Implicit neural representation for scalable 3D reconstruction from sparse ultrasound images
Although volumetric ultrasound is limited by cost and availability of 2D arrays, 3D volumes can be reconstructed from 2D slices if transducer position is known, which is not usually the case. Even with position data, existing algorithms for reconstruction are impractical due to their discrete nature...
Saved in:
| Published in | NPJ Acoustics Vol. 1; no. 1; p. 14 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Nature Publishing Group UK
01.01.2025
Nature Publishing Group |
| Subjects | |
| Online Access | Get full text |
| ISSN | 3005-141X 3005-141X |
| DOI | 10.1038/s44384-025-00018-5 |
Cover
| Abstract | Although volumetric ultrasound is limited by cost and availability of 2D arrays, 3D volumes can be reconstructed from 2D slices if transducer position is known, which is not usually the case. Even with position data, existing algorithms for reconstruction are impractical due to their discrete nature that struggles with scale. We propose a 1D array on a programmable motor for scanning and implicit neural representations for continuous reconstruction. Our network’s ability to sample at arbitrary positions was compared to classic algorithms, achieving x7.9 performance while maintaining accuracy. Based on these, a reconstruction pipeline was tested on simulated data with 93% accuracy using only 36 B-mode images. This was evaluated in-vivo to measure tumor volumes in mice, with 6.3% mean error. Our findings suggest implicit neural representations can reduce data needed to recreate volumes from 2D slices and replace interpolation methods to enable interactive analysis. |
|---|---|
| AbstractList | Although volumetric ultrasound is limited by cost and availability of 2D arrays, 3D volumes can be reconstructed from 2D slices if transducer position is known, which is not usually the case. Even with position data, existing algorithms for reconstruction are impractical due to their discrete nature that struggles with scale. We propose a 1D array on a programmable motor for scanning and implicit neural representations for continuous reconstruction. Our network’s ability to sample at arbitrary positions was compared to classic algorithms, achieving x7.9 performance while maintaining accuracy. Based on these, a reconstruction pipeline was tested on simulated data with 93% accuracy using only 36 B-mode images. This was evaluated in-vivo to measure tumor volumes in mice, with 6.3% mean error. Our findings suggest implicit neural representations can reduce data needed to recreate volumes from 2D slices and replace interpolation methods to enable interactive analysis. Although volumetric ultrasound is limited by cost and availability of 2D arrays, 3D volumes can be reconstructed from 2D slices if transducer position is known, which is not usually the case. Even with position data, existing algorithms for reconstruction are impractical due to their discrete nature that struggles with scale. We propose a 1D array on a programmable motor for scanning and implicit neural representations for continuous reconstruction. Our network's ability to sample at arbitrary positions was compared to classic algorithms, achieving x7.9 performance while maintaining accuracy. Based on these, a reconstruction pipeline was tested on simulated data with 93% accuracy using only 36 B-mode images. This was evaluated in-vivo to measure tumor volumes in mice, with 6.3% mean error. Our findings suggest implicit neural representations can reduce data needed to recreate volumes from 2D slices and replace interpolation methods to enable interactive analysis.Although volumetric ultrasound is limited by cost and availability of 2D arrays, 3D volumes can be reconstructed from 2D slices if transducer position is known, which is not usually the case. Even with position data, existing algorithms for reconstruction are impractical due to their discrete nature that struggles with scale. We propose a 1D array on a programmable motor for scanning and implicit neural representations for continuous reconstruction. Our network's ability to sample at arbitrary positions was compared to classic algorithms, achieving x7.9 performance while maintaining accuracy. Based on these, a reconstruction pipeline was tested on simulated data with 93% accuracy using only 36 B-mode images. This was evaluated in-vivo to measure tumor volumes in mice, with 6.3% mean error. Our findings suggest implicit neural representations can reduce data needed to recreate volumes from 2D slices and replace interpolation methods to enable interactive analysis. |
| ArticleNumber | 14 |
| Author | Glickstein, Bar Bismuth, Mike Grutman, Tal Ilovitsh, Tali |
| Author_xml | – sequence: 1 givenname: Tal surname: Grutman fullname: Grutman, Tal organization: School of Biomedical Engineering, Tel-Aviv University – sequence: 2 givenname: Mike surname: Bismuth fullname: Bismuth, Mike organization: School of Biomedical Engineering, Tel-Aviv University – sequence: 3 givenname: Bar surname: Glickstein fullname: Glickstein, Bar organization: School of Biomedical Engineering, Tel-Aviv University – sequence: 4 givenname: Tali surname: Ilovitsh fullname: Ilovitsh, Tali email: ilovitsh@tauex.tau.ac.il organization: School of Biomedical Engineering, Tel-Aviv University, The Sagol School of Neuroscience, Tel-Aviv University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40787435$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkU1rFjEUhUOptLX2D3QhA27cjOZzJu-qSP0qFNy0ILgImeTm7UgmGZOJ0n9v6rzW6qK4SuA-595zz32K9kMMgNApwa8IZvJ15pxJ3mIqWowxka3YQ0cMY9ESTj7vP_gfopOcxwELyTc9ofwAHXLcy54zcYS-XEyzH824NAFK0r5JMCfIEBa9jDE0LqYmG-314KFhb2vZxJCXVMxaTnFq8qxThqb4JekcS7DNOOkt5GfoidM-w8nuPUbX799dnX9sLz99uDh_c9ka2hPRbmzHB6qHjjEQerDGEUs1d1oM0riu2wCHfuNoZwnpHZcGg-2sM0NFeisdO0Zs7VvCrG9_aO_VnKqFdKsIVndpqTUtVdNSv9JSoqrOVtVchgmsqSvX_e-VUY_q70oYb9Q2fleEMlazY7XDy12HFL8VyIuaxmzAex0glqwYrTMZEYRU9MU_6NdYUqip3FH1GB3vZaWeP7R07-X3uSpAV8CkmHMC93-L7uLJFQ5bSH9mP6L6CUZduuw |
| Cites_doi | 10.1016/j.media.2007.10.006 10.1155/2017/6027029 10.1145/3503250 10.1038/s41467-024-47154-2 10.1109/JPROC.2017.2761740 10.1016/j.displa.2023.102456 10.3390/cancers15123139 10.1038/s41598-022-25129-x 10.1016/j.cmpb.2023.107805 10.1109/TMI.2024.3419780 10.1016/j.media.2024.103305 10.1109/ISBI60581.2025.10980994 10.1109/TETCI.2024.3377676 10.1109/ICRA57147.2024.10611443 10.1109/TUFFC.2023.3264580 10.1109/TMI.2018.2821901 10.1016/j.media.2018.06.003 10.1109/TUFFC.2014.2882 10.1016/j.ultrasmedbio.2020.03.006 10.1016/j.ultras.2023.107179 10.1109/IEMBS.2009.5332754 10.1002/uog.18945 10.1109/IUS52206.2021.9593917 10.1016/j.ultras.2024.107408 10.1038/s41592-019-0686-2 10.1117/1.3360308 10.1084/jem.20141555 10.1109/UFFC-JS60046.2024.10793976 10.1016/j.media.2023.102878 10.1109/TPAMI.2023.3305295 10.1145/3620665.3640366 10.1109/TUFFC.2021.3087712 10.1109/TUFFC.2020.2995467 10.1109/ULTSYM.2019.8925917 10.1109/ISBI56570.2024.10635582 10.3390/app14177991 10.1109/TUFFC.2024.3471873 10.7150/thno.16899 10.1007/978-3-031-72083-3_67 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 The Author(s) 2025. The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2025 2025 |
| Copyright_xml | – notice: The Author(s) 2025 – notice: The Author(s) 2025. – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2025 2025 |
| DBID | C6C AAYXX CITATION NPM 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS 7X8 5PM ADTOC UNPAY |
| DOI | 10.1038/s44384-025-00018-5 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) ProQuest One Community College ProQuest Central Korea SciTech Premium Collection (via ProQuest) ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic PubMed CrossRef |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 3005-141X |
| ExternalDocumentID | 10.1038/s44384-025-00018-5 PMC12334353 40787435 10_1038_s44384_025_00018_5 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: European Research Council grantid: 101041118 funderid: https://doi.org/10.13039/501100000781 – fundername: Israel Science Foundation grantid: 192/22 funderid: https://doi.org/10.13039/501100003977 |
| GroupedDBID | 0R~ AAJSJ AASML ALMA_UNASSIGNED_HOLDINGS C6C AAYXX CITATION AARCD NAO NPM SNYQT 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS 7X8 5PM ADTOC EBLON UNPAY |
| ID | FETCH-LOGICAL-c2715-9d64b2ab633e5abdcf1d2a4fa5b8cf669e4e79f26d117f48c0ed6dfcb4fa7d8f3 |
| IEDL.DBID | UNPAY |
| ISSN | 3005-141X |
| IngestDate | Sun Oct 26 04:11:43 EDT 2025 Tue Sep 30 17:02:06 EDT 2025 Mon Aug 11 17:31:15 EDT 2025 Sat Aug 09 06:10:57 EDT 2025 Thu Aug 14 01:43:54 EDT 2025 Wed Oct 01 05:32:02 EDT 2025 Sat Aug 09 01:12:01 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Engineering Ultrasonography |
| Language | English |
| License | The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2715-9d64b2ab633e5abdcf1d2a4fa5b8cf669e4e79f26d117f48c0ed6dfcb4fa7d8f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1038/s44384-025-00018-5 |
| PMID | 40787435 |
| PQID | 3237876478 |
| PQPubID | 7343596 |
| ParticipantIDs | unpaywall_primary_10_1038_s44384_025_00018_5 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12334353 proquest_miscellaneous_3238431511 proquest_journals_3237876478 pubmed_primary_40787435 crossref_primary_10_1038_s44384_025_00018_5 springer_journals_10_1038_s44384_025_00018_5 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20250101 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 1 year: 2025 text: 20250101 day: 1 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | NPJ Acoustics |
| PublicationTitleAbbrev | npj Acoust |
| PublicationTitleAlternate | NPJ Acoust |
| PublicationYear | 2025 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | B Mildenhall (18_CR12) 2021; 65 H Chen (18_CR10) 2024; 98 B Glickstein (18_CR22) 2022; 12 D Schein (18_CR23) 2023; 70 H Afrin (18_CR27) 2023; 15 HB Chen (18_CR36) 2021; 68 18_CR15 18_CR14 18_CR13 18_CR19 18_CR18 J Ma (18_CR44) 2024; 15 18_CR17 18_CR16 18_CR50 Z Jiang (18_CR38) 2023; 89 18_CR11 WA Simson (18_CR25) 2024; 137 A Benjamin (18_CR7) 2020; 46 MY Ansari (18_CR20) 2024; 8 MA Janvier (18_CR9) 2008; 12 18_CR48 18_CR46 18_CR45 18_CR49 18_CR40 18_CR43 M Tanter (18_CR3) 2014; 61 18_CR41 B Jafrasteh (18_CR29) 2023; 242 MA Coelho Neto (18_CR34) 2018; 51 18_CR8 18_CR5 18_CR37 18_CR6 F Lin (18_CR28) 2017; 7 18_CR35 18_CR1 18_CR2 18_CR39 JH Park (18_CR21) 2020; 67 Z Chen (18_CR47) 2023; 45 18_CR33 18_CR32 18_CR31 18_CR30 H Cho (18_CR24) 2024; 143 R Prevost (18_CR4) 2018; 48 YR Shin (18_CR26) 2024; 15 BZ Qian (18_CR42) 2015; 212 |
| References_xml | – volume: 12 start-page: 275 year: 2008 ident: 18_CR9 publication-title: Med. Image Anal. doi: 10.1016/j.media.2007.10.006 – ident: 18_CR2 doi: 10.1155/2017/6027029 – ident: 18_CR49 – volume: 65 start-page: 99 year: 2021 ident: 18_CR12 publication-title: Commun. ACM doi: 10.1145/3503250 – volume: 15 start-page: 1 year: 2024 ident: 18_CR26 publication-title: Nat. Commun. doi: 10.1038/s41467-024-47154-2 – ident: 18_CR32 doi: 10.1109/JPROC.2017.2761740 – ident: 18_CR11 doi: 10.1016/j.displa.2023.102456 – volume: 15 start-page: 3139 year: 2023 ident: 18_CR27 publication-title: Cancers doi: 10.3390/cancers15123139 – ident: 18_CR13 – volume: 12 start-page: 1 year: 2022 ident: 18_CR22 publication-title: Sci. Rep. doi: 10.1038/s41598-022-25129-x – ident: 18_CR17 – volume: 242 start-page: 107805 year: 2023 ident: 18_CR29 publication-title: Comput. Methods Prog. Biomed. doi: 10.1016/j.cmpb.2023.107805 – ident: 18_CR31 – volume: 15 start-page: 1 year: 2024 ident: 18_CR44 publication-title: Nat. Commun. 2024 15:1 – ident: 18_CR46 – ident: 18_CR15 doi: 10.1109/TMI.2024.3419780 – ident: 18_CR41 – volume: 98 year: 2024 ident: 18_CR10 publication-title: Med. Image Anal. doi: 10.1016/j.media.2024.103305 – ident: 18_CR8 doi: 10.1109/ISBI60581.2025.10980994 – volume: 8 start-page: 2126 year: 2024 ident: 18_CR20 publication-title: IEEE Trans. Emerg. Top. Comput. Intell. doi: 10.1109/TETCI.2024.3377676 – ident: 18_CR19 doi: 10.1109/ICRA57147.2024.10611443 – volume: 70 start-page: 551 year: 2023 ident: 18_CR23 publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2023.3264580 – ident: 18_CR5 doi: 10.1109/TMI.2018.2821901 – ident: 18_CR14 – volume: 48 start-page: 187 year: 2018 ident: 18_CR4 publication-title: Med. Image Anal. doi: 10.1016/j.media.2018.06.003 – volume: 61 start-page: 102 year: 2014 ident: 18_CR3 publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2014.2882 – volume: 46 start-page: 1769 year: 2020 ident: 18_CR7 publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2020.03.006 – volume: 137 start-page: 107179 year: 2024 ident: 18_CR25 publication-title: Ultrasonics doi: 10.1016/j.ultras.2023.107179 – ident: 18_CR1 doi: 10.1109/IEMBS.2009.5332754 – volume: 51 start-page: 10 year: 2018 ident: 18_CR34 publication-title: Ultrasound Obstet. Gynecol. doi: 10.1002/uog.18945 – ident: 18_CR37 doi: 10.1109/IUS52206.2021.9593917 – volume: 143 start-page: 107408 year: 2024 ident: 18_CR24 publication-title: Ultrasonics doi: 10.1016/j.ultras.2024.107408 – ident: 18_CR30 doi: 10.1038/s41592-019-0686-2 – ident: 18_CR40 doi: 10.1117/1.3360308 – volume: 212 start-page: 1433 year: 2015 ident: 18_CR42 publication-title: J. Exp. Med. doi: 10.1084/jem.20141555 – ident: 18_CR33 doi: 10.1109/UFFC-JS60046.2024.10793976 – volume: 89 start-page: 102878 year: 2023 ident: 18_CR38 publication-title: Med. Image Anal. doi: 10.1016/j.media.2023.102878 – volume: 45 start-page: 15694 year: 2023 ident: 18_CR47 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2023.3305295 – ident: 18_CR45 doi: 10.1145/3620665.3640366 – ident: 18_CR48 – volume: 68 start-page: 3104 year: 2021 ident: 18_CR36 publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2021.3087712 – volume: 67 start-page: 2022 year: 2020 ident: 18_CR21 publication-title: IEEE Trans. Ultrason Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2020.2995467 – ident: 18_CR43 – ident: 18_CR6 doi: 10.1109/ULTSYM.2019.8925917 – ident: 18_CR16 doi: 10.1109/ISBI56570.2024.10635582 – ident: 18_CR35 doi: 10.3390/app14177991 – ident: 18_CR39 doi: 10.1109/TUFFC.2024.3471873 – volume: 7 start-page: 196 year: 2017 ident: 18_CR28 publication-title: Theranostics doi: 10.7150/thno.16899 – ident: 18_CR18 doi: 10.1007/978-3-031-72083-3_67 – ident: 18_CR50 |
| SSID | ssib058497124 |
| Score | 2.281175 |
| Snippet | Although volumetric ultrasound is limited by cost and availability of 2D arrays, 3D volumes can be reconstructed from 2D slices if transducer position is... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 14 |
| SubjectTerms | 639/166 692/700/1421/1860 Acoustics Algorithms Arrays Control Datasets Dynamical Systems Engineering Acoustics Image reconstruction Materials Science Neural networks Noise Control Physics Physics and Astronomy Representations Sound waves Spheres Three dimensional imaging Ultrasonic imaging Ultrasound Vibration |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V7QE4IBCvQEFG4katJraTOAeEeLQqHFYIUakSh8hPsdKSXUhXiH_PjDdJWVWqONtJ7JnxzBfPC-Aliiz-cznJmygNVzrW1OZFc1f4XAZb5i6mANl5dXqmPp2X53swH3NhKKxy1IlJUfuVozvyIykkyhZlRr5Z_-TUNYq8q2MLDTO0VvCvU4mxG7AvqDLWDPbfHc8_fxklDK1tU6NFG7JncqmPeqWkVpy6uhLe0bzctVBXYOfV6MnJhXobbm66tfnz2yyX_1ipk7twZ4CX7O1WHu7BXujuw7ePKWx8ccGoeiUOp0qWY9ZRxxC3sh55RVlUTH5g6Sd5KizLKAOFoeL51Qe2WeJiemrFxBY_UBX1D-Ds5Pjr-1M-NFXgTtRFyRtfKSuMraQMpbHexcILo6IprXaxqpqgQt1EUfmiqKPSLg--8tFZnFJ7HeVDmHWrLjwGJnVweaxzK7xXlRfWWuqnayPaRRu1yuDVSMh2va2d0Saft9Ttluwtkj25v3VbZnAw0rodzlHfXnI9gxfTMJ4AcmuYLqw2aY5GGITIMYNHW9ZMnyMvJWIkfLneYdo0gapr7450i--pyjaadIlPygwOR_5eruu6bRxOMvAfu35y_a6fwi2RRJPufA5ghqwPzxAFXdjng2j_BfQ5B9Q priority: 102 providerName: ProQuest – databaseName: HAS SpringerNature Open Access 2022 dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwFH7oiKgHcbduRPDmFNsmbdPj4ILOwYsKgofSbDgwdsQ6iP_el0xbHQZEz1ma5n3N-9K3AZwgZPHOJamfGVr4jJvUlnnhvgxVQLWIA2mcg-xtcv3A-o_x4xx0m1iYKfu9S91dMUY5823ZVUtIuB_PwwJHYPIOLPR6_bt-gx_UpVmK-qqOjcHhZ7ODp_XPDKmc9Y1sDaQrsDQuX4vPj2I4_KGDrtZgtSaPpDeR9jrM6XIDFp0Tp6w24enGuYcP3onNUokdXcbKJrqoJMhPSYUysdFShF4QdxluE8gSG2lC8IB5qzQZD3FZlS25RAYveORUW_BwdXl_fu3XxRN8GaVh7GcqYSIqREKpjguhpAlVVDBTxIJLkySZZjrNTJSoMEwN4zLQKlFGCuySKm7oNnTKUal3gVCuZWDSQERKsURFQghbN1cY1H_CcObBabOl-eskR0bubNuU5xMB5CgAZ-bmeezBQbPref29VDmNKJ4cNu7Vg-O2GZFuzRdFqUdj14cj3UGG6MHOREjt46w1ErkQTs6nxNd2sFm0p1vKwbPLpo2qm-JI6kG3kfT3un57jW6Lhj-89d7_Zt-H5ciB1v7rOYAOQkEfIvt5F0c16L8AdWj-xQ priority: 102 providerName: Springer Nature |
| Title | Implicit neural representation for scalable 3D reconstruction from sparse ultrasound images |
| URI | https://link.springer.com/article/10.1038/s44384-025-00018-5 https://www.ncbi.nlm.nih.gov/pubmed/40787435 https://www.proquest.com/docview/3237876478 https://www.proquest.com/docview/3238431511 https://pubmed.ncbi.nlm.nih.gov/PMC12334353 https://doi.org/10.1038/s44384-025-00018-5 |
| UnpaywallVersion | publishedVersion |
| Volume | 1 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 3005-141X dateEnd: 99991231 omitProxy: true ssIdentifier: ssib058497124 issn: 3005-141X databaseCode: AAJSJ dateStart: 0 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-x9gF42EDAyD4qI_HGMpLYcdzHrlsZfagmoFIRD1H8JSpKNpFW0_jrOTtpWBlC4ylSbCex72z_nLv7HcBrVFk8cyka9i0tQiZs5tK8iFDFOqJGppGy3kF2ws-nbDxLZw1NjouF2bDfU_G2YowKFrqkqw6OiDDdgi5PEXd3oDudXAw-uzRknk6TxbMmKubvDTd3njtw8q5XZGsafQwPV-VVcXNdLBa3dp_RTp3GqPKkhc7p5NvxaimP1c8_KB3v17EnsN2AUDKoteYpPDDlM_jy3juXz5fEcVxisee7XMcmlQTRLalQoi7WitBT4o_SLf0scXEqBJenH5UhqwV2rXIJm8j8Oy5Y1XOYjs4-Dc_DJvVCqJIsTsO-5kwmheSUmrSQWtlYJwWzRSqFspz3DTNZ3yZcx3FmmVCR0VxbJbFKpoWlL6BTXpbmJRAqjIpsFslEa8Z1IqV0WXelxd1TWsECeLMWS35VM2zk3jJORV4PUo6D5I3kIk8DOFhLLm9mW5XThOK646JmA3jVFuM8ccaPojSXK19HIFhCfBnAbi3o9nXOlolICh8uNlSgreA4uDdLyvlXz8WNGz_FljSAo7W2_P6uf3XjqNWoe_R67_-q78OjxCuW-1N0AB1UBXOI2Gkpe7AlRu960B0Mxh_HeD05m1x8wLtDPuw1E-oXNe4WkA |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9lB6QEW8AgWMBCdqNbGdxDlUqNBWu7SsEGqlShxC_FJXWrIL6arqn-O3MfYmKatKFZee7Tj2-LPns8czA_AWIYtnLs1p4XhFhXS5T_MiqU5MzK1KY-3CA9lRNjgVn8_SsxX40_nC-GeV3Z4YNmoz1f6OfIczjtjynpEfZr-ozxrlratdCo2qTa1gdkOIsdax48heXeIRrtkd7uN8v2Ps8ODk04C2WQaoZnmS0sJkQrFKZZzbtFJGu8SwSrgqVVK7LCussHnhWGaSJHdC6tiazDitsEpupOPY7j1YE1wUePhb-3gw-vqtQzRq9yJHDdp668Rc7jRCcCmozyLr-ZWk6bJGvEFzb77W7E22G7A-r2fV1WU1mfyjFQ834UFLZ8neAn8PYcXWj-D7MDxTH18QHy0Ti0PkzM7LqSbIk0mD2PBeW4Tvk3Ao7wPZEu_xQnCj-91YMp9gZxqf-omMf-LW1zyG0zsR7xNYrae1fQaES6tjl8eKGSMyw5RSPn-vcqiHlZMigvedIMvZIlZHGWzsXJYLsZco9mBul2UawVYn67Jdt015jbII3vTFuOK8GaWq7XQe6kikXchUI3i6mJr-d94qipwMG5dLk9ZX8NG8l0vq8XmI6o0UguOXPILtbn6v-3XbMLZ7DPzHqJ_fPurXsD44-XJcHg9HRy_gPgsw9fdNW7CKMLAvkYFdqFctzAn8uOuV9RdOM0eO |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3rS9xAEB_siVY_iH1Y46tb6LcaTbKbzebjoR56FhFaQeiHkH3Rg2s8Gg_xv3d2L0k9FLGfM9nXTGZ-m3kBfEWRxTuXomFuaRkyYTPX5kWEKtYRNTKNlPUBshf89IoNr9PrBeBtLowP2vclLb2abqPDDmvGqGCha77qYIkI04OJtm9gUWQ4WQ8W-_3hj2ErSWhV8wwtV5MlE1HxzADzlugJvHwaJdm5Slfh7bSalPd35Xj8yBoN1mGtgZGkP1v4O1gw1XtY8uGcqv4Av858oPjolrh6lUjoa1e2eUYVQaRKauSOy5si9Jj4a3FXSpa4nBOCquZvbch0jMuqXfMlMvqDyqf-CFeDk59Hp2HTRiFUSRanYa45k0kpOaUmLaVWNtZJyWyZSqEs57lhJsttwnUcZ5YJFRnNtVUSSTItLN2AXnVTmU0gVBgV2SySidaM60RK6TroSouWUFrBAvjWHmkxmVXLKLyXm4pixoACGeAd3qJIA9hpT71ovpy6oAlFHeIyYAP40j1GmXeOjLIyN1NPIxD4IFYM4NOMSd10zi-JqAgHF3Ps6whcPe35J9Xot6-rjUac4ps0gP2W0__W9dI29jtpeMWut_5v9M-wfHk8KL6fXZxvw0ri5df9ANqBHkqF2UVIdCv3Gvl_AO52B0Y |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6N7gH2wIaALdBNRuKNpiSx47iP1aDa9jDxQKUiHqL4l1aty6ql1TT-es5OGihFU_dsO8nZZ9_n3N13AB9RZfHOpWg4sLQImbCZK_MiQhXriBqZRsr6ANlLfjZmF5N00tDkuFyYNf89FZ8rxqhgoSu66uCICNNnsMtTxN0d2B1ffhv-cGXIPJ0miydNVsz_B65bng04uRkV2bpG9-D5spwXD_fFbPaX9Rnt12WMKk9a6IJOrvvLheyrX_9QOm4n2AG8bEAoGdZa8wp2TPkafp774PLpgjiOS2z2fJer3KSSILolFa6oy7Ui9AvxV-mWfpa4PBWCx9NdZchyhqJVrmATmd7ggVW9gfHo6_fTs7ApvRCqJIvTcKA5k0khOaUmLaRWNtZJwWyRSqEs5wPDTDawCddxnFkmVGQ011ZJ7JJpYelb6JS3pTkCQoVRkc0imWjNuE6klK7qrrRoPaUVLIBPq2XJ5zXDRu4941Tk9STlOEneSS7yNIDuauXyZrdVOU0onjsuazaAD20z7hPn_ChKc7v0fQSCJcSXARzWC92-zvkyEUnhw8WaCrQdHAf3eks5vfJc3Gj4KY6kAfRW2vLnux4To9dq1BZSv3ta9_fwIvGK5f4UdaGDqmCOETst5EmzaX4DDZwRpw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Implicit+neural+representation+for+scalable+3D+reconstruction+from+sparse+ultrasound+images&rft.jtitle=NPJ+acoustics&rft.au=Grutman%2C+Tal&rft.au=Bismuth%2C+Mike&rft.au=Glickstein%2C+Bar&rft.au=Ilovitsh%2C+Tali&rft.date=2025-01-01&rft.issn=3005-141X&rft.eissn=3005-141X&rft.volume=1&rft.issue=1&rft.spage=14&rft_id=info:doi/10.1038%2Fs44384-025-00018-5&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=3005-141X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=3005-141X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=3005-141X&client=summon |