 end-page: 1322 article-title: A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM) publication-title: Philos Trans R Soc Lond B Biol Sci – volume: 34 start-page: 537 year: 1995 end-page: 541 article-title: Functional connectivity in the motor cortex of resting human brain using echo‐planar MRI publication-title: Magn Reson Med – volume: 15 start-page: 273 year: 2002 end-page: 289 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single‐subject brain publication-title: Neuroimage – year: 1997 – volume: 52 start-page: 1059 year: 2010 end-page: 1069 article-title: Complex network measures of brain connectivity: Uses and interpretations publication-title: Neuroimage – volume: 30 start-page: 9477 year: 2010 end-page: 9487 article-title: Functional connectivity and brain networks in schizophrenia publication-title: J Neurosci – volume: 5 year: 2010 article-title: Loss of 'small‐world' networks in Alzheimer's disease: Graph analysis of FMRI resting‐state functional connectivity publication-title: PloS One – volume: 14 start-page: 339 year: 2016 end-page: 351 article-title: DPABI: Data processing & analysis for (resting‐state) brain imaging publication-title: Neuroinformatics – volume: 134 start-page: 483 year: 2011 end-page: 487 article-title: Hippocampal atrophy in first episode depression: A meta‐analysis of magnetic resonance imaging studies publication-title: J Affect Disord – volume: 70 start-page: 334 year: 2011 end-page: 342 article-title: Disrupted brain connectivity networks in drug‐naïve, first‐episode major depressive disorder publication-title: Biol Psychiatry – volume: 40 start-page: 4877 year: 2019 end-page: 4887 article-title: Disrupted brain functional networks in drug‐naïve children with attention deficit hyperactivity disorder assessed using graph theory analysis publication-title: Hum Brain Mapp – volume: 128 start-page: 14 year: 2019 end-page: 43 article-title: The orbitofrontal cortex and emotion in health and disease, including depression publication-title: Neuropsychologia – volume: 4 year: 2010 end-page: 16 article-title: Graph‐based network analysis of resting‐state functional MRI publication-title: Front Syst Neurosci – volume: 59 start-page: 1085 year: 2012 end-page: 1093 article-title: Anatomical insights into disrupted small‐world networks in schizophrenia publication-title: Neuroimage – volume: 1124 start-page: 1 year: 2008 end-page: 38 article-title: The brain's default network: Anatomy, function, and relevance to disease publication-title: Ann N Y Acad Sci – volume: 34 start-page: 343 year: 2009 end-page: 349 article-title: Magnetic resonance imaging and prediction of outcome in patients with major depressive disorder publication-title: J Psychiatry Neurosci – volume: 22 start-page: 1455 year: 2017 end-page: 1463 article-title: Common and distinct patterns of grey‐matter volume alteration in major depression and bipolar disorder: Evidence from voxel‐based meta‐analysis publication-title: Mol Psychiatry – volume: 384 start-page: 265 year: 2005 end-page: 270 article-title: Relationship between regional cerebral blood flow and separate symptom clusters of major depression: A single photon emission computed tomography study using statistical parametric mapping publication-title: Neurosci Lett – volume: 199 start-page: 114 year: 2016 end-page: 123 article-title: Essential brain structural alterations in major depressive disorder: A voxel‐wise meta‐analysis on first episode, medication‐naïve patients publication-title: J Affect Disord – volume: 210 start-page: 303 year: 2017 end-page: 311 article-title: Characterization of brain blood flow and the amplitude of low‐frequency fluctuations in major depressive disorder: A multimodal meta‐analysis publication-title: J Affect Disord – volume: 29 start-page: 417 year: 2004 ident: e_1_2_7_31_1 article-title: The role of the hippocampus in the pathophysiology of major depression publication-title: J Psychiatry Neurosci – ident: e_1_2_7_32_1 doi: 10.1016/j.jad.2011.05.057 – ident: e_1_2_7_30_1 doi: 10.1016/j.jad.2016.04.001 – ident: e_1_2_7_8_1 doi: 10.1001/jamapsychiatry.2015.0071 – ident: e_1_2_7_4_1 doi: 10.1002/mrm.1910340409 – ident: e_1_2_7_16_1 doi: 10.1007/s12021-016-9299-4 – ident: e_1_2_7_40_1 doi: 10.1016/j.ebiom.2017.06.013 – ident: e_1_2_7_12_1 doi: 10.1093/brain/awn018 – ident: e_1_2_7_38_1 doi: 10.1016/j.jad.2018.10.113 – ident: e_1_2_7_9_1 doi: 10.1016/j.neubiorev.2015.07.014 – ident: e_1_2_7_19_1 doi: 10.1006/nimg.2001.0978 – ident: e_1_2_7_37_1 doi: 10.1038/mp.2016.72 – ident: e_1_2_7_2_1 doi: 10.1038/515185a – ident: e_1_2_7_25_1 doi: 10.1371/journal.pone.0013788 – ident: e_1_2_7_7_1 doi: 10.1371/journal.pone.0048658 – ident: e_1_2_7_15_1 doi: 10.1001/archpsyc.1988.01800320058007 – volume-title: Structured clinical interview for DSM‐IV Axis I disorders year: 1997 ident: e_1_2_7_14_1 – ident: e_1_2_7_39_1 doi: 10.1016/j.neulet.2005.04.088 – ident: e_1_2_7_22_1 doi: 10.1038/30918 – ident: e_1_2_7_29_1 doi: 10.1038/s41386-019-0563-9 – volume: 34 start-page: 343 year: 2009 ident: e_1_2_7_33_1 article-title: Magnetic resonance imaging and prediction of outcome in patients with major depressive disorder publication-title: J Psychiatry Neurosci – ident: e_1_2_7_34_1 doi: 10.1016/j.neulet.2010.05.075 – ident: e_1_2_7_35_1 doi: 10.1196/annals.1401.006 – ident: e_1_2_7_5_1 doi: 10.1016/j.jad.2016.12.032 – ident: e_1_2_7_36_1 doi: 10.1016/j.neuropsychologia.2017.09.021 – ident: e_1_2_7_6_1 doi: 10.1097/WNR.0000000000000263 – ident: e_1_2_7_23_1 doi: 10.1016/j.neuroimage.2009.10.003 – volume: 9 start-page: 386 year: 2015 ident: e_1_2_7_18_1 article-title: GRETNA: A graph theoretical network analysis toolbox for imaging connectomics publication-title: Front Hum Neurosci – ident: e_1_2_7_41_1 doi: 10.1176/ajp.2007.164.5.823 – ident: e_1_2_7_11_1 doi: 10.1016/j.biopsych.2011.05.018 – ident: e_1_2_7_28_1 doi: 10.1196/annals.1440.011 – ident: e_1_2_7_3_1 doi: 10.1016/S0140-6736(12)61552-9 – ident: e_1_2_7_17_1 doi: 10.1098/rstb.2001.0915 – ident: e_1_2_7_24_1 doi: 10.1097/WCO.0b013e32833aa567 – ident: e_1_2_7_20_1 doi: 10.1016/j.neuroimage.2011.09.035 – volume: 4 year: 2010 ident: e_1_2_7_10_1 article-title: Graph‐based network analysis of resting‐state functional MRI publication-title: Front Syst Neurosci – ident: e_1_2_7_13_1 doi: 10.1002/hbm.24743 – ident: e_1_2_7_21_1 doi: 10.1006/nimg.2001.1037 – ident: e_1_2_7_26_1 doi: 10.1523/JNEUROSCI.0333-10.2010 – ident: e_1_2_7_27_1 doi: 10.1103/PhysRevLett.87.198701  | 
    
| SSID | ssj0009945 | 
    
| Score | 2.4246192 | 
    
| Snippet | Background
Neuroimaging studies have demonstrated disrupted brain functional networks in major depression disorder (MDD); however, alterations to whole‐brain... Neuroimaging studies have demonstrated disrupted brain functional networks in major depression disorder (MDD); however, alterations to whole-brain networks... BackgroundNeuroimaging studies have demonstrated disrupted brain functional networks in major depression disorder (MDD); however, alterations to whole‐brain...  | 
    
| SourceID | proquest pubmed crossref wiley  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 1790 | 
    
| SubjectTerms | Adolescent Adolescents Brain Brain - diagnostic imaging Brain architecture brain functional networks Brain Mapping Clustering Correlation analysis Depression Depressive Disorder, Major - diagnostic imaging Field strength Frontal gyrus graph theoretical analysis Humans Magnetic Resonance Imaging major depressive disorder Mathematical analysis Medical imaging Mental depression Mental disorders Networks Neuroimaging Parahippocampal gyrus Permutations Pharmaceutical Preparations Prospective Studies resting‐state functional magnetic resonance imaging small‐world Statistical analysis Statistical tests Teenagers Theoretical analysis Topology  | 
    
| Title | Altered Whole‐Brain Functional Networks in Drug‐Naïve, First‐Episode Adolescents With Major Depression Disorder | 
    
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.27270 https://www.ncbi.nlm.nih.gov/pubmed/32618061 https://www.proquest.com/docview/2461166584 https://www.proquest.com/docview/2420140418  | 
    
| Volume | 52 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1053-1807 databaseCode: DR2 dateStart: 19990101 customDbUrl: isFulltext: true eissn: 1522-2586 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009945 providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB5VPaBeoFB-UlpkBBcQ2a4Tx4mlXhbaVam0e6iK2guKbMeBbctutT89cOIR-iZ9CN6EJ2HG-VkVEBLcknhiJ_ZMZsYz-QbgZWbTrk2FC1VhylDEhQt1xE1IzrUutFCmJEdxMJQHH8ThaXK6ArvNvzAVPkS74UaS4b_XJODazHaWoKFnX6ajToTqlxx2HkvvTx0tsaOU8hWK0X6IQ5510xabNNpZ3npbG_1mYt62WL3K6d-Dj83DVpkm553F3HTs119wHP_3bdbhbm2Lsl7FPPdhxY0fwJ1BHW3fgKsehdJdwU6oiO6Pb9dvqZ4E66MqrHYQ2bBKIp8xvLw3XXxCmqH-fnPl3rD-CO1KPN-_HM0mhWO9JXQUOxnNP7OBPptM2V6TiYsd1ECgD-G4v3_87iCs6zSElqK4oZDa8tSJzCQmdgp9zi42lEJybU1krJVC2zhxZWyLRHONTpmW3Flkj0SWKn4Eq-PJ2D0BlmZFmVkqRBopYVKVWVVih0VWdhW6MnEAr5rlym2NYU6lNC7yCn05ymkecz-PAbxoaS8r5I4_Um01q57X0jvLCWOPS7LNAnjeNqPcUTBFj91kQTSRhybiWQCPK25ph0GTGDlO8gBe-zX_y_j54eDovT_a_Bfip7AWkePv82q2YHU-XbhttI7m5pmXgp-rzw-P | 
    
| linkProvider | Wiley-Blackwell | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6hIgGX8g-BAkZwAZHtOnGc-LjQrral2UO1qL1FtuPAtrBb7U8PnHgE3oSH4E14EmacbFYFhAS3JJ7Eij0Tf-OZfAPwPLNp16bChao0VSji0oU64iYk51qXWihTkaOYD-Xgndg_To6b3Bz6F6bmh2g33Mgy_PeaDJw2pLfXrKEnn2bjToTrL3rsl4VER4Uw0eGaPUopX6MYEUQc8qybtuyk0fb63ovr0W8g8yJm9YtO_3pdWXXuuQop1-S0s1yYjv38C5Pjf7_PDdhs4Cjr1fpzEy65yS24kjcB99tw3qNouivZEdXR_fHl62sqKcH6uBrWm4hsWOeRzxle3pkt36PMUH__du5esf4YoSWe756N59PSsd6aPYodjRcfWK5PpjO2s0rGxQc0XKB3YNTfHb0ZhE2phtBSIDcUUlueOpGZxMROodvZxYZKSK6tiYy1UmgbJ66KbZlortEv05I7ixqSyErFd2FjMp24-8DSrKwyS7VIIyVMqjKrKnxgmVVdhd5MHMCL1XwVtqExp2oaH4uagDkqaBwLP44BPGtlz2ryjj9Kba2mvWgMeF4QzR6XBM8CeNo2o-lRPEVP3HRJMpFnJ-JZAPdqdWm7QVSMKid5AC_9pP-l_2I_P9zzRw_-RfgJXB2M8oPiYG_49iFci2gfwKfZbMHGYrZ0jxAsLcxjbxI_AZaFE7A | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZQkSou_P8EChjBBUS268RJ7OPCNmoLu0JVUXuL_Avblt3V_vTAiUfgTXgI3oQnYcbJZlVASHBL4kms2DPxN57JN4Q8E6bomoK7WFrtY55aF6uE6Rida2UVl9qjozgY5rvv-f5xdtzk5uC_MDU_RLvhhpYRvtdo4G5q_faaNfTk02zUSWD9BY_9Ms-kwIy-_sGaPUrKUKMYEEQaM9EtWnbSZHt978X16DeQeRGzhkWnvFZXVp0HrkLMNTntLBe6Yz7_wuT43-9znVxt4Cjt1fpzg1xy45tkc9AE3G-R8x5G052lR1hH98eXr6-wpAQtYTWsNxHpsM4jn1O43J8tP4DMUH3_du5e0nIE0BLOd6aj-cQ62luzR9Gj0eIjHaiTyYz2V8m48ICGC_Q2OSx3Dl_vxk2phthgIDfmuTKscFzoTKdOgtvZhQbPc6aMTrQxOVcmzZxPjc0UU-CXqZw5AxqS5V6md8jGeDJ29wgthPXCYC3SRHJdSGGkhwda4bsSvJk0Is9X81WZhsYcq2mcVTUBc1LhOFZhHCPytJWd1uQdf5TaWk171RjwvEKaPZYjPIvIk7YZTA_jKWrsJkuUSQI7ERMRuVurS9sNoGJQuZxF5EWY9L_0X-0PDvbC0f1_EX5MNt_1y-rt3vDNA3IlwW2AkGWzRTYWs6V7CFhpoR8Fi_gJJbsTNA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Altered+Whole%E2%80%90Brain+Functional+Networks+in+Drug%E2%80%90Na%C3%AFve%2C+First%E2%80%90Episode+Adolescents+With+Major+Depression+Disorder&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Wu%2C+Baolin&rft.au=Li%2C+Xuekun&rft.au=Zhou%2C+Jun&rft.au=Zhang%2C+Meng&rft.date=2020-12-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1053-1807&rft.eissn=1522-2586&rft.volume=52&rft.issue=6&rft.spage=1790&rft.epage=1798&rft_id=info:doi/10.1002%2Fjmri.27270&rft.externalDBID=10.1002%252Fjmri.27270&rft.externalDocID=JMRI27270 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon |