Algorithmic study on liar’s vertex-edge domination problem
Let G = ( V , E ) be a graph. For an edge e = x y ∈ E , the closed neighbourhood of e , denoted by N G [ e ] or N G [ x y ] , is the set N G [ x ] ∪ N G [ y ] . A vertex set L ⊆ V is liar’s vertex-edge dominating set of a graph G = ( V , E ) if for every e i ∈ E , | N G [ e i ] ∩ L | ≥ 2 and for eve...
        Saved in:
      
    
          | Published in | Journal of combinatorial optimization Vol. 48; no. 3; p. 25 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          Springer US
    
        01.10.2024
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1382-6905 1573-2886  | 
| DOI | 10.1007/s10878-024-01208-9 | 
Cover
| Abstract | Let
G
=
(
V
,
E
)
be a graph. For an edge
e
=
x
y
∈
E
, the closed neighbourhood of
e
, denoted by
N
G
[
e
]
or
N
G
[
x
y
]
, is the set
N
G
[
x
]
∪
N
G
[
y
]
. A vertex set
L
⊆
V
is liar’s vertex-edge dominating set of a graph
G
=
(
V
,
E
)
if for every
e
i
∈
E
,
|
N
G
[
e
i
]
∩
L
|
≥
2
and for every pair of distinct edges
e
i
and
e
j
,
|
(
N
G
[
e
i
]
∪
N
G
[
e
j
]
)
∩
L
|
≥
3
. This paper introduces the notion of liar’s vertex-edge domination which arises naturally from some applications in communication networks. Given a graph
G
, the
Minimum Liar’s Vertex-Edge Domination Problem
(
MinLVEDP
) asks to find a liar’s vertex-edge dominating set of
G
of minimum cardinality. In this paper, we study this problem from an algorithmic point of view. We show that
MinLVEDP
can be solved in linear time for trees, whereas the decision version of this problem is NP-complete for general graphs, chordal graphs, and bipartite graphs. We further study approximation algorithms for this problem. We propose two approximation algorithms for
MinLVEDP
in general graphs and
p
-claw free graphs. On the negative side, we show that the
MinLVEDP
cannot be approximated within
1
2
(
1
8
-
ϵ
)
ln
|
V
|
for any
ϵ
>
0
, unless
N
P
⊆
D
T
I
M
E
(
|
V
|
O
(
log
(
log
|
V
|
)
)
. Finally, we prove that the
MinLVEDP
is APX-complete for bounded degree graphs and
p
-claw-free graphs for
p
≥
6
. | 
    
|---|---|
| AbstractList | Let G=(V,E) be a graph. For an edge e=xy∈E, the closed neighbourhood of e, denoted by NG[e] or NG[xy], is the set NG[x]∪NG[y]. A vertex set L⊆V is liar’s vertex-edge dominating set of a graph G=(V,E) if for every ei∈E, |NG[ei]∩L|≥2 and for every pair of distinct edges ei and ej, |(NG[ei]∪NG[ej])∩L|≥3. This paper introduces the notion of liar’s vertex-edge domination which arises naturally from some applications in communication networks. Given a graph G, the Minimum Liar’s Vertex-Edge Domination Problem (MinLVEDP) asks to find a liar’s vertex-edge dominating set of G of minimum cardinality. In this paper, we study this problem from an algorithmic point of view. We show that MinLVEDP can be solved in linear time for trees, whereas the decision version of this problem is NP-complete for general graphs, chordal graphs, and bipartite graphs. We further study approximation algorithms for this problem. We propose two approximation algorithms for MinLVEDP in general graphs and p-claw free graphs. On the negative side, we show that the MinLVEDP cannot be approximated within 12(18-ϵ)ln|V| for any ϵ>0, unless NP⊆DTIME(|V|O(log(log|V|)). Finally, we prove that the MinLVEDP is APX-complete for bounded degree graphs and p-claw-free graphs for p≥6. Let G = ( V , E ) be a graph. For an edge e = x y ∈ E , the closed neighbourhood of e , denoted by N G [ e ] or N G [ x y ] , is the set N G [ x ] ∪ N G [ y ] . A vertex set L ⊆ V is liar’s vertex-edge dominating set of a graph G = ( V , E ) if for every e i ∈ E , | N G [ e i ] ∩ L | ≥ 2 and for every pair of distinct edges e i and e j , | ( N G [ e i ] ∪ N G [ e j ] ) ∩ L | ≥ 3 . This paper introduces the notion of liar’s vertex-edge domination which arises naturally from some applications in communication networks. Given a graph G , the Minimum Liar’s Vertex-Edge Domination Problem ( MinLVEDP ) asks to find a liar’s vertex-edge dominating set of G of minimum cardinality. In this paper, we study this problem from an algorithmic point of view. We show that MinLVEDP can be solved in linear time for trees, whereas the decision version of this problem is NP-complete for general graphs, chordal graphs, and bipartite graphs. We further study approximation algorithms for this problem. We propose two approximation algorithms for MinLVEDP in general graphs and p -claw free graphs. On the negative side, we show that the MinLVEDP cannot be approximated within 1 2 ( 1 8 - ϵ ) ln | V | for any ϵ > 0 , unless N P ⊆ D T I M E ( | V | O ( log ( log | V | ) ) . Finally, we prove that the MinLVEDP is APX-complete for bounded degree graphs and p -claw-free graphs for p ≥ 6 .  | 
    
| ArticleNumber | 25 | 
    
| Author | Paul, Subhabrata Bhattacharya, Debojyoti  | 
    
| Author_xml | – sequence: 1 givenname: Debojyoti surname: Bhattacharya fullname: Bhattacharya, Debojyoti organization: Indian Institute of Technology Patna – sequence: 2 givenname: Subhabrata surname: Paul fullname: Paul, Subhabrata email: subhabrata@iitp.ac.in organization: Indian Institute of Technology Patna  | 
    
| BookMark | eNp9kMtKAzEUhoNUsK2-gKsB19GTy0wScFOKNyi40XVIM5lxysykJlOxO1_D1_NJTB3Bnavzw_kv8M3QpPe9Q-icwCUBEFeRgBQSA-UYCAWJ1RGaklwwTKUsJkkzSXGhID9Bsxg3AJA0n6LrRVv70AwvXWOzOOzKfeb7rG1M-Pr4jNmbC4N7x66sXVb6runN0KT_Nvh167pTdFyZNrqz3ztHz7c3T8t7vHq8e1guVthSAQOuuODMCcIMYcpa4JKr0pYSuCO0EFxKlldG5eXaKiiNkoXJlWMCCkIZc4rN0cXYm3Zfdy4OeuN3oU-TmtGcF0pxJZOLji4bfIzBVXobms6EvSagD5T0SEknSvqHkj5UszEUk7mvXfir_if1DUpca8c | 
    
| Cites_doi | 10.1016/j.dam.2021.06.002 10.1007/s00010-015-0354-2 10.7151/dmgt.2411 10.1007/s00010-018-0609-9 10.1007/s10878-022-00982-8 10.1142/S1793830917500458 10.1007/s12190-020-01433-5 10.1007/s10878-021-00832-z 10.1080/00207160.2017.1343469 10.1016/j.dam.2012.12.011 10.1016/j.tcs.2020.08.029 10.1016/j.dam.2016.06.008 10.1016/j.tcs.2015.01.041 10.1016/j.disc.2008.07.019 10.1007/978-3-642-28926-2_8  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024.  | 
    
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024.  | 
    
| DBID | AAYXX CITATION 7XB 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ L6V M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U  | 
    
| DOI | 10.1007/s10878-024-01208-9 | 
    
| DatabaseName | CrossRef ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Engineering Collection Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic  | 
    
| DatabaseTitle | CrossRef ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | ProQuest Central Student | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Mathematics  | 
    
| EISSN | 1573-2886 | 
    
| ExternalDocumentID | 10_1007_s10878_024_01208_9 | 
    
| GrantInformation_xml | – fundername: CSIR-HRDG grantid: 25(0313)/20/EMR-II  | 
    
| GroupedDBID | -5D -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 29K 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BDATZ BGNMA BSONS CAG COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P9R PF0 PT4 PT5 QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7X Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 7XB 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ L6V M2P M7S P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U  | 
    
| ID | FETCH-LOGICAL-c270t-f4743e713a139cc04849dcd804e126748835fa95dbc90da986a59e37061233e93 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 1382-6905 | 
    
| IngestDate | Mon Oct 06 16:35:55 EDT 2025 Wed Oct 01 03:52:54 EDT 2025 Fri Feb 21 02:36:52 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Keywords | 05C85 NP-completeness Approximation algorithms Liar’s vertex-edge dominating set 05C69 Chordal graphs Bipartite graphs 05C05  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c270t-f4743e713a139cc04849dcd804e126748835fa95dbc90da986a59e37061233e93 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| PQID | 3254699498 | 
    
| PQPubID | 2043856 | 
    
| ParticipantIDs | proquest_journals_3254699498 crossref_primary_10_1007_s10878_024_01208_9 springer_journals_10_1007_s10878_024_01208_9  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20241000 2024-10-00 20241001  | 
    
| PublicationDateYYYYMMDD | 2024-10-01 | 
    
| PublicationDate_xml | – month: 10 year: 2024 text: 20241000  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York – name: Dordrecht  | 
    
| PublicationTitle | Journal of combinatorial optimization | 
    
| PublicationTitleAbbrev | J Comb Optim | 
    
| PublicationYear | 2024 | 
    
| Publisher | Springer US Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer US – name: Springer Nature B.V  | 
    
| References | Naresh Kumar, Pradhan, Venkatakrishnan (CR13) 2021; 66 Paul, Ranjan (CR17) 2022; 44 Krishnakumari, Chellali, Venkatakrishnan (CR10) 2017; 9 CR6 Slater (CR20) 2009; 54 CR5 Żyliński (CR21) 2019; 93 Bishnu, Ghosh, Paul (CR2) 2017; 231 Boutrig, Chellali, Haynes, Hedetniemi (CR4) 2016; 90 CR18 Paul, Pradhan, Verma (CR16) 2021; 43 Panda, Paul, Pradhan (CR15) 2015; 573 Jena, Das (CR9) 2022; 319 Li, Wang (CR12) 2023; 45 Roden, Slater (CR19) 2009; 309 CR11 Boutrig, Chellali (CR3) 2018; 95 Cormen, Leiserson, Rivest, Stein (CR7) 2001 Ahangar, Chellali, Sheikholeslami, Soroudi, Volkmann (CR1) 2021; 90 Jallu, Jena, Das (CR8) 2020; 845 Panda, Paul (CR14) 2013; 161 RK Jallu (1208_CR8) 2020; 845 TH Cormen (1208_CR7) 2001 A Bishnu (1208_CR2) 2017; 231 B Krishnakumari (1208_CR10) 2017; 9 1208_CR18 ML Roden (1208_CR19) 2009; 309 R Boutrig (1208_CR4) 2016; 90 S Paul (1208_CR16) 2021; 43 S Jena (1208_CR9) 2022; 319 P Żyliński (1208_CR21) 2019; 93 1208_CR6 1208_CR5 1208_CR11 BS Panda (1208_CR15) 2015; 573 B Panda (1208_CR14) 2013; 161 PJ Slater (1208_CR20) 2009; 54 R Boutrig (1208_CR3) 2018; 95 HA Ahangar (1208_CR1) 2021; 90 H Naresh Kumar (1208_CR13) 2021; 66 P Li (1208_CR12) 2023; 45 S Paul (1208_CR17) 2022; 44  | 
    
| References_xml | – volume: 319 start-page: 351 year: 2022 end-page: 361 ident: CR9 article-title: Vertex-edge domination in unit disk graphs publication-title: Discret Appl Math doi: 10.1016/j.dam.2021.06.002 – ident: CR18 – volume: 90 start-page: 355 year: 2016 end-page: 366 ident: CR4 article-title: Vertex-edge domination in graphs publication-title: Aequationes math doi: 10.1007/s00010-015-0354-2 – volume: 43 start-page: 947 issue: 4 year: 2021 end-page: 963 ident: CR16 article-title: Vertex-edge domination in interval and bipartite permutation graphs publication-title: Discuss Math Gr Theory doi: 10.7151/dmgt.2411 – volume: 93 start-page: 735 issue: 4 year: 2019 end-page: 742 ident: CR21 article-title: Vertex-edge domination in graphs publication-title: Aequationes Math doi: 10.1007/s00010-018-0609-9 – volume: 45 start-page: 45 issue: 1 year: 2023 ident: CR12 article-title: Polynomial time algorithm for k-vertex-edge dominating problem in interval graphs publication-title: J Comb Optim doi: 10.1007/s10878-022-00982-8 – volume: 54 start-page: 70 issue: 2 year: 2009 end-page: 74 ident: CR20 article-title: Liar’s domination publication-title: Netw Int J – volume: 9 start-page: 1750045 issue: 04 year: 2017 ident: CR10 article-title: Double vertex-edge domination publication-title: Discret Math Algorithms and Appl doi: 10.1142/S1793830917500458 – volume: 66 start-page: 245 issue: 1 year: 2021 end-page: 262 ident: CR13 article-title: Double vertex-edge domination in graphs: complexity and algorithms publication-title: J Appl Math Comput doi: 10.1007/s12190-020-01433-5 – ident: CR11 – year: 2001 ident: CR7 publication-title: Introduction to algorithms – volume: 90 start-page: 127 issue: 2 year: 2021 end-page: 143 ident: CR1 article-title: Total vertex-edge domination in trees publication-title: Acta Math Univ Comenianae – ident: CR6 – ident: CR5 – volume: 44 start-page: 303 issue: 1 year: 2022 end-page: 330 ident: CR17 article-title: Results on vertex-edge and independent vertex-edge domination publication-title: J Comb Optim doi: 10.1007/s10878-021-00832-z – volume: 95 start-page: 1820 issue: 9 year: 2018 end-page: 1828 ident: CR3 article-title: Total vertex-edge domination publication-title: Int J Comput Math doi: 10.1080/00207160.2017.1343469 – volume: 161 start-page: 1085 issue: 7 year: 2013 end-page: 1092 ident: CR14 article-title: Liar’s domination in graphs: complexity and algorithm publication-title: Discret Appl Math doi: 10.1016/j.dam.2012.12.011 – volume: 845 start-page: 38 year: 2020 end-page: 49 ident: CR8 article-title: Liar’s domination in unit disk graphs publication-title: Theor Comput Sci doi: 10.1016/j.tcs.2020.08.029 – volume: 231 start-page: 67 year: 2017 end-page: 77 ident: CR2 article-title: Linear kernels for k-tuple and liar’s domination in bounded genus graphs. Algorithmic graph theory on the adriatic coast publication-title: Discret Appl Math doi: 10.1016/j.dam.2016.06.008 – volume: 573 start-page: 26 year: 2015 end-page: 42 ident: CR15 article-title: Hardness results, approximation and exact algorithms for liar’s domination problem in graphs publication-title: Theor Comput Sci doi: 10.1016/j.tcs.2015.01.041 – volume: 309 start-page: 5884 issue: 19 year: 2009 end-page: 5890 ident: CR19 article-title: Liar’s domination in graphs publication-title: Discret Math doi: 10.1016/j.disc.2008.07.019 – volume: 319 start-page: 351 year: 2022 ident: 1208_CR9 publication-title: Discret Appl Math doi: 10.1016/j.dam.2021.06.002 – ident: 1208_CR6 doi: 10.1007/978-3-642-28926-2_8 – volume: 845 start-page: 38 year: 2020 ident: 1208_CR8 publication-title: Theor Comput Sci doi: 10.1016/j.tcs.2020.08.029 – volume: 93 start-page: 735 issue: 4 year: 2019 ident: 1208_CR21 publication-title: Aequationes Math doi: 10.1007/s00010-018-0609-9 – ident: 1208_CR11 – volume: 9 start-page: 1750045 issue: 04 year: 2017 ident: 1208_CR10 publication-title: Discret Math Algorithms and Appl doi: 10.1142/S1793830917500458 – volume: 309 start-page: 5884 issue: 19 year: 2009 ident: 1208_CR19 publication-title: Discret Math doi: 10.1016/j.disc.2008.07.019 – volume: 90 start-page: 127 issue: 2 year: 2021 ident: 1208_CR1 publication-title: Acta Math Univ Comenianae – volume: 231 start-page: 67 year: 2017 ident: 1208_CR2 publication-title: Discret Appl Math doi: 10.1016/j.dam.2016.06.008 – volume: 90 start-page: 355 year: 2016 ident: 1208_CR4 publication-title: Aequationes math doi: 10.1007/s00010-015-0354-2 – volume: 44 start-page: 303 issue: 1 year: 2022 ident: 1208_CR17 publication-title: J Comb Optim doi: 10.1007/s10878-021-00832-z – ident: 1208_CR18 – volume: 95 start-page: 1820 issue: 9 year: 2018 ident: 1208_CR3 publication-title: Int J Comput Math doi: 10.1080/00207160.2017.1343469 – volume: 161 start-page: 1085 issue: 7 year: 2013 ident: 1208_CR14 publication-title: Discret Appl Math doi: 10.1016/j.dam.2012.12.011 – volume-title: Introduction to algorithms year: 2001 ident: 1208_CR7 – volume: 45 start-page: 45 issue: 1 year: 2023 ident: 1208_CR12 publication-title: J Comb Optim doi: 10.1007/s10878-022-00982-8 – volume: 573 start-page: 26 year: 2015 ident: 1208_CR15 publication-title: Theor Comput Sci doi: 10.1016/j.tcs.2015.01.041 – volume: 43 start-page: 947 issue: 4 year: 2021 ident: 1208_CR16 publication-title: Discuss Math Gr Theory doi: 10.7151/dmgt.2411 – ident: 1208_CR5 – volume: 54 start-page: 70 issue: 2 year: 2009 ident: 1208_CR20 publication-title: Netw Int J – volume: 66 start-page: 245 issue: 1 year: 2021 ident: 1208_CR13 publication-title: J Appl Math Comput doi: 10.1007/s12190-020-01433-5  | 
    
| SSID | ssj0009054 | 
    
| Score | 2.3502026 | 
    
| Snippet | Let
G
=
(
V
,
E
)
be a graph. For an edge
e
=
x
y
∈
E
, the closed neighbourhood of
e
, denoted by
N
G
[
e
]
or
N
G
[
x
y
]
, is the set
N
G
[
x
]
∪
N
G
[
y
]... Let G=(V,E) be a graph. For an edge e=xy∈E, the closed neighbourhood of e, denoted by NG[e] or NG[xy], is the set NG[x]∪NG[y]. A vertex set L⊆V is liar’s...  | 
    
| SourceID | proquest crossref springer  | 
    
| SourceType | Aggregation Database Index Database Publisher  | 
    
| StartPage | 25 | 
    
| SubjectTerms | Algorithms Approximation Combinatorics Communication Communication networks Communications networks Convex and Discrete Geometry Graphs Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Neighborhoods Operations Research/Decision Theory Optimization Theory of Computation Trees (mathematics) Vertex sets  | 
    
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgLDAgPkWgIA9sYCn1R2JLLBWiqpDKRKVuUWxfoFJJUFMkRv4Gf49fgp0mpCAYGKNEHt75cu_su3cInRupMq4lJ3EmLOEGJNGpAAKhYSG1MoyMPxoY3UXDMb-diEndFFY21e7NlWT1p15pdpNeDZb6qgkaOjddRxvCy3m5XTym_VZqNxTLUbaOO7rcT9StMr-v8T0ctRzzx7VoFW0GO2i7pom4v7TrLlqDfA9trYgHuqfRl-JquY-u-rOHwiX6j09TgyvNWFzkeDZN5x9v7yX2U5fhlfjDM2wLX_7iDYLrcTIHaDy4ub8eknoyAjE0Dhck4y7wg8svU0fgjHFeyJU1DlkOPerHhzhelaVKWG1UaFMlo1QoYHEltsJAsUPUyYscjhCmFnrKxjpSGjhEkQQWMc1cHpVpkYEI0EUDUPK8FMBIWqljD2fi4EwqOBMVoG6DYVI7Q5kwr7mvFFcyQJcNru3rv1c7_t_nJ2iTetNWpXZd1FnMX-DUUYaFPqt2yCcld7dW priority: 102 providerName: Springer Nature  | 
    
| Title | Algorithmic study on liar’s vertex-edge domination problem | 
    
| URI | https://link.springer.com/article/10.1007/s10878-024-01208-9 https://www.proquest.com/docview/3254699498  | 
    
| Volume | 48 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-2886 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009054 issn: 1382-6905 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-2886 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009054 issn: 1382-6905 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-2886 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009054 issn: 1382-6905 databaseCode: U2A dateStart: 19970301 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1dS8MwFL3s40UfxE-cztEH3zTYpUmXgCJV9oGyIeJgPpU2SXUw17lV8NG_4d_zl5h0rVVBH9tCoOcmNyfJzTkAh4LxiISMoFZEJSJCMRQGVCFlC8fGktmuMFsD_YHbG5KrER2VYJDfhTFllXlOTBO1jIXZIz9xjHA754Sz89kzMq5R5nQ1t9AIMmsFeZZKjJWhio0yVgWqF-3BzW0hw2vTpc2t5pV6XUizazTZZTpm1GaxqcrAtk4DP6eqgn_-OjJNZ6LOOqxlFNLyljHfgJKabsLqN2FB_dT_UmNdbMGpN3nQv5I8Po2FlerJWvHUmoyD-cfb-8IyjszqFZmNNUvGpjTGBMvKrGa2Ydhp3132UOaagARu2QmKiCYFSq89A03uhNAjlHApNOpENbGxFtGcKwo4laHgtgw4cwPKldNKhVgcxZ0dqEzjqdoFC0vV5LIVujxURLkuU47rhI5eY0UhjRStwVEOkD9bimP4hQyygdPXcPopnD6vQT3H0M8GysIvwlqD4xzX4vPfre3939o-rGATyrTsrg6VZP6iDjR9SMIGlFmn24Cq172_bjeyHqLfDrH3CYtdxG0 | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwEB4hONAeEKWgblmKD_TUWgTHzsYSCPGr5WdXVQUSt5DYE7oS7MLuIuDGa_AyfZg-CeOsQ6AS3DhGkazo82R-7JnvA1gysc5lFkveyJXl0mDMs1Qhx8CEgbBxEBl3NNBqR81juX-iTsbgbzkL49oqS59YOGrbM-6MfDl0xO1aSx2vX15xpxrlbldLCY3USyvYtYJizA92HODdDZVwg7W9bdrv70Ls7hxtNblXGeBGNIIhzyUFUaRaLaVkyBiyaKmtoa-UuCKcFAflKHmqlc2MDmyq4yhVGsNGQVwSoiNjohAwIUOpqfib2Nxp__pd0f4GaiSrS3ks1aHKj-344b3YsdsK1wUiAnI7L0Njle_-d0VbRL7daZjyKSvbGNnYJxjD7gx8fEZkSE-tJ_bXwWdY3Tg_I-iGfy46hhX8tazXZeedtP_v_mHAnAI03nJ3kMdsz7XiOONgXtpmFo7fBb85GO_2uvgFmLC4om0ji3SGEqMoxjAKs5BqujxTOaoa_CgBSi5HZBxJRbvs4EwIzqSAM9E1qJcYJv7HHCSVGdXgZ4lr9fr11b6-vdoiTDaPWofJ4V77YB4-CLetRctfHcaH_WtcoNRlmH3z9sHg9L1N8hGii_wO | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSgMxFA1aQXQhPrFadRbuNHSax0wCbopafLW4sNBdmDxGC3Va2hFc-hv-nl9iMg-nii5choQszs0l5yb3ngvAsWI8JpIRGMZUQ6IMgzKiBhpfYR9p5gfKPQ10e8FVn9wM6GCuij_Ldi-_JPOaBqfSlKTNiY6bc4VvzCnDIpdBgXzrsotgiTihBHui-6hdye76NG9ra3mkjQNpUTbz-x7fr6aKb_74Is1uns46WCsoo9fObbwBFkyyCVbnhATtqPulvjrbAmft0ePYBv1Pz0PlZfqx3jjxRsNo-vH2PvNcB2bzCt1DmqfHLhXGGccrWstsg37n8uH8ChZdEqBCoZ_CmFgSYGysGVkyp5T1SMK1sigT00KulYjlWHHEqZaK-zriLIgoNzjMhFew4XgH1JJxYnaBh7RpcR3KgEtDTBAwgwMssY2pYkljQ-vgpARITHIxDFHJHjs4hYVTZHAKXgeNEkNROMZMYKe_zznhrA5OS1yr6b932_vf8iOwfH_REXfXvdt9sIKclbMMvAaopdMXc2CZRCoPs8PyCQ7lvn4 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Algorithmic+study+on+liar%E2%80%99s+vertex-edge+domination+problem&rft.jtitle=Journal+of+combinatorial+optimization&rft.au=Bhattacharya%2C+Debojyoti&rft.au=Paul%2C+Subhabrata&rft.date=2024-10-01&rft.issn=1382-6905&rft.eissn=1573-2886&rft.volume=48&rft.issue=3&rft_id=info:doi/10.1007%2Fs10878-024-01208-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10878_024_01208_9 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-6905&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-6905&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-6905&client=summon |