An Efficient Numerical Method for General L Regularization in Fluorescence Molecular Tomography

Reconstruction algorithms for fluorescence tomography have to address two crucial issues: 1) the ill-posedness of the reconstruction problem, 2) the large scale of numerical problems arising from imaging of 3-D samples. Our contribution is the design and implementation of a reconstruction algorithm...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 29; no. 4; pp. 1075 - 1087
Main Authors Baritaux, J.-C., Hassler, K., Unser, M.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.04.2010
Subjects
Online AccessGet full text
ISSN0278-0062
1558-254X
1558-254X
DOI10.1109/TMI.2010.2042814

Cover

Abstract Reconstruction algorithms for fluorescence tomography have to address two crucial issues: 1) the ill-posedness of the reconstruction problem, 2) the large scale of numerical problems arising from imaging of 3-D samples. Our contribution is the design and implementation of a reconstruction algorithm that incorporates general Lp regularization ( p ¿ 1). The originality of this work lies in the application of general Lp constraints to fluorescence tomography, combined with an efficient matrix-free strategy that enables the algorithm to deal with large reconstruction problems at reduced memory and computational costs. In the experimental part, we specialize the application of the algorithm to the case of sparsity promoting constraints ( L 1 ). We validate the adequacy of L 1 regularization for the investigation of phenomena that are well described by a sparse model, using data acquired during phantom experiments.
AbstractList Reconstruction algorithms for fluorescence tomography have to address two crucial issues: 1) the ill-posedness of the reconstruction problem, 2) the large scale of numerical problems arising from imaging of 3-D samples. Our contribution is the design and implementation of a reconstruction algorithm that incorporates general Lp regularization (p ¿ 1). The originality of this work lies in the application of general Lp constraints to fluorescence tomography, combined with an efficient matrix-free strategy that enables the algorithm to deal with large reconstruction problems at reduced memory and computational costs. In the experimental part, we specialize the application of the algorithm to the case of sparsity promoting constraints (L (1)). We validate the adequacy of L (1) regularization for the investigation of phenomena that are well described by a sparse model, using data acquired during phantom experiments.Reconstruction algorithms for fluorescence tomography have to address two crucial issues: 1) the ill-posedness of the reconstruction problem, 2) the large scale of numerical problems arising from imaging of 3-D samples. Our contribution is the design and implementation of a reconstruction algorithm that incorporates general Lp regularization (p ¿ 1). The originality of this work lies in the application of general Lp constraints to fluorescence tomography, combined with an efficient matrix-free strategy that enables the algorithm to deal with large reconstruction problems at reduced memory and computational costs. In the experimental part, we specialize the application of the algorithm to the case of sparsity promoting constraints (L (1)). We validate the adequacy of L (1) regularization for the investigation of phenomena that are well described by a sparse model, using data acquired during phantom experiments.
Reconstruction algorithms for fluorescence tomography have to address two crucial issues: 1) the ill-posedness of the reconstruction problem, 2) the large scale of numerical problems arising from imaging of 3-D samples. Our contribution is the design and implementation of a reconstruction algorithm that incorporates general Lp regularization ( p ¿ 1). The originality of this work lies in the application of general Lp constraints to fluorescence tomography, combined with an efficient matrix-free strategy that enables the algorithm to deal with large reconstruction problems at reduced memory and computational costs. In the experimental part, we specialize the application of the algorithm to the case of sparsity promoting constraints ( L 1 ). We validate the adequacy of L 1 regularization for the investigation of phenomena that are well described by a sparse model, using data acquired during phantom experiments.
Author Baritaux, J.-C.
Hassler, K.
Unser, M.
Author_xml – sequence: 1
  givenname: J.-C.
  surname: Baritaux
  fullname: Baritaux, J.-C.
  organization: Swiss Fed. Inst. of Technol., Lausanne, Switzerland
– sequence: 2
  givenname: K.
  surname: Hassler
  fullname: Hassler, K.
  organization: SCANCO Med. AG, Briittisellen, Switzerland
– sequence: 3
  givenname: M.
  surname: Unser
  fullname: Unser, M.
  organization: Swiss Fed. Inst. of Technol., Lausanne, Switzerland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20236875$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFLHDEYhkOx1FV7FwqSm6exX5LJTuYoolbYbaGs0FvIZL5oJJOsmRlk_fWd7W49WOgpJDzv9yZPjshBTBEJOWVwwRjUX1fLuwsO045DyRUrP5AZk1IVXJa_DsgMeKUKgDk_JEd9_wTASgn1J3LIgYu5quSM6MtIr53z1mMc6Pexw-ytCXSJw2NqqUuZ3mLEPB0t6E98GIPJ_tUMPkXqI70JY8rYW4wW6TIFtFuArlKXHrJZP25OyEdnQo-f9-sxub-5Xl19KxY_bu-uLheF5RUrC8taJkvTCEBTcicQrbWOM26N5GjsvLG1asCJFp1jUijZKlfVrDG1UBXU4piw3dwxrs3mxYSg19l3Jm80A72VpYfO660svZc1Zc53mXVOzyP2g-789JQQTMQ09roSJQio5ZY825Nj02H7NvqvxwmAHWBz6vuM7p_26avet8_fRawf_ogdsvHhf8Evu6BHxLee6ZZQV0r8Bnabn14
CODEN ITMID4
CitedBy_id crossref_primary_10_1109_TMI_2018_2795464
crossref_primary_10_1364_BOE_5_000763
crossref_primary_10_1002_jbio_202200126
crossref_primary_10_1364_BOE_5_004249
crossref_primary_10_1142_S1793545813500570
crossref_primary_10_1002_jbio_202300031
crossref_primary_10_1109_TMI_2016_2601311
crossref_primary_10_1364_OL_39_004148
crossref_primary_10_1186_s42492_018_0001_6
crossref_primary_10_1142_S1793545814500084
crossref_primary_10_1109_TBME_2019_2963815
crossref_primary_10_1109_TMI_2011_2136438
crossref_primary_10_1364_BOE_432687
crossref_primary_10_1088_2057_1976_2_5_055020
crossref_primary_10_1109_MSP_2014_2352672
crossref_primary_10_1117_1_JBO_21_1_016004
crossref_primary_10_1109_TSP_2011_2161983
crossref_primary_10_1142_S1793545816500243
crossref_primary_10_1016_j_cviu_2015_04_002
crossref_primary_10_1364_BOE_6_001648
crossref_primary_10_1063_5_0138347
crossref_primary_10_1109_TBME_2019_2907460
crossref_primary_10_1117_1_JBO_22_4_045009
crossref_primary_10_1109_TBME_2011_2159382
crossref_primary_10_1364_AO_54_007062
crossref_primary_10_1364_BOE_486451
crossref_primary_10_1364_BOE_5_004039
crossref_primary_10_1364_OE_486339
crossref_primary_10_1007_s11307_017_1088_4
crossref_primary_10_1364_OE_517189
crossref_primary_10_1088_0031_9155_59_12_2901
crossref_primary_10_1002_mma_5110
crossref_primary_10_1364_JOSAA_35_000256
crossref_primary_10_1016_j_cmpb_2022_107293
crossref_primary_10_1088_1361_6560_ac5ce7
crossref_primary_10_1117_1_3645086
crossref_primary_10_1364_JOSAA_37_000231
crossref_primary_10_1109_TBME_2015_2510369
crossref_primary_10_1080_09500340_2018_1502825
crossref_primary_10_1016_j_ijleo_2022_169095
crossref_primary_10_1364_AO_51_008216
crossref_primary_10_1364_JOSAA_30_000437
crossref_primary_10_1364_BOE_514041
Cites_doi 10.1364/OE.4.000353
10.1137/1.9780898718324
10.1152/japplphysiol.00959.2007
10.1016/j.copbio.2005.01.002
10.1364/AO.37.005337
10.1364/OL.28.001019
10.1109/CISS.2008.4558489
10.1364/OE.4.000372
10.1364/AO.46.001679
10.1117/1.2114727
10.1364/AO.46.007384
10.1088/0266-5611/15/2/022
10.1364/OE.15.013695
10.1364/OE.17.003042
10.1359/jbmr.070504
10.1364/OE.9.000049
10.1088/0031-9155/49/3/R01
10.1088/0031-9155/45/4/318
10.1364/JOSAA.14.000325
10.1137/070690560
10.1109/42.764902
10.1364/OPEX.12.005402
10.1364/AO.34.008026
10.1109/TMI.2004.825633
10.1364/AO.42.003081
10.1364/AO.46.004896
10.1073/pnas.0804798105
10.1088/0031-9155/53/14/013
10.1137/060657704
10.1364/AO.35.003447
10.1016/j.jcp.2004.07.008
10.1364/AO.43.001053
10.1007/BF01248356
10.1364/OPEX.13.009847
10.1142/9781860949302
10.1016/j.copbio.2007.01.003
10.1364/OE.15.006696
10.1038/nbt1074
10.1073/pnas.040570597
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTOC
UNPAY
DOI 10.1109/TMI.2010.2042814
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 1087
ExternalDocumentID oai:infoscience.epfl.ch:163623
20236875
10_1109_TMI_2010_2042814
5430978
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
AAYOK
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c2714-c1d154ab30ea42f3eecccf212ca52eac6bc98b0f3deff15385d8f791ba9387093
IEDL.DBID UNPAY
ISSN 0278-0062
1558-254X
IngestDate Sun Oct 26 03:41:12 EDT 2025
Thu Oct 02 12:05:20 EDT 2025
Thu Apr 03 06:55:01 EDT 2025
Wed Oct 01 03:55:19 EDT 2025
Thu Apr 24 23:13:01 EDT 2025
Tue Aug 26 17:03:50 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2714-c1d154ab30ea42f3eecccf212ca52eac6bc98b0f3deff15385d8f791ba9387093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=http://infoscience.epfl.ch/record/163623
PMID 20236875
PQID 734030954
PQPubID 23479
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_TMI_2010_2042814
proquest_miscellaneous_734030954
pubmed_primary_20236875
crossref_primary_10_1109_TMI_2010_2042814
unpaywall_primary_10_1109_tmi_2010_2042814
ieee_primary_5430978
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-April
2010-04-00
2010-Apr
20100401
PublicationDateYYYYMMDD 2010-04-01
PublicationDate_xml – month: 04
  year: 2010
  text: 2010-April
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2010
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref34
ref12
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref10
dieudonne (ref37) 1969
ref2
ref1
ref17
ref38
ref16
ref19
ref18
strang (ref39) 2007
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref21
ref43
ref28
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
moon (ref27) 2000
ref40
ishimaru (ref35) 1978
References_xml – ident: ref13
  doi: 10.1364/OE.4.000353
– ident: ref38
  doi: 10.1137/1.9780898718324
– ident: ref5
  doi: 10.1152/japplphysiol.00959.2007
– ident: ref7
  doi: 10.1016/j.copbio.2005.01.002
– ident: ref17
  doi: 10.1364/AO.37.005337
– ident: ref18
  doi: 10.1364/OL.28.001019
– year: 2007
  ident: ref39
  publication-title: Computing in Science and Engineering
– ident: ref40
  doi: 10.1109/CISS.2008.4558489
– ident: ref14
  doi: 10.1364/OE.4.000372
– ident: ref29
  doi: 10.1364/AO.46.001679
– ident: ref42
  doi: 10.1117/1.2114727
– ident: ref24
  doi: 10.1364/AO.46.007384
– ident: ref36
  doi: 10.1088/0266-5611/15/2/022
– ident: ref28
  doi: 10.1364/OE.15.013695
– ident: ref33
  doi: 10.1364/OE.17.003042
– ident: ref6
  doi: 10.1359/jbmr.070504
– ident: ref20
  doi: 10.1364/OE.9.000049
– ident: ref1
  doi: 10.1088/0031-9155/49/3/R01
– ident: ref22
  doi: 10.1088/0031-9155/45/4/318
– year: 1978
  ident: ref35
  publication-title: Wave Propagation and Scattering in Random Media
– ident: ref10
  doi: 10.1364/JOSAA.14.000325
– ident: ref43
  doi: 10.1137/070690560
– ident: ref31
  doi: 10.1109/42.764902
– ident: ref12
  doi: 10.1364/OPEX.12.005402
– ident: ref30
  doi: 10.1364/AO.34.008026
– year: 2000
  ident: ref27
  publication-title: Mathematical Methods and Algorithms for Signal Processing
– ident: ref23
  doi: 10.1109/TMI.2004.825633
– ident: ref11
  doi: 10.1364/AO.42.003081
– ident: ref25
  doi: 10.1364/AO.46.004896
– ident: ref4
  doi: 10.1073/pnas.0804798105
– ident: ref32
  doi: 10.1088/0031-9155/53/14/013
– ident: ref26
  doi: 10.1137/060657704
– ident: ref16
  doi: 10.1364/AO.35.003447
– ident: ref19
  doi: 10.1016/j.jcp.2004.07.008
– year: 1969
  ident: ref37
  publication-title: Foundations of Modern Analysis
– ident: ref34
  doi: 10.1364/AO.43.001053
– ident: ref15
  doi: 10.1007/BF01248356
– ident: ref21
  doi: 10.1364/OPEX.13.009847
– ident: ref41
  doi: 10.1142/9781860949302
– ident: ref3
  doi: 10.1016/j.copbio.2007.01.003
– ident: ref9
  doi: 10.1364/OE.15.006696
– ident: ref2
  doi: 10.1038/nbt1074
– ident: ref8
  doi: 10.1073/pnas.040570597
SSID ssj0014509
Score 1.941221
Snippet Reconstruction algorithms for fluorescence tomography have to address two crucial issues: 1) the ill-posedness of the reconstruction problem, 2) the large...
SourceID unpaywall
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1075
SubjectTerms Algorithms
Biomedical optical imaging
Bones
Fluorescence
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image reconstruction
Imaging, Three-Dimensional - methods
Iterative methods
Microscopy, Fluorescence - methods
Molecular biophysics
Molecular Probe Techniques
Optical imaging
Optical scattering
optical tomography
Pattern Recognition, Automated - methods
Probes
Reproducibility of Results
Sensitivity and Specificity
Tomography
Tomography, Optical - methods
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB21PQA98NFCu3zJBy4gsps4cRIfK9RVQaQHtJV6i2zvRKpIs1W7UdX-ejy2Ey1QIW4-2NFEb2KPMzPvAXwQxKkmLQKSqziywzhSdoOMRIKqSBVyxak5uTrNT86yb-fifAs-j70wiOiKz3BKQ5fLX65MT7_KZiJLqe1gG7aLMve9WmPGIBO-nIMTY2yc8yElGcvZovrqa7g4XRASkuIh0fDcFRdunEZOXuWhSHMXHvfdlbq7VW27cfrMn0E12O2LTn5O-7Wemvs_KB3_98Wew9MQhrIj7zcvYAu7PdjdICfcg0dVSLvvQ33UsWPHNWEfw057n-VpWeXkp5mNe1mgr2bf2Q-nbn8d-jvZRcfmbW8NItoog6wa9HjZYnUZ-LJfwtn8ePHlJArKDJHhRZJFJlna0EvpNEaV8SZF6wimsaegUYLbrTzXRpY6btIlNg3tqWJZNoVMtJKp3SBk-gp2ulWHh8CEhQLLBrMSif1PS6O0SmJtJyqRYzOB2YBQbQJtOalntLW7vsSytvDWBG8d4J3Ax3HFlafs-MfcfUJjnBeAmAAbnKC2nxvlUFSHq_6mLtKMklLCrjzwzjGuHXxqAp9Gb_nLgPXlxW8GvH7YgDfwxJcpUInQW9hZX_f4zkY_a_3euf0vDTH8pw
  priority: 102
  providerName: IEEE
Title An Efficient Numerical Method for General L Regularization in Fluorescence Molecular Tomography
URI https://ieeexplore.ieee.org/document/5430978
https://www.ncbi.nlm.nih.gov/pubmed/20236875
https://www.proquest.com/docview/734030954
http://infoscience.epfl.ch/record/163623
UnpaywallVersion submittedVersion
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-254X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014509
  issn: 0278-0062
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED-2FDb60G3tPlK2ooe8bOBUli0negyjoRtzGCOB7MlIikTLXCekMaUb_d97kuWspWNjb344gew734dO9_sB9LjDVBOoAcEkjfCRRhIdZMRjIweJNEwyN5ycT7LTWfp5zue_zzvcVw2uH92xLfv6rOVGw8QBQ_Vj2Mk4Zt0d2JlNvo6--yMUBxJLPXcoRkdUPE_nbUeSiuPNxXlzhYu5-iBO70UgT6nyp-xyF57W1UpeX8myvBNxxs8a-KNLD1ToLpr86Ncb1dc_H8I4_vNlnsNeSDvJqLGTF_DIVPuweweMcB-e5KHNfgBmVJETjy2BIYlM6qarU5Lc000TzHNJgKsmvS_Fr9VNj3zznPbrMNVJzisyLuvl2oNFaUPyloWXTJcXASX7JczGJ9OPp1HgY4g0G8RppOMFJlxSJdTIlNnEoPq1xdinJWfowDOlxVBRmyyMtc6T8sXQDkSspEjQLYjkFXSqZWXeAOGMMjO0Jh0ah_mnhJZKxlShoOSZsV04bnVU6ABW7jgzysIXLVQU0_xT4bRaBK124f12xaoB6viL7IFT-1aOp4kbZ-kCac2gwJ_MdU5kZZb1ZTFIUteK4rjydWMe27WOfj7Doq8LH7b28mADaIL3NnD4P8JvobNZ1-YdJj8bdeQnFI-C9d8CW7MBGA
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NITH2wMc2Rvn0Ay8g0iZOnNaPE1rVQdMH1El7sxz3Ik1k6TQaTfDX47OdqMCEePODnVx05_M5d_f7AbwThKkmrQYk13Fkh3GkrYOMRIJ6nGrkmlNzcrHIZ-fZ5wtxsQMf-14YRHTFZzikocvlr9ampV9lI5Gl1HZwD-7bN2TCd2v1OYNM-IIOTpixcc67pGQsR8vizFdxcboiJETGQ7ThuSsv3DqPHMHKXbHmPuy1zbX-cavreuv8mT6GopPcl518G7abcmh-_gHq-L-f9gQehUCUnXjLeQo72BzA_hY84QE8KELi_RDUScNOHdqEfQxbtD7PU7PCEVAzG_myAGDN5uyr47e_CR2e7LJh07q1AhFwlEFWdIy8bLm-CojZR3A-PV1-mkWBmyEyfJxkkUlWNvjSZRqjzniVojUFU9lz0GjBrTPPSyMnZVylK6wq8qpiNanGMim1TK2LkOkz2G3WDT4HJqwqcFJhNkHC_yul0aVO4tJO1CLHagCjTkPKBOBy4s-olbvAxFJZ9SpSrwrqHcD7fsW1B-34x9xD0kY_LyhiAKwzAmU3HGVRdIPr9rsapxmlpYRdeeyNo1_b2dQAPvTW8pcAm6vL3wR4cbcAb2Fvtizman62-PISHvqiBSoYegW7m5sWX9tYaFO-cVvgF2uoAAM
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swED66FDb60HXtfqRsQw952cCpLFtO9BhKQzfmMEYC2ZORFImVuU5IY8ZW-r_3JMtZS8fG3vxwAtl3vvukk74PoMcdp5pADwgmaYSPNJKYICMeGzlIpGGSucvJ-SQ7n6Uf53z-e7_DfdWQ-jEd27Kvv7XaaAgcsFQ_gt2MI-ruwO5s8nn01W-hOJJY6rVDsTqi43k6bzuSVJxsLi-aI1zMrQ_i9F4F8pIqf0KXe_Ckrlby5w9ZlncqzvhpQ3905YkK3UGT7_16o_r610Max3--zAHsB9hJRk2cPIMdUx3C3h0ywkN4nIc2-xGYUUXOPLcEliQyqZuuTklyLzdNEOeSQFdNep-K69VNj3zxmvbrcKuTXFRkXNbLtSeL0obkrQovmS4vA0v2c5iNz6an51HQY4g0G8RppOMFAi6pEmpkymxi0P3aYu3TkjNM4JnSYqioTRbGWpdJ-WJoByJWUiSYFkTyAjrVsjKvgHBGmRlakw6N4_xTQkslY6rQUPLM2C6ctD4qdCArd5oZZeEXLVQU0_xD4bxaBK924d12xKoh6viL7ZFz-9aOp4m7ztIF0oZBgT-Z65zIyizrq2KQpK4VxXHkyyY8tmOd_HyGi74uvN_Gy4MJYAjem8Dx_xi_hs5mXZs3CH426m2I-1tatAAX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+numerical+method+for+general+L%28p%29+regularization+in+fluorescence+molecular+tomography&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Baritaux%2C+Jean-Charles&rft.au=Hassler%2C+Kat&rft.au=Unser%2C+Michael&rft.date=2010-04-01&rft.issn=1558-254X&rft.eissn=1558-254X&rft.volume=29&rft.issue=4&rft.spage=1075&rft_id=info:doi/10.1109%2FTMI.2010.2042814&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon