Diffusimetry Renounces Graham’s Law, Achieves Diffusive Convection, Concentration Gradient Induced Diffusion, Heat and Mass Transfer

Absolute diffusion rates of KMnO4 in vertical and flattened diffusimeters show the concentration gradient force as being stronger than the gravitational force. Hot water molecules move downward on self-diffusion against buoyancy. Diffusive convection (DC) in warm water and double-diffusive convectio...

Full description

Saved in:
Bibliographic Details
Published inDiffusion and defect data. Solid state data. Pt. A, Defect and diffusion forum Vol. 407; pp. 173 - 184
Main Authors Alim, Mohammad Abdul, Mahamud, Sultan, Khair, Abul, Bahadur, Newas Mohammad, Dey, Nilay Kumar, Ahmed, Syekat, Harun-Ur-Rashid, Mohammad
Format Journal Article
LanguageEnglish
Published Zurich Trans Tech Publications Ltd 02.03.2021
Subjects
Online AccessGet full text
ISSN1012-0386
1662-9507
1662-9507
DOI10.4028/www.scientific.net/DDF.407.173

Cover

Abstract Absolute diffusion rates of KMnO4 in vertical and flattened diffusimeters show the concentration gradient force as being stronger than the gravitational force. Hot water molecules move downward on self-diffusion against buoyancy. Diffusive convection (DC) in warm water and double-diffusive convection (DDC) in warm, saline water take place inside the diffusimeter with DDC transferring more heat than DC. In the diffusing medium the original reagents change or retain their compositions to give the diffusate molecules to diffuse. In water, the change is mostly hydration. The syngener BaCl2.2H2O separately with congeners 3CdSO4.8H2O, ZnSO4.7H2O, and ZnSO4.H2O presents two distinct pairs of overlapping concentration versus rate curves, first for having very close MWs of BaCl2 and CdSO4 and second for having ZnSO4.H2O as the common congener for both the zinc sulfates. Chlorides of Li, Na, and K diffusing at hindered rates in glucose solution show the least rate for LiCl inevitably on grounds of low mass and high Li+ hydration radius. Diffusion blocking occurs at higher glucose concentration. Diffusion of 0.6M AgNO3-0.6M NH4Cl standardizes this diffusimeter. Mass transfer of HCl, H2SO4, and H2C2O4 show oxalic acid diffusing as hydrate and 88 percentage transfer of sulfuric acid in 5 minutes. The Superdiffusive Anti Graham’s Law, Vd ∝√M , is further consolidated by Ca (NO3)2-M2CO3(M = Na, K, NH4+) and Ca (NO3)2-Na2HPO4 diffusions. Odd and even diffusions are illustrated by AgNO3-NH4Cl and AgNO3-BaCl2 diffusions.
AbstractList Absolute diffusion rates of KMnO4 in vertical and flattened diffusimeters show the concentration gradient force as being stronger than the gravitational force. Hot water molecules move downward on self-diffusion against buoyancy. Diffusive convection (DC) in warm water and double-diffusive convection (DDC) in warm, saline water take place inside the diffusimeter with DDC transferring more heat than DC. In the diffusing medium the original reagents change or retain their compositions to give the diffusate molecules to diffuse. In water, the change is mostly hydration. The syngener BaCl2.2H2O separately with congeners 3CdSO4.8H2O, ZnSO4.7H2O, and ZnSO4.H2O presents two distinct pairs of overlapping concentration versus rate curves, first for having very close MWs of BaCl2 and CdSO4 and second for having ZnSO4.H2O as the common congener for both the zinc sulfates. Chlorides of Li, Na, and K diffusing at hindered rates in glucose solution show the least rate for LiCl inevitably on grounds of low mass and high Li+ hydration radius. Diffusion blocking occurs at higher glucose concentration. Diffusion of 0.6M AgNO3-0.6M NH4Cl standardizes this diffusimeter. Mass transfer of HCl, H2SO4, and H2C2O4 show oxalic acid diffusing as hydrate and 88 percentage transfer of sulfuric acid in 5 minutes. The Superdiffusive Anti Graham’s Law, Vd ∝√M , is further consolidated by Ca (NO3)2-M2CO3(M = Na, K, NH4+) and Ca (NO3)2-Na2HPO4 diffusions. Odd and even diffusions are illustrated by AgNO3-NH4Cl and AgNO3-BaCl2 diffusions.
Absolute diffusion rates of KMnO 4 in vertical and flattened diffusimeters show the concentration gradient force as being stronger than the gravitational force. Hot water molecules move downward on self-diffusion against buoyancy. Diffusive convection (DC) in warm water and double-diffusive convection (DDC) in warm, saline water take place inside the diffusimeter with DDC transferring more heat than DC. In the diffusing medium the original reagents change or retain their compositions to give the diffusate molecules to diffuse. In water, the change is mostly hydration. The syngener BaCl 2 .2H 2 O separately with congeners 3CdSO 4 .8H 2 O, ZnSO 4 .7H 2 O, and ZnSO 4 .H 2 O presents two distinct pairs of overlapping concentration versus rate curves, first for having very close MWs of BaCl 2 and CdSO 4 and second for having ZnSO 4 .H 2 O as the common congener for both the zinc sulfates. Chlorides of Li, Na, and K diffusing at hindered rates in glucose solution show the least rate for LiCl inevitably on grounds of low mass and high Li + hydration radius. Diffusion blocking occurs at higher glucose concentration. Diffusion of 0.6M AgNO 3 -0.6M NH 4 Cl standardizes this diffusimeter. Mass transfer of HCl, H 2 SO 4 , and H 2 C 2 O 4 show oxalic acid diffusing as hydrate and 88 percentage transfer of sulfuric acid in 5 minutes. The Superdiffusive Anti Graham’s Law, V d ∝√ M , is further consolidated by Ca (NO 3 ) 2 -M 2 CO 3 (M = Na, K, NH 4 + ) and Ca (NO 3 ) 2 -Na 2 HPO 4 diffusions. Odd and even diffusions are illustrated by AgNO 3 -NH 4 Cl and AgNO 3 -BaCl 2 diffusions.
Absolute diffusion rates of KMnO4 in vertical and flattened diffusimeters show the concentration gradient force as being stronger than the gravitational force. Hot water molecules move downward on self-diffusion against buoyancy. Diffusive convection (DC) in warm water and double-diffusive convection (DDC) in warm, saline water take place inside the diffusimeter with DDC transferring more heat than DC. In the diffusing medium the original reagents change or retain their compositions to give the diffusate molecules to diffuse. In water, the change is mostly hydration. The syngener BaCl2.2H2O separately with congeners 3CdSO4.8H2O, ZnSO4.7H2O, and ZnSO4.H2O presents two distinct pairs of overlapping concentration versus rate curves, first for having very close MWs of BaCl2 and CdSO4 and second for having ZnSO4.H2O as the common congener for both the zinc sulfates. Chlorides of Li, Na, and K diffusing at hindered rates in glucose solution show the least rate for LiCl inevitably on grounds of low mass and high Li+hydration radius. Diffusion blocking occurs at higher glucose concentration. Diffusion of 0.6M AgNO3-0.6M NH4Cl standardizes this diffusimeter. Mass transfer of HCl, H2SO4, and H2C2O4 show oxalic acid diffusing as hydrate and 88 percentage transfer of sulfuric acid in 5 minutes. The Superdiffusive Anti Graham’s Law,[italics] Vd[/italics]∝√[italics]M[/italics] , is further consolidated by Ca (NO3)2-M2CO3(M = Na, K, NH4+) and Ca (NO3)2-Na2HPO4 diffusions. Odd and even diffusions are illustrated by AgNO3-NH4Cl and AgNO3-BaCl2 diffusions.
Author Dey, Nilay Kumar
Ahmed, Syekat
Khair, Abul
Mahamud, Sultan
Alim, Mohammad Abdul
Harun-Ur-Rashid, Mohammad
Bahadur, Newas Mohammad
Author_xml – givenname: Mohammad Abdul
  surname: Alim
  fullname: Alim, Mohammad Abdul
  email: a0alim@gmail.com
  organization: Bangladesh University of Engineering and Technology : Department of Mathematics
– givenname: Sultan
  surname: Mahamud
  fullname: Mahamud, Sultan
  email: smsm8117@gmail.com
  organization: IUBAT—International University of Business Agriculture and Technology : Chemistry
– givenname: Abul
  surname: Khair
  fullname: Khair, Abul
  email: profabulkhair@iubat.edu
  organization: IUBAT—International University of Business Agriculture and Technology : Chemistry
– givenname: Newas Mohammad
  surname: Bahadur
  fullname: Bahadur, Newas Mohammad
  email: nmbahadur@yahoo.com
  organization: Noakhali Science and Technology University : Department of Applied Chemistry and Chemical Engineering
– givenname: Nilay Kumar
  surname: Dey
  fullname: Dey, Nilay Kumar
  email: drnkdey@iubat.edu
  organization: IUBAT—International University of Business Agriculture and Technology : Chemistry
– givenname: Syekat
  surname: Ahmed
  fullname: Ahmed, Syekat
  email: syekat.ahmed@iubat.edu
  organization: IUBAT—International University of Business Agriculture and Technology : Chemistry
– givenname: Mohammad
  surname: Harun-Ur-Rashid
  fullname: Harun-Ur-Rashid, Mohammad
  email: mrashid@iubat.edu
  organization: IUBAT—International University of Business Agriculture and Technology : Chemistry
BookMark eNqNkc1KJDEUhcOgMP7MOwQGZmW1uVWpStVmULr9gxZBdB1SqRs6Yqc0SXXjzpXv4Ov5JKZsB2FWrnLDOffLvTm7ZMv1Dgn5A2zCWV4frtfrSdAWXbTG6onDeDibnSZNTEAUP8gOVFWeNSUTW6lmkGesqKufZDeEO8YKqIHvkJeZNWYIdonRP9FrdP3gNAZ65tVCLd-eXwOdq_UBPdYLi6skfPpXSKe9W6GOtncHY63TIF6N17G5G-eiF64bNHb_mkbnOapIlevopQqB3njlgkG_T7aNug_46_PcI7enJzfT82x-dXYxPZ5nOhdQZG0noOOlKgWUeS4Ub0xR6rZVChSYtsGyE5UBrZnWdY0MOVQdhxYqaEqummKP_N5wH3z_OGCI8q4fvEtPyoI1UPIiZzy5ZhuX9n0IHo3UNn6slja09xKYHBOQKQH5lYBMCciUQNKETAkkzN__MA_eLpV_-j7gaAOI4zdF1Iuvcb-JeAfuSbJ_
CitedBy_id crossref_primary_10_21926_rpm_2403024
crossref_primary_10_3390_mi14091786
crossref_primary_10_1021_acsomega_2c03721
Cites_doi 10.2337/db14-0807
10.1016/j.cam.2009.10.027
10.1002/jctb.5266
10.3329/jbas.v35i2.9426
10.1086/520498
10.1016/j.conbuildmat.2013.04.031
10.1126/science.1179047
10.1103/physreve.56.6557
10.1038/emi.2013.5
10.1016/s0370-1573(00)00070-3
10.1103/physreve.77.031911
10.1029/GM094
10.1016/B978-0-08-030712-1.50004-1
10.1016/s0079-6611(03)00026-0
10.1098/rstl.1861.0011
10.1017/s0022112081001614
10.6028/NBS.MONO.84
ContentType Journal Article
Copyright 2021 Trans Tech Publications Ltd
Copyright Trans Tech Publications Ltd. 2021
Copyright_xml – notice: 2021 Trans Tech Publications Ltd
– notice: Copyright Trans Tech Publications Ltd. 2021
DBID AAYXX
CITATION
DOI 10.4028/www.scientific.net/DDF.407.173
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1662-9507
EndPage 184
ExternalDocumentID 10_4028_www_scientific_net_DDF_407_173
GroupedDBID 4.4
8FE
8FG
AAIYS
ABJNI
ACGFS
ACIWK
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BENPR
BGLVJ
D1I
DB1
DKFMR
EBS
KB.
P2P
RNS
RTP
AAYXX
CITATION
ID FETCH-LOGICAL-c2713-bd71d45a5715227a49f35cbbaa1a1fb9e5d76f1cc0cc88e0e416d41b161954a93
ISSN 1012-0386
1662-9507
IngestDate Mon Jun 30 09:39:20 EDT 2025
Tue Jul 01 01:29:50 EDT 2025
Thu Apr 24 23:03:25 EDT 2025
Fri Oct 03 21:33:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Diffusimetry
Anti Graham’s Law
Self Diffusion
Diffusive Convection
Levy Motion
Language English
License https://www.scientific.net/PolicyAndEthics/PublishingPolicies
https://www.scientific.net/license/TDM_Licenser.pdf
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2713-bd71d45a5715227a49f35cbbaa1a1fb9e5d76f1cc0cc88e0e416d41b161954a93
Notes Special topic volume with invited peer-reviewed papers only
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1883-4620
PQID 3091543204
PQPubID 2040936
PageCount 12
ParticipantIDs proquest_journals_3091543204
crossref_citationtrail_10_4028_www_scientific_net_DDF_407_173
crossref_primary_10_4028_www_scientific_net_DDF_407_173
transtech_journals_10_4028_www_scientific_net_DDF_407_173
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210302
PublicationDateYYYYMMDD 2021-03-02
PublicationDate_xml – month: 03
  year: 2021
  text: 20210302
  day: 02
PublicationDecade 2020
PublicationPlace Zurich
PublicationPlace_xml – name: Zurich
PublicationTitle Diffusion and defect data. Solid state data. Pt. A, Defect and diffusion forum
PublicationYear 2021
Publisher Trans Tech Publications Ltd
Publisher_xml – name: Trans Tech Publications Ltd
References Ling (4232597); 46
4232588
Kondo (4232578); 329
4232584
4232585
4232581
4232582
4232583
Kelley (4232587); 56
Baeumer (4232573); 233
Méndez (4232580) 1997; 56
4232577
4232579
4232595
4232574
4232596
4232575
4232576
4232591
4232593
4232572
4232594
Metzler (4232586); 339
4232590
Huppert (4232589) 2006; 106
Kuhre (4232592) 2014; 64
References_xml – ident: 4232579
– volume: 64
  start-page: 370
  issn: 1939-327X
  issue: 2
  year: 2014
  ident: 4232592
  article-title: Molecular Mechanisms of Glucose-Stimulated GLP-1 Secretion From Perfused Rat Small Intestine
  publication-title: Diabetes
  doi: 10.2337/db14-0807
– ident: 4232575
– volume: 233
  start-page: 2438
  issue: 10
  ident: 4232573
  article-title: Tempered stable Lévy motion and transient super-diffusion
  publication-title: Journal of Computational and Applied Mathematics
  doi: 10.1016/j.cam.2009.10.027
– ident: 4232595
– ident: 4232574
– ident: 4232591
  doi: 10.1002/jctb.5266
– ident: 4232593
  doi: 10.3329/jbas.v35i2.9426
– ident: 4232577
  doi: 10.1086/520498
– ident: 4232582
– volume: 46
  start-page: 55
  ident: 4232597
  article-title: Use of phase change materials for thermal energy storage in concrete: An overview
  publication-title: Construction and Building Materials
  doi: 10.1016/j.conbuildmat.2013.04.031
– volume: 329
  start-page: 1616
  issn: 1095-9203
  issue: 5999
  ident: 4232578
  article-title: Reaction-Diffusion Model as a Framework for Understanding Biological Pattern Formation
  publication-title: Science
  doi: 10.1126/science.1179047
– volume: 56
  start-page: 6557
  issn: 1095-3787
  issue: 6
  year: 1997
  ident: 4232580
  article-title: Hyperbolic reaction-diffusion equations for a forest fire model
  publication-title: Physical Review E
  doi: 10.1103/physreve.56.6557
– ident: 4232585
  doi: 10.1038/emi.2013.5
– volume: 339
  start-page: 1
  issue: 1
  ident: 4232586
  article-title: The random walk's guide to anomalous diffusion: a fractional dynamics approach
  publication-title: Physics Reports
  doi: 10.1016/s0370-1573(00)00070-3
– ident: 4232584
  doi: 10.1103/physreve.77.031911
– ident: 4232588
  doi: 10.1029/GM094
– ident: 4232590
  doi: 10.1016/B978-0-08-030712-1.50004-1
– volume: 56
  start-page: 461
  issue: 3-4
  ident: 4232587
  article-title: The diffusive regime of double-diffusive convection
  publication-title: Progress in Oceanography
  doi: 10.1016/s0079-6611(03)00026-0
– ident: 4232576
– ident: 4232596
– ident: 4232572
  doi: 10.1098/rstl.1861.0011
– volume: 106
  start-page: 299
  issn: 1469-7645
  issue: -1
  year: 2006
  ident: 4232589
  article-title: Double-diffusive convection
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/s0022112081001614
– ident: 4232581
– ident: 4232583
– ident: 4232594
  doi: 10.6028/NBS.MONO.84
SSID ssj0031814
Score 2.2803285
Snippet Absolute diffusion rates of KMnO4 in vertical and flattened diffusimeters show the concentration gradient force as being stronger than the gravitational force....
Absolute diffusion rates of KMnO 4 in vertical and flattened diffusimeters show the concentration gradient force as being stronger than the gravitational...
SourceID proquest
crossref
transtech
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 173
SubjectTerms Ammonium chloride
Barium chloride
Calcium
Concentration gradient
Congeners
Convection
Diffusion
Diffusion barriers
Diffusion rate
Glucose
Glucose diffusion
Hydration
Mass transfer
Oxalic acid
Potassium permanganate
Reagents
Saline water
Self diffusion
Silver nitrate
Sodium
Sodium hydrogen phosphate
Sulfuric acid
Vertical forces
Warm water
Water chemistry
Title Diffusimetry Renounces Graham’s Law, Achieves Diffusive Convection, Concentration Gradient Induced Diffusion, Heat and Mass Transfer
URI https://www.scientific.net/DDF.407.173
https://www.proquest.com/docview/3091543204
Volume 407
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1662-9507
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0031814
  issn: 1012-0386
  databaseCode: 8FG
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Pb9MwFLe2IRgXBIOJjYF8QAipTdckTtMcOJSVUoGEkNik3SLHf7SiLp2WZAdOnPgOfD0-Ce_Zzp8ChwKXqLX9nuy852c_5-f3CHmueKyZihA2GI08pqXvZbBweIngXCexBgtoALIfRvMz9u48Ot_aftlBLVVlNhBf_niv5F-kCmUgV7wl-xeSbZhCAfwG-cITJAzPjWQ8XWhdFYtLVV7jVjqHmYsAK3f72cEYkgJPqo0NEBcLhVFmHd0NpqzLbwwYy357xzuMuQuki2wQDlb2ML0HwgQcmW07x6MFi9IAW2mWPO2Qvp_XeufgzlKZMMmISB30Pq2WC9kzl5lcycdy0JtYA2jaGZKGQRsygpss2vYcdwWjvOSyN8lkB96IY6_saXe1LFvlf3_BFzZzd9a2fg2tZWWKwdzzomHaPQ0JLBys9Z3NaM1XibVjzw5ECo38EOEoYR2C25aNRoGXRDYDb70yMPfX2nbf5lxx2wTfZrb7dQUCdxxvVSA62N5oRcAXnjJB4XQ6g_p40DBai_MN3hgSp0CatqQpkKZACHVxCoTb5FYA6xcmKRnP3tZ7DjDMJop9M7I75IXrzPHvXTnudGR9O9b6WLslvkmMI9zZbp3eJ_ecn0QnVukfkC2V75Hdkzo94R65bbDLonhIvnWnAW2mAbXT4MfX7wWFCdCntfrTRv1pq_59uqb8tFZ-6pSfNtrcp6j6FBSUourTWvUfkbPZm9OTuefSi3giiP3Qy2TsSxbxKIY9bBBzlugwElnGuc99nSUqkvFI-0IMhRiP1VCB7yKZn4GPlESMJ-E-2clXuXpM6FCyINZc-vDqmQr0mI25ZCFLQhGEwPmAvKrfcipc7H1MAbNMN5P6AYkb-isbhWZjyqNaqKmzXEUagpMQsTAYQseSRtBt_WasD_-D9gm5287eI7JTXlfqKezuy-yZUeyf9wkFJw
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diffusimetry+Renounces+Graham%E2%80%99s+Law%2C+Achieves+Diffusive+Convection%2C+Concentration+Gradient+Induced+Diffusion%2C+Heat+and+Mass+Transfer&rft.jtitle=Diffusion+and+defect+data.+Solid+state+data.+Pt.+A%2C+Defect+and+diffusion+forum&rft.au=Alim%2C+Mohammad+Abdul&rft.au=Mahamud%2C+Sultan&rft.au=Khair%2C+Abul&rft.au=Bahadur%2C+Newas+Mohammad&rft.date=2021-03-02&rft.pub=Trans+Tech+Publications+Ltd&rft.issn=1012-0386&rft.eissn=1662-9507&rft.volume=407&rft.spage=173&rft.epage=184&rft_id=info:doi/10.4028%2Fwww.scientific.net%2FDDF.407.173&rft.externalDocID=10_4028_www_scientific_net_DDF_407_173
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fwww.scientific.net%2FImage%2FTitleCover%2F4524%3Fwidth%3D600