Implicit neural representation for scalable 3D reconstruction from sparse ultrasound images

Although volumetric ultrasound is limited by cost and availability of 2D arrays, 3D volumes can be reconstructed from 2D slices if transducer position is known, which is not usually the case. Even with position data, existing algorithms for reconstruction are impractical due to their discrete nature...

Full description

Saved in:
Bibliographic Details
Published inNPJ Acoustics Vol. 1; no. 1; p. 14
Main Authors Grutman, Tal, Bismuth, Mike, Glickstein, Bar, Ilovitsh, Tali
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.01.2025
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN3005-141X
3005-141X
DOI10.1038/s44384-025-00018-5

Cover

Abstract Although volumetric ultrasound is limited by cost and availability of 2D arrays, 3D volumes can be reconstructed from 2D slices if transducer position is known, which is not usually the case. Even with position data, existing algorithms for reconstruction are impractical due to their discrete nature that struggles with scale. We propose a 1D array on a programmable motor for scanning and implicit neural representations for continuous reconstruction. Our network’s ability to sample at arbitrary positions was compared to classic algorithms, achieving x7.9 performance while maintaining accuracy. Based on these, a reconstruction pipeline was tested on simulated data with 93% accuracy using only 36 B-mode images. This was evaluated in-vivo to measure tumor volumes in mice, with 6.3% mean error. Our findings suggest implicit neural representations can reduce data needed to recreate volumes from 2D slices and replace interpolation methods to enable interactive analysis.
AbstractList Although volumetric ultrasound is limited by cost and availability of 2D arrays, 3D volumes can be reconstructed from 2D slices if transducer position is known, which is not usually the case. Even with position data, existing algorithms for reconstruction are impractical due to their discrete nature that struggles with scale. We propose a 1D array on a programmable motor for scanning and implicit neural representations for continuous reconstruction. Our network’s ability to sample at arbitrary positions was compared to classic algorithms, achieving x7.9 performance while maintaining accuracy. Based on these, a reconstruction pipeline was tested on simulated data with 93% accuracy using only 36 B-mode images. This was evaluated in-vivo to measure tumor volumes in mice, with 6.3% mean error. Our findings suggest implicit neural representations can reduce data needed to recreate volumes from 2D slices and replace interpolation methods to enable interactive analysis.
Although volumetric ultrasound is limited by cost and availability of 2D arrays, 3D volumes can be reconstructed from 2D slices if transducer position is known, which is not usually the case. Even with position data, existing algorithms for reconstruction are impractical due to their discrete nature that struggles with scale. We propose a 1D array on a programmable motor for scanning and implicit neural representations for continuous reconstruction. Our network's ability to sample at arbitrary positions was compared to classic algorithms, achieving x7.9 performance while maintaining accuracy. Based on these, a reconstruction pipeline was tested on simulated data with 93% accuracy using only 36 B-mode images. This was evaluated in-vivo to measure tumor volumes in mice, with 6.3% mean error. Our findings suggest implicit neural representations can reduce data needed to recreate volumes from 2D slices and replace interpolation methods to enable interactive analysis.Although volumetric ultrasound is limited by cost and availability of 2D arrays, 3D volumes can be reconstructed from 2D slices if transducer position is known, which is not usually the case. Even with position data, existing algorithms for reconstruction are impractical due to their discrete nature that struggles with scale. We propose a 1D array on a programmable motor for scanning and implicit neural representations for continuous reconstruction. Our network's ability to sample at arbitrary positions was compared to classic algorithms, achieving x7.9 performance while maintaining accuracy. Based on these, a reconstruction pipeline was tested on simulated data with 93% accuracy using only 36 B-mode images. This was evaluated in-vivo to measure tumor volumes in mice, with 6.3% mean error. Our findings suggest implicit neural representations can reduce data needed to recreate volumes from 2D slices and replace interpolation methods to enable interactive analysis.
ArticleNumber 14
Author Glickstein, Bar
Bismuth, Mike
Grutman, Tal
Ilovitsh, Tali
Author_xml – sequence: 1
  givenname: Tal
  surname: Grutman
  fullname: Grutman, Tal
  organization: School of Biomedical Engineering, Tel-Aviv University
– sequence: 2
  givenname: Mike
  surname: Bismuth
  fullname: Bismuth, Mike
  organization: School of Biomedical Engineering, Tel-Aviv University
– sequence: 3
  givenname: Bar
  surname: Glickstein
  fullname: Glickstein, Bar
  organization: School of Biomedical Engineering, Tel-Aviv University
– sequence: 4
  givenname: Tali
  surname: Ilovitsh
  fullname: Ilovitsh, Tali
  email: ilovitsh@tauex.tau.ac.il
  organization: School of Biomedical Engineering, Tel-Aviv University, The Sagol School of Neuroscience, Tel-Aviv University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40787435$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1rFjEUhUOptLX2D3QhA27cjOZzJu-qSP0qFNy0ILgImeTm7UgmGZOJ0n9v6rzW6qK4SuA-595zz32K9kMMgNApwa8IZvJ15pxJ3mIqWowxka3YQ0cMY9ESTj7vP_gfopOcxwELyTc9ofwAHXLcy54zcYS-XEyzH824NAFK0r5JMCfIEBa9jDE0LqYmG-314KFhb2vZxJCXVMxaTnFq8qxThqb4JekcS7DNOOkt5GfoidM-w8nuPUbX799dnX9sLz99uDh_c9ka2hPRbmzHB6qHjjEQerDGEUs1d1oM0riu2wCHfuNoZwnpHZcGg-2sM0NFeisdO0Zs7VvCrG9_aO_VnKqFdKsIVndpqTUtVdNSv9JSoqrOVtVchgmsqSvX_e-VUY_q70oYb9Q2fleEMlazY7XDy12HFL8VyIuaxmzAex0glqwYrTMZEYRU9MU_6NdYUqip3FH1GB3vZaWeP7R07-X3uSpAV8CkmHMC93-L7uLJFQ5bSH9mP6L6CUZduuw
Cites_doi 10.1016/j.media.2007.10.006
10.1155/2017/6027029
10.1145/3503250
10.1038/s41467-024-47154-2
10.1109/JPROC.2017.2761740
10.1016/j.displa.2023.102456
10.3390/cancers15123139
10.1038/s41598-022-25129-x
10.1016/j.cmpb.2023.107805
10.1109/TMI.2024.3419780
10.1016/j.media.2024.103305
10.1109/ISBI60581.2025.10980994
10.1109/TETCI.2024.3377676
10.1109/ICRA57147.2024.10611443
10.1109/TUFFC.2023.3264580
10.1109/TMI.2018.2821901
10.1016/j.media.2018.06.003
10.1109/TUFFC.2014.2882
10.1016/j.ultrasmedbio.2020.03.006
10.1016/j.ultras.2023.107179
10.1109/IEMBS.2009.5332754
10.1002/uog.18945
10.1109/IUS52206.2021.9593917
10.1016/j.ultras.2024.107408
10.1038/s41592-019-0686-2
10.1117/1.3360308
10.1084/jem.20141555
10.1109/UFFC-JS60046.2024.10793976
10.1016/j.media.2023.102878
10.1109/TPAMI.2023.3305295
10.1145/3620665.3640366
10.1109/TUFFC.2021.3087712
10.1109/TUFFC.2020.2995467
10.1109/ULTSYM.2019.8925917
10.1109/ISBI56570.2024.10635582
10.3390/app14177991
10.1109/TUFFC.2024.3471873
10.7150/thno.16899
10.1007/978-3-031-72083-3_67
ContentType Journal Article
Copyright The Author(s) 2025
The Author(s) 2025.
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: The Author(s) 2025.
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
7X8
5PM
ADTOC
UNPAY
DOI 10.1038/s44384-025-00018-5
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection (via ProQuest)
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic

PubMed
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 3005-141X
ExternalDocumentID 10.1038/s44384-025-00018-5
PMC12334353
40787435
10_1038_s44384_025_00018_5
Genre Journal Article
GrantInformation_xml – fundername: European Research Council
  grantid: 101041118
  funderid: https://doi.org/10.13039/501100000781
– fundername: Israel Science Foundation
  grantid: 192/22
  funderid: https://doi.org/10.13039/501100003977
GroupedDBID 0R~
AAJSJ
AASML
ALMA_UNASSIGNED_HOLDINGS
C6C
AAYXX
CITATION
AARCD
NAO
NPM
SNYQT
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
7X8
5PM
ADTOC
EBLON
UNPAY
ID FETCH-LOGICAL-c2715-9d64b2ab633e5abdcf1d2a4fa5b8cf669e4e79f26d117f48c0ed6dfcb4fa7d8f3
IEDL.DBID UNPAY
ISSN 3005-141X
IngestDate Sun Oct 26 04:11:43 EDT 2025
Tue Sep 30 17:02:06 EDT 2025
Mon Aug 11 17:31:15 EDT 2025
Sat Aug 09 06:10:57 EDT 2025
Thu Aug 14 01:43:54 EDT 2025
Wed Oct 01 05:32:02 EDT 2025
Sat Aug 09 01:12:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Engineering
Ultrasonography
Language English
License The Author(s) 2025.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2715-9d64b2ab633e5abdcf1d2a4fa5b8cf669e4e79f26d117f48c0ed6dfcb4fa7d8f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1038/s44384-025-00018-5
PMID 40787435
PQID 3237876478
PQPubID 7343596
ParticipantIDs unpaywall_primary_10_1038_s44384_025_00018_5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12334353
proquest_miscellaneous_3238431511
proquest_journals_3237876478
pubmed_primary_40787435
crossref_primary_10_1038_s44384_025_00018_5
springer_journals_10_1038_s44384_025_00018_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 1
  year: 2025
  text: 20250101
  day: 1
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle NPJ Acoustics
PublicationTitleAbbrev npj Acoust
PublicationTitleAlternate NPJ Acoust
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References B Mildenhall (18_CR12) 2021; 65
H Chen (18_CR10) 2024; 98
B Glickstein (18_CR22) 2022; 12
D Schein (18_CR23) 2023; 70
H Afrin (18_CR27) 2023; 15
HB Chen (18_CR36) 2021; 68
18_CR15
18_CR14
18_CR13
18_CR19
18_CR18
J Ma (18_CR44) 2024; 15
18_CR17
18_CR16
18_CR50
Z Jiang (18_CR38) 2023; 89
18_CR11
WA Simson (18_CR25) 2024; 137
A Benjamin (18_CR7) 2020; 46
MY Ansari (18_CR20) 2024; 8
MA Janvier (18_CR9) 2008; 12
18_CR48
18_CR46
18_CR45
18_CR49
18_CR40
18_CR43
M Tanter (18_CR3) 2014; 61
18_CR41
B Jafrasteh (18_CR29) 2023; 242
MA Coelho Neto (18_CR34) 2018; 51
18_CR8
18_CR5
18_CR37
18_CR6
F Lin (18_CR28) 2017; 7
18_CR35
18_CR1
18_CR2
18_CR39
JH Park (18_CR21) 2020; 67
Z Chen (18_CR47) 2023; 45
18_CR33
18_CR32
18_CR31
18_CR30
H Cho (18_CR24) 2024; 143
R Prevost (18_CR4) 2018; 48
YR Shin (18_CR26) 2024; 15
BZ Qian (18_CR42) 2015; 212
References_xml – volume: 12
  start-page: 275
  year: 2008
  ident: 18_CR9
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2007.10.006
– ident: 18_CR2
  doi: 10.1155/2017/6027029
– ident: 18_CR49
– volume: 65
  start-page: 99
  year: 2021
  ident: 18_CR12
  publication-title: Commun. ACM
  doi: 10.1145/3503250
– volume: 15
  start-page: 1
  year: 2024
  ident: 18_CR26
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-47154-2
– ident: 18_CR32
  doi: 10.1109/JPROC.2017.2761740
– ident: 18_CR11
  doi: 10.1016/j.displa.2023.102456
– volume: 15
  start-page: 3139
  year: 2023
  ident: 18_CR27
  publication-title: Cancers
  doi: 10.3390/cancers15123139
– ident: 18_CR13
– volume: 12
  start-page: 1
  year: 2022
  ident: 18_CR22
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-25129-x
– ident: 18_CR17
– volume: 242
  start-page: 107805
  year: 2023
  ident: 18_CR29
  publication-title: Comput. Methods Prog. Biomed.
  doi: 10.1016/j.cmpb.2023.107805
– ident: 18_CR31
– volume: 15
  start-page: 1
  year: 2024
  ident: 18_CR44
  publication-title: Nat. Commun. 2024 15:1
– ident: 18_CR46
– ident: 18_CR15
  doi: 10.1109/TMI.2024.3419780
– ident: 18_CR41
– volume: 98
  year: 2024
  ident: 18_CR10
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2024.103305
– ident: 18_CR8
  doi: 10.1109/ISBI60581.2025.10980994
– volume: 8
  start-page: 2126
  year: 2024
  ident: 18_CR20
  publication-title: IEEE Trans. Emerg. Top. Comput. Intell.
  doi: 10.1109/TETCI.2024.3377676
– ident: 18_CR19
  doi: 10.1109/ICRA57147.2024.10611443
– volume: 70
  start-page: 551
  year: 2023
  ident: 18_CR23
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2023.3264580
– ident: 18_CR5
  doi: 10.1109/TMI.2018.2821901
– ident: 18_CR14
– volume: 48
  start-page: 187
  year: 2018
  ident: 18_CR4
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2018.06.003
– volume: 61
  start-page: 102
  year: 2014
  ident: 18_CR3
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2014.2882
– volume: 46
  start-page: 1769
  year: 2020
  ident: 18_CR7
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/j.ultrasmedbio.2020.03.006
– volume: 137
  start-page: 107179
  year: 2024
  ident: 18_CR25
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2023.107179
– ident: 18_CR1
  doi: 10.1109/IEMBS.2009.5332754
– volume: 51
  start-page: 10
  year: 2018
  ident: 18_CR34
  publication-title: Ultrasound Obstet. Gynecol.
  doi: 10.1002/uog.18945
– ident: 18_CR37
  doi: 10.1109/IUS52206.2021.9593917
– volume: 143
  start-page: 107408
  year: 2024
  ident: 18_CR24
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2024.107408
– ident: 18_CR30
  doi: 10.1038/s41592-019-0686-2
– ident: 18_CR40
  doi: 10.1117/1.3360308
– volume: 212
  start-page: 1433
  year: 2015
  ident: 18_CR42
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20141555
– ident: 18_CR33
  doi: 10.1109/UFFC-JS60046.2024.10793976
– volume: 89
  start-page: 102878
  year: 2023
  ident: 18_CR38
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2023.102878
– volume: 45
  start-page: 15694
  year: 2023
  ident: 18_CR47
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2023.3305295
– ident: 18_CR45
  doi: 10.1145/3620665.3640366
– ident: 18_CR48
– volume: 68
  start-page: 3104
  year: 2021
  ident: 18_CR36
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2021.3087712
– volume: 67
  start-page: 2022
  year: 2020
  ident: 18_CR21
  publication-title: IEEE Trans. Ultrason Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2020.2995467
– ident: 18_CR43
– ident: 18_CR6
  doi: 10.1109/ULTSYM.2019.8925917
– ident: 18_CR16
  doi: 10.1109/ISBI56570.2024.10635582
– ident: 18_CR35
  doi: 10.3390/app14177991
– ident: 18_CR39
  doi: 10.1109/TUFFC.2024.3471873
– volume: 7
  start-page: 196
  year: 2017
  ident: 18_CR28
  publication-title: Theranostics
  doi: 10.7150/thno.16899
– ident: 18_CR18
  doi: 10.1007/978-3-031-72083-3_67
– ident: 18_CR50
SSID ssib058497124
Score 2.281175
Snippet Although volumetric ultrasound is limited by cost and availability of 2D arrays, 3D volumes can be reconstructed from 2D slices if transducer position is...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 14
SubjectTerms 639/166
692/700/1421/1860
Acoustics
Algorithms
Arrays
Control
Datasets
Dynamical Systems
Engineering Acoustics
Image reconstruction
Materials Science
Neural networks
Noise Control
Physics
Physics and Astronomy
Representations
Sound waves
Spheres
Three dimensional imaging
Ultrasonic imaging
Ultrasound
Vibration
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V7QE4IBCvQEFG4katJraTOAeEeLQqHFYIUakSh8hPsdKSXUhXiH_PjDdJWVWqONtJ7JnxzBfPC-Aliiz-cznJmygNVzrW1OZFc1f4XAZb5i6mANl5dXqmPp2X53swH3NhKKxy1IlJUfuVozvyIykkyhZlRr5Z_-TUNYq8q2MLDTO0VvCvU4mxG7AvqDLWDPbfHc8_fxklDK1tU6NFG7JncqmPeqWkVpy6uhLe0bzctVBXYOfV6MnJhXobbm66tfnz2yyX_1ipk7twZ4CX7O1WHu7BXujuw7ePKWx8ccGoeiUOp0qWY9ZRxxC3sh55RVlUTH5g6Sd5KizLKAOFoeL51Qe2WeJiemrFxBY_UBX1D-Ds5Pjr-1M-NFXgTtRFyRtfKSuMraQMpbHexcILo6IprXaxqpqgQt1EUfmiqKPSLg--8tFZnFJ7HeVDmHWrLjwGJnVweaxzK7xXlRfWWuqnayPaRRu1yuDVSMh2va2d0Saft9Ttluwtkj25v3VbZnAw0rodzlHfXnI9gxfTMJ4AcmuYLqw2aY5GGITIMYNHW9ZMnyMvJWIkfLneYdo0gapr7450i--pyjaadIlPygwOR_5eruu6bRxOMvAfu35y_a6fwi2RRJPufA5ghqwPzxAFXdjng2j_BfQ5B9Q
  priority: 102
  providerName: ProQuest
– databaseName: HAS SpringerNature Open Access 2022
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwFH7oiKgHcbduRPDmFNsmbdPj4ILOwYsKgofSbDgwdsQ6iP_el0xbHQZEz1ma5n3N-9K3AZwgZPHOJamfGVr4jJvUlnnhvgxVQLWIA2mcg-xtcv3A-o_x4xx0m1iYKfu9S91dMUY5823ZVUtIuB_PwwJHYPIOLPR6_bt-gx_UpVmK-qqOjcHhZ7ODp_XPDKmc9Y1sDaQrsDQuX4vPj2I4_KGDrtZgtSaPpDeR9jrM6XIDFp0Tp6w24enGuYcP3onNUokdXcbKJrqoJMhPSYUysdFShF4QdxluE8gSG2lC8IB5qzQZD3FZlS25RAYveORUW_BwdXl_fu3XxRN8GaVh7GcqYSIqREKpjguhpAlVVDBTxIJLkySZZjrNTJSoMEwN4zLQKlFGCuySKm7oNnTKUal3gVCuZWDSQERKsURFQghbN1cY1H_CcObBabOl-eskR0bubNuU5xMB5CgAZ-bmeezBQbPref29VDmNKJ4cNu7Vg-O2GZFuzRdFqUdj14cj3UGG6MHOREjt46w1ErkQTs6nxNd2sFm0p1vKwbPLpo2qm-JI6kG3kfT3un57jW6Lhj-89d7_Zt-H5ciB1v7rOYAOQkEfIvt5F0c16L8AdWj-xQ
  priority: 102
  providerName: Springer Nature
Title Implicit neural representation for scalable 3D reconstruction from sparse ultrasound images
URI https://link.springer.com/article/10.1038/s44384-025-00018-5
https://www.ncbi.nlm.nih.gov/pubmed/40787435
https://www.proquest.com/docview/3237876478
https://www.proquest.com/docview/3238431511
https://pubmed.ncbi.nlm.nih.gov/PMC12334353
https://doi.org/10.1038/s44384-025-00018-5
UnpaywallVersion publishedVersion
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 3005-141X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib058497124
  issn: 3005-141X
  databaseCode: AAJSJ
  dateStart: 0
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-x9gF42EDAyD4qI_HGMpLYcdzHrlsZfagmoFIRD1H8JSpKNpFW0_jrOTtpWBlC4ylSbCex72z_nLv7HcBrVFk8cyka9i0tQiZs5tK8iFDFOqJGppGy3kF2ws-nbDxLZw1NjouF2bDfU_G2YowKFrqkqw6OiDDdgi5PEXd3oDudXAw-uzRknk6TxbMmKubvDTd3njtw8q5XZGsafQwPV-VVcXNdLBa3dp_RTp3GqPKkhc7p5NvxaimP1c8_KB3v17EnsN2AUDKoteYpPDDlM_jy3juXz5fEcVxisee7XMcmlQTRLalQoi7WitBT4o_SLf0scXEqBJenH5UhqwV2rXIJm8j8Oy5Y1XOYjs4-Dc_DJvVCqJIsTsO-5kwmheSUmrSQWtlYJwWzRSqFspz3DTNZ3yZcx3FmmVCR0VxbJbFKpoWlL6BTXpbmJRAqjIpsFslEa8Z1IqV0WXelxd1TWsECeLMWS35VM2zk3jJORV4PUo6D5I3kIk8DOFhLLm9mW5XThOK646JmA3jVFuM8ccaPojSXK19HIFhCfBnAbi3o9nXOlolICh8uNlSgreA4uDdLyvlXz8WNGz_FljSAo7W2_P6uf3XjqNWoe_R67_-q78OjxCuW-1N0AB1UBXOI2Gkpe7AlRu960B0Mxh_HeD05m1x8wLtDPuw1E-oXNe4WkA
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9lB6QEW8AgWMBCdqNbGdxDlUqNBWu7SsEGqlShxC_FJXWrIL6arqn-O3MfYmKatKFZee7Tj2-LPns8czA_AWIYtnLs1p4XhFhXS5T_MiqU5MzK1KY-3CA9lRNjgVn8_SsxX40_nC-GeV3Z4YNmoz1f6OfIczjtjynpEfZr-ozxrlratdCo2qTa1gdkOIsdax48heXeIRrtkd7uN8v2Ps8ODk04C2WQaoZnmS0sJkQrFKZZzbtFJGu8SwSrgqVVK7LCussHnhWGaSJHdC6tiazDitsEpupOPY7j1YE1wUePhb-3gw-vqtQzRq9yJHDdp668Rc7jRCcCmozyLr-ZWk6bJGvEFzb77W7E22G7A-r2fV1WU1mfyjFQ834UFLZ8neAn8PYcXWj-D7MDxTH18QHy0Ti0PkzM7LqSbIk0mD2PBeW4Tvk3Ao7wPZEu_xQnCj-91YMp9gZxqf-omMf-LW1zyG0zsR7xNYrae1fQaES6tjl8eKGSMyw5RSPn-vcqiHlZMigvedIMvZIlZHGWzsXJYLsZco9mBul2UawVYn67Jdt015jbII3vTFuOK8GaWq7XQe6kikXchUI3i6mJr-d94qipwMG5dLk9ZX8NG8l0vq8XmI6o0UguOXPILtbn6v-3XbMLZ7DPzHqJ_fPurXsD44-XJcHg9HRy_gPgsw9fdNW7CKMLAvkYFdqFctzAn8uOuV9RdOM0eO
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3rS9xAEB_siVY_iH1Y46tb6LcaTbKbzebjoR56FhFaQeiHkH3Rg2s8Gg_xv3d2L0k9FLGfM9nXTGZ-m3kBfEWRxTuXomFuaRkyYTPX5kWEKtYRNTKNlPUBshf89IoNr9PrBeBtLowP2vclLb2abqPDDmvGqGCha77qYIkI04OJtm9gUWQ4WQ8W-_3hj2ErSWhV8wwtV5MlE1HxzADzlugJvHwaJdm5Slfh7bSalPd35Xj8yBoN1mGtgZGkP1v4O1gw1XtY8uGcqv4Av858oPjolrh6lUjoa1e2eUYVQaRKauSOy5si9Jj4a3FXSpa4nBOCquZvbch0jMuqXfMlMvqDyqf-CFeDk59Hp2HTRiFUSRanYa45k0kpOaUmLaVWNtZJyWyZSqEs57lhJsttwnUcZ5YJFRnNtVUSSTItLN2AXnVTmU0gVBgV2SySidaM60RK6TroSouWUFrBAvjWHmkxmVXLKLyXm4pixoACGeAd3qJIA9hpT71ovpy6oAlFHeIyYAP40j1GmXeOjLIyN1NPIxD4IFYM4NOMSd10zi-JqAgHF3Ps6whcPe35J9Xot6-rjUac4ps0gP2W0__W9dI29jtpeMWut_5v9M-wfHk8KL6fXZxvw0ri5df9ANqBHkqF2UVIdCv3Gvl_AO52B0Y
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6N7gH2wIaALdBNRuKNpiSx47iP1aDa9jDxQKUiHqL4l1aty6ql1TT-es5OGihFU_dsO8nZZ9_n3N13AB9RZfHOpWg4sLQImbCZK_MiQhXriBqZRsr6ANlLfjZmF5N00tDkuFyYNf89FZ8rxqhgoSu66uCICNNnsMtTxN0d2B1ffhv-cGXIPJ0miydNVsz_B65bng04uRkV2bpG9-D5spwXD_fFbPaX9Rnt12WMKk9a6IJOrvvLheyrX_9QOm4n2AG8bEAoGdZa8wp2TPkafp774PLpgjiOS2z2fJer3KSSILolFa6oy7Ui9AvxV-mWfpa4PBWCx9NdZchyhqJVrmATmd7ggVW9gfHo6_fTs7ApvRCqJIvTcKA5k0khOaUmLaRWNtZJwWyRSqEs5wPDTDawCddxnFkmVGQ011ZJ7JJpYelb6JS3pTkCQoVRkc0imWjNuE6klK7qrrRoPaUVLIBPq2XJ5zXDRu4941Tk9STlOEneSS7yNIDuauXyZrdVOU0onjsuazaAD20z7hPn_ChKc7v0fQSCJcSXARzWC92-zvkyEUnhw8WaCrQdHAf3eks5vfJc3Gj4KY6kAfRW2vLnux4To9dq1BZSv3ta9_fwIvGK5f4UdaGDqmCOETst5EmzaX4DDZwRpw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Implicit+neural+representation+for+scalable+3D+reconstruction+from+sparse+ultrasound+images&rft.jtitle=NPJ+acoustics&rft.au=Grutman%2C+Tal&rft.au=Bismuth%2C+Mike&rft.au=Glickstein%2C+Bar&rft.au=Ilovitsh%2C+Tali&rft.date=2025-01-01&rft.issn=3005-141X&rft.eissn=3005-141X&rft.volume=1&rft.issue=1&rft.spage=14&rft_id=info:doi/10.1038%2Fs44384-025-00018-5&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=3005-141X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=3005-141X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=3005-141X&client=summon