Algorithmic study on liar’s vertex-edge domination problem

Let G = ( V , E ) be a graph. For an edge e = x y ∈ E , the closed neighbourhood of e , denoted by N G [ e ] or N G [ x y ] , is the set N G [ x ] ∪ N G [ y ] . A vertex set L ⊆ V is liar’s vertex-edge dominating set of a graph G = ( V , E ) if for every e i ∈ E , | N G [ e i ] ∩ L | ≥ 2 and for eve...

Full description

Saved in:
Bibliographic Details
Published inJournal of combinatorial optimization Vol. 48; no. 3; p. 25
Main Authors Bhattacharya, Debojyoti, Paul, Subhabrata
Format Journal Article
LanguageEnglish
Published New York Springer US 01.10.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1382-6905
1573-2886
DOI10.1007/s10878-024-01208-9

Cover

Abstract Let G = ( V , E ) be a graph. For an edge e = x y ∈ E , the closed neighbourhood of e , denoted by N G [ e ] or N G [ x y ] , is the set N G [ x ] ∪ N G [ y ] . A vertex set L ⊆ V is liar’s vertex-edge dominating set of a graph G = ( V , E ) if for every e i ∈ E , | N G [ e i ] ∩ L | ≥ 2 and for every pair of distinct edges e i and e j , | ( N G [ e i ] ∪ N G [ e j ] ) ∩ L | ≥ 3 . This paper introduces the notion of liar’s vertex-edge domination which arises naturally from some applications in communication networks. Given a graph G , the Minimum Liar’s Vertex-Edge Domination Problem ( MinLVEDP ) asks to find a liar’s vertex-edge dominating set of G of minimum cardinality. In this paper, we study this problem from an algorithmic point of view. We show that MinLVEDP can be solved in linear time for trees, whereas the decision version of this problem is NP-complete for general graphs, chordal graphs, and bipartite graphs. We further study approximation algorithms for this problem. We propose two approximation algorithms for MinLVEDP in general graphs and p -claw free graphs. On the negative side, we show that the MinLVEDP cannot be approximated within 1 2 ( 1 8 - ϵ ) ln | V | for any ϵ > 0 , unless N P ⊆ D T I M E ( | V | O ( log ( log | V | ) ) . Finally, we prove that the MinLVEDP is APX-complete for bounded degree graphs and p -claw-free graphs for p ≥ 6 .
AbstractList Let G=(V,E) be a graph. For an edge e=xy∈E, the closed neighbourhood of e, denoted by NG[e] or NG[xy], is the set NG[x]∪NG[y]. A vertex set L⊆V is liar’s vertex-edge dominating set of a graph G=(V,E) if for every ei∈E, |NG[ei]∩L|≥2 and for every pair of distinct edges ei and ej, |(NG[ei]∪NG[ej])∩L|≥3. This paper introduces the notion of liar’s vertex-edge domination which arises naturally from some applications in communication networks. Given a graph G, the Minimum Liar’s Vertex-Edge Domination Problem (MinLVEDP) asks to find a liar’s vertex-edge dominating set of G of minimum cardinality. In this paper, we study this problem from an algorithmic point of view. We show that MinLVEDP can be solved in linear time for trees, whereas the decision version of this problem is NP-complete for general graphs, chordal graphs, and bipartite graphs. We further study approximation algorithms for this problem. We propose two approximation algorithms for MinLVEDP in general graphs and p-claw free graphs. On the negative side, we show that the MinLVEDP cannot be approximated within 12(18-ϵ)ln|V| for any ϵ>0, unless NP⊆DTIME(|V|O(log(log|V|)). Finally, we prove that the MinLVEDP is APX-complete for bounded degree graphs and p-claw-free graphs for p≥6.
Let G = ( V , E ) be a graph. For an edge e = x y ∈ E , the closed neighbourhood of e , denoted by N G [ e ] or N G [ x y ] , is the set N G [ x ] ∪ N G [ y ] . A vertex set L ⊆ V is liar’s vertex-edge dominating set of a graph G = ( V , E ) if for every e i ∈ E , | N G [ e i ] ∩ L | ≥ 2 and for every pair of distinct edges e i and e j , | ( N G [ e i ] ∪ N G [ e j ] ) ∩ L | ≥ 3 . This paper introduces the notion of liar’s vertex-edge domination which arises naturally from some applications in communication networks. Given a graph G , the Minimum Liar’s Vertex-Edge Domination Problem ( MinLVEDP ) asks to find a liar’s vertex-edge dominating set of G of minimum cardinality. In this paper, we study this problem from an algorithmic point of view. We show that MinLVEDP can be solved in linear time for trees, whereas the decision version of this problem is NP-complete for general graphs, chordal graphs, and bipartite graphs. We further study approximation algorithms for this problem. We propose two approximation algorithms for MinLVEDP in general graphs and p -claw free graphs. On the negative side, we show that the MinLVEDP cannot be approximated within 1 2 ( 1 8 - ϵ ) ln | V | for any ϵ > 0 , unless N P ⊆ D T I M E ( | V | O ( log ( log | V | ) ) . Finally, we prove that the MinLVEDP is APX-complete for bounded degree graphs and p -claw-free graphs for p ≥ 6 .
ArticleNumber 25
Author Paul, Subhabrata
Bhattacharya, Debojyoti
Author_xml – sequence: 1
  givenname: Debojyoti
  surname: Bhattacharya
  fullname: Bhattacharya, Debojyoti
  organization: Indian Institute of Technology Patna
– sequence: 2
  givenname: Subhabrata
  surname: Paul
  fullname: Paul, Subhabrata
  email: subhabrata@iitp.ac.in
  organization: Indian Institute of Technology Patna
BookMark eNp9kMtKAzEUhoNUsK2-gKsB19GTy0wScFOKNyi40XVIM5lxysykJlOxO1_D1_NJTB3Bnavzw_kv8M3QpPe9Q-icwCUBEFeRgBQSA-UYCAWJ1RGaklwwTKUsJkkzSXGhID9Bsxg3AJA0n6LrRVv70AwvXWOzOOzKfeb7rG1M-Pr4jNmbC4N7x66sXVb6runN0KT_Nvh167pTdFyZNrqz3ztHz7c3T8t7vHq8e1guVthSAQOuuODMCcIMYcpa4JKr0pYSuCO0EFxKlldG5eXaKiiNkoXJlWMCCkIZc4rN0cXYm3Zfdy4OeuN3oU-TmtGcF0pxJZOLji4bfIzBVXobms6EvSagD5T0SEknSvqHkj5UszEUk7mvXfir_if1DUpca8c
Cites_doi 10.1016/j.dam.2021.06.002
10.1007/s00010-015-0354-2
10.7151/dmgt.2411
10.1007/s00010-018-0609-9
10.1007/s10878-022-00982-8
10.1142/S1793830917500458
10.1007/s12190-020-01433-5
10.1007/s10878-021-00832-z
10.1080/00207160.2017.1343469
10.1016/j.dam.2012.12.011
10.1016/j.tcs.2020.08.029
10.1016/j.dam.2016.06.008
10.1016/j.tcs.2015.01.041
10.1016/j.disc.2008.07.019
10.1007/978-3-642-28926-2_8
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024.
DBID AAYXX
CITATION
7XB
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10878-024-01208-9
DatabaseName CrossRef
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Engineering Collection
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList ProQuest Central Student

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1573-2886
ExternalDocumentID 10_1007_s10878_024_01208_9
GrantInformation_xml – fundername: CSIR-HRDG
  grantid: 25(0313)/20/EMR-II
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
29K
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P9R
PF0
PT4
PT5
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
7XB
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
M2P
M7S
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
ID FETCH-LOGICAL-c270t-f4743e713a139cc04849dcd804e126748835fa95dbc90da986a59e37061233e93
IEDL.DBID BENPR
ISSN 1382-6905
IngestDate Mon Oct 06 16:35:55 EDT 2025
Wed Oct 01 03:52:54 EDT 2025
Fri Feb 21 02:36:52 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords 05C85
NP-completeness
Approximation algorithms
Liar’s vertex-edge dominating set
05C69
Chordal graphs
Bipartite graphs
05C05
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-f4743e713a139cc04849dcd804e126748835fa95dbc90da986a59e37061233e93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3254699498
PQPubID 2043856
ParticipantIDs proquest_journals_3254699498
crossref_primary_10_1007_s10878_024_01208_9
springer_journals_10_1007_s10878_024_01208_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20241000
2024-10-00
20241001
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 20241000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Journal of combinatorial optimization
PublicationTitleAbbrev J Comb Optim
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Naresh Kumar, Pradhan, Venkatakrishnan (CR13) 2021; 66
Paul, Ranjan (CR17) 2022; 44
Krishnakumari, Chellali, Venkatakrishnan (CR10) 2017; 9
CR6
Slater (CR20) 2009; 54
CR5
Żyliński (CR21) 2019; 93
Bishnu, Ghosh, Paul (CR2) 2017; 231
Boutrig, Chellali, Haynes, Hedetniemi (CR4) 2016; 90
CR18
Paul, Pradhan, Verma (CR16) 2021; 43
Panda, Paul, Pradhan (CR15) 2015; 573
Jena, Das (CR9) 2022; 319
Li, Wang (CR12) 2023; 45
Roden, Slater (CR19) 2009; 309
CR11
Boutrig, Chellali (CR3) 2018; 95
Cormen, Leiserson, Rivest, Stein (CR7) 2001
Ahangar, Chellali, Sheikholeslami, Soroudi, Volkmann (CR1) 2021; 90
Jallu, Jena, Das (CR8) 2020; 845
Panda, Paul (CR14) 2013; 161
RK Jallu (1208_CR8) 2020; 845
TH Cormen (1208_CR7) 2001
A Bishnu (1208_CR2) 2017; 231
B Krishnakumari (1208_CR10) 2017; 9
1208_CR18
ML Roden (1208_CR19) 2009; 309
R Boutrig (1208_CR4) 2016; 90
S Paul (1208_CR16) 2021; 43
S Jena (1208_CR9) 2022; 319
P Żyliński (1208_CR21) 2019; 93
1208_CR6
1208_CR5
1208_CR11
BS Panda (1208_CR15) 2015; 573
B Panda (1208_CR14) 2013; 161
PJ Slater (1208_CR20) 2009; 54
R Boutrig (1208_CR3) 2018; 95
HA Ahangar (1208_CR1) 2021; 90
H Naresh Kumar (1208_CR13) 2021; 66
P Li (1208_CR12) 2023; 45
S Paul (1208_CR17) 2022; 44
References_xml – volume: 319
  start-page: 351
  year: 2022
  end-page: 361
  ident: CR9
  article-title: Vertex-edge domination in unit disk graphs
  publication-title: Discret Appl Math
  doi: 10.1016/j.dam.2021.06.002
– ident: CR18
– volume: 90
  start-page: 355
  year: 2016
  end-page: 366
  ident: CR4
  article-title: Vertex-edge domination in graphs
  publication-title: Aequationes math
  doi: 10.1007/s00010-015-0354-2
– volume: 43
  start-page: 947
  issue: 4
  year: 2021
  end-page: 963
  ident: CR16
  article-title: Vertex-edge domination in interval and bipartite permutation graphs
  publication-title: Discuss Math Gr Theory
  doi: 10.7151/dmgt.2411
– volume: 93
  start-page: 735
  issue: 4
  year: 2019
  end-page: 742
  ident: CR21
  article-title: Vertex-edge domination in graphs
  publication-title: Aequationes Math
  doi: 10.1007/s00010-018-0609-9
– volume: 45
  start-page: 45
  issue: 1
  year: 2023
  ident: CR12
  article-title: Polynomial time algorithm for k-vertex-edge dominating problem in interval graphs
  publication-title: J Comb Optim
  doi: 10.1007/s10878-022-00982-8
– volume: 54
  start-page: 70
  issue: 2
  year: 2009
  end-page: 74
  ident: CR20
  article-title: Liar’s domination
  publication-title: Netw Int J
– volume: 9
  start-page: 1750045
  issue: 04
  year: 2017
  ident: CR10
  article-title: Double vertex-edge domination
  publication-title: Discret Math Algorithms and Appl
  doi: 10.1142/S1793830917500458
– volume: 66
  start-page: 245
  issue: 1
  year: 2021
  end-page: 262
  ident: CR13
  article-title: Double vertex-edge domination in graphs: complexity and algorithms
  publication-title: J Appl Math Comput
  doi: 10.1007/s12190-020-01433-5
– ident: CR11
– year: 2001
  ident: CR7
  publication-title: Introduction to algorithms
– volume: 90
  start-page: 127
  issue: 2
  year: 2021
  end-page: 143
  ident: CR1
  article-title: Total vertex-edge domination in trees
  publication-title: Acta Math Univ Comenianae
– ident: CR6
– ident: CR5
– volume: 44
  start-page: 303
  issue: 1
  year: 2022
  end-page: 330
  ident: CR17
  article-title: Results on vertex-edge and independent vertex-edge domination
  publication-title: J Comb Optim
  doi: 10.1007/s10878-021-00832-z
– volume: 95
  start-page: 1820
  issue: 9
  year: 2018
  end-page: 1828
  ident: CR3
  article-title: Total vertex-edge domination
  publication-title: Int J Comput Math
  doi: 10.1080/00207160.2017.1343469
– volume: 161
  start-page: 1085
  issue: 7
  year: 2013
  end-page: 1092
  ident: CR14
  article-title: Liar’s domination in graphs: complexity and algorithm
  publication-title: Discret Appl Math
  doi: 10.1016/j.dam.2012.12.011
– volume: 845
  start-page: 38
  year: 2020
  end-page: 49
  ident: CR8
  article-title: Liar’s domination in unit disk graphs
  publication-title: Theor Comput Sci
  doi: 10.1016/j.tcs.2020.08.029
– volume: 231
  start-page: 67
  year: 2017
  end-page: 77
  ident: CR2
  article-title: Linear kernels for k-tuple and liar’s domination in bounded genus graphs. Algorithmic graph theory on the adriatic coast
  publication-title: Discret Appl Math
  doi: 10.1016/j.dam.2016.06.008
– volume: 573
  start-page: 26
  year: 2015
  end-page: 42
  ident: CR15
  article-title: Hardness results, approximation and exact algorithms for liar’s domination problem in graphs
  publication-title: Theor Comput Sci
  doi: 10.1016/j.tcs.2015.01.041
– volume: 309
  start-page: 5884
  issue: 19
  year: 2009
  end-page: 5890
  ident: CR19
  article-title: Liar’s domination in graphs
  publication-title: Discret Math
  doi: 10.1016/j.disc.2008.07.019
– volume: 319
  start-page: 351
  year: 2022
  ident: 1208_CR9
  publication-title: Discret Appl Math
  doi: 10.1016/j.dam.2021.06.002
– ident: 1208_CR6
  doi: 10.1007/978-3-642-28926-2_8
– volume: 845
  start-page: 38
  year: 2020
  ident: 1208_CR8
  publication-title: Theor Comput Sci
  doi: 10.1016/j.tcs.2020.08.029
– volume: 93
  start-page: 735
  issue: 4
  year: 2019
  ident: 1208_CR21
  publication-title: Aequationes Math
  doi: 10.1007/s00010-018-0609-9
– ident: 1208_CR11
– volume: 9
  start-page: 1750045
  issue: 04
  year: 2017
  ident: 1208_CR10
  publication-title: Discret Math Algorithms and Appl
  doi: 10.1142/S1793830917500458
– volume: 309
  start-page: 5884
  issue: 19
  year: 2009
  ident: 1208_CR19
  publication-title: Discret Math
  doi: 10.1016/j.disc.2008.07.019
– volume: 90
  start-page: 127
  issue: 2
  year: 2021
  ident: 1208_CR1
  publication-title: Acta Math Univ Comenianae
– volume: 231
  start-page: 67
  year: 2017
  ident: 1208_CR2
  publication-title: Discret Appl Math
  doi: 10.1016/j.dam.2016.06.008
– volume: 90
  start-page: 355
  year: 2016
  ident: 1208_CR4
  publication-title: Aequationes math
  doi: 10.1007/s00010-015-0354-2
– volume: 44
  start-page: 303
  issue: 1
  year: 2022
  ident: 1208_CR17
  publication-title: J Comb Optim
  doi: 10.1007/s10878-021-00832-z
– ident: 1208_CR18
– volume: 95
  start-page: 1820
  issue: 9
  year: 2018
  ident: 1208_CR3
  publication-title: Int J Comput Math
  doi: 10.1080/00207160.2017.1343469
– volume: 161
  start-page: 1085
  issue: 7
  year: 2013
  ident: 1208_CR14
  publication-title: Discret Appl Math
  doi: 10.1016/j.dam.2012.12.011
– volume-title: Introduction to algorithms
  year: 2001
  ident: 1208_CR7
– volume: 45
  start-page: 45
  issue: 1
  year: 2023
  ident: 1208_CR12
  publication-title: J Comb Optim
  doi: 10.1007/s10878-022-00982-8
– volume: 573
  start-page: 26
  year: 2015
  ident: 1208_CR15
  publication-title: Theor Comput Sci
  doi: 10.1016/j.tcs.2015.01.041
– volume: 43
  start-page: 947
  issue: 4
  year: 2021
  ident: 1208_CR16
  publication-title: Discuss Math Gr Theory
  doi: 10.7151/dmgt.2411
– ident: 1208_CR5
– volume: 54
  start-page: 70
  issue: 2
  year: 2009
  ident: 1208_CR20
  publication-title: Netw Int J
– volume: 66
  start-page: 245
  issue: 1
  year: 2021
  ident: 1208_CR13
  publication-title: J Appl Math Comput
  doi: 10.1007/s12190-020-01433-5
SSID ssj0009054
Score 2.3502026
Snippet Let G = ( V , E ) be a graph. For an edge e = x y ∈ E , the closed neighbourhood of e , denoted by N G [ e ] or N G [ x y ] , is the set N G [ x ] ∪ N G [ y ]...
Let G=(V,E) be a graph. For an edge e=xy∈E, the closed neighbourhood of e, denoted by NG[e] or NG[xy], is the set NG[x]∪NG[y]. A vertex set L⊆V is liar’s...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 25
SubjectTerms Algorithms
Approximation
Combinatorics
Communication
Communication networks
Communications networks
Convex and Discrete Geometry
Graphs
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Neighborhoods
Operations Research/Decision Theory
Optimization
Theory of Computation
Trees (mathematics)
Vertex sets
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgLDAgPkWgIA9sYCn1R2JLLBWiqpDKRKVuUWxfoFJJUFMkRv4Gf49fgp0mpCAYGKNEHt75cu_su3cInRupMq4lJ3EmLOEGJNGpAAKhYSG1MoyMPxoY3UXDMb-diEndFFY21e7NlWT1p15pdpNeDZb6qgkaOjddRxvCy3m5XTym_VZqNxTLUbaOO7rcT9StMr-v8T0ctRzzx7VoFW0GO2i7pom4v7TrLlqDfA9trYgHuqfRl-JquY-u-rOHwiX6j09TgyvNWFzkeDZN5x9v7yX2U5fhlfjDM2wLX_7iDYLrcTIHaDy4ub8eknoyAjE0Dhck4y7wg8svU0fgjHFeyJU1DlkOPerHhzhelaVKWG1UaFMlo1QoYHEltsJAsUPUyYscjhCmFnrKxjpSGjhEkQQWMc1cHpVpkYEI0EUDUPK8FMBIWqljD2fi4EwqOBMVoG6DYVI7Q5kwr7mvFFcyQJcNru3rv1c7_t_nJ2iTetNWpXZd1FnMX-DUUYaFPqt2yCcld7dW
  priority: 102
  providerName: Springer Nature
Title Algorithmic study on liar’s vertex-edge domination problem
URI https://link.springer.com/article/10.1007/s10878-024-01208-9
https://www.proquest.com/docview/3254699498
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-2886
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009054
  issn: 1382-6905
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-2886
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009054
  issn: 1382-6905
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-2886
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009054
  issn: 1382-6905
  databaseCode: U2A
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1dS8MwFL3s40UfxE-cztEH3zTYpUmXgCJV9oGyIeJgPpU2SXUw17lV8NG_4d_zl5h0rVVBH9tCoOcmNyfJzTkAh4LxiISMoFZEJSJCMRQGVCFlC8fGktmuMFsD_YHbG5KrER2VYJDfhTFllXlOTBO1jIXZIz9xjHA754Sz89kzMq5R5nQ1t9AIMmsFeZZKjJWhio0yVgWqF-3BzW0hw2vTpc2t5pV6XUizazTZZTpm1GaxqcrAtk4DP6eqgn_-OjJNZ6LOOqxlFNLyljHfgJKabsLqN2FB_dT_UmNdbMGpN3nQv5I8Po2FlerJWvHUmoyD-cfb-8IyjszqFZmNNUvGpjTGBMvKrGa2Ydhp3132UOaagARu2QmKiCYFSq89A03uhNAjlHApNOpENbGxFtGcKwo4laHgtgw4cwPKldNKhVgcxZ0dqEzjqdoFC0vV5LIVujxURLkuU47rhI5eY0UhjRStwVEOkD9bimP4hQyygdPXcPopnD6vQT3H0M8GysIvwlqD4xzX4vPfre3939o-rGATyrTsrg6VZP6iDjR9SMIGlFmn24Cq172_bjeyHqLfDrH3CYtdxG0
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwEB4hONAeEKWgblmKD_TUWgTHzsYSCPGr5WdXVQUSt5DYE7oS7MLuIuDGa_AyfZg-CeOsQ6AS3DhGkazo82R-7JnvA1gysc5lFkveyJXl0mDMs1Qhx8CEgbBxEBl3NNBqR81juX-iTsbgbzkL49oqS59YOGrbM-6MfDl0xO1aSx2vX15xpxrlbldLCY3USyvYtYJizA92HODdDZVwg7W9bdrv70Ls7hxtNblXGeBGNIIhzyUFUaRaLaVkyBiyaKmtoa-UuCKcFAflKHmqlc2MDmyq4yhVGsNGQVwSoiNjohAwIUOpqfib2Nxp__pd0f4GaiSrS3ks1aHKj-344b3YsdsK1wUiAnI7L0Njle_-d0VbRL7daZjyKSvbGNnYJxjD7gx8fEZkSE-tJ_bXwWdY3Tg_I-iGfy46hhX8tazXZeedtP_v_mHAnAI03nJ3kMdsz7XiOONgXtpmFo7fBb85GO_2uvgFmLC4om0ji3SGEqMoxjAKs5BqujxTOaoa_CgBSi5HZBxJRbvs4EwIzqSAM9E1qJcYJv7HHCSVGdXgZ4lr9fr11b6-vdoiTDaPWofJ4V77YB4-CLetRctfHcaH_WtcoNRlmH3z9sHg9L1N8hGii_wO
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSgMxFA1aQXQhPrFadRbuNHSax0wCbopafLW4sNBdmDxGC3Va2hFc-hv-nl9iMg-nii5choQszs0l5yb3ngvAsWI8JpIRGMZUQ6IMgzKiBhpfYR9p5gfKPQ10e8FVn9wM6GCuij_Ldi-_JPOaBqfSlKTNiY6bc4VvzCnDIpdBgXzrsotgiTihBHui-6hdye76NG9ra3mkjQNpUTbz-x7fr6aKb_74Is1uns46WCsoo9fObbwBFkyyCVbnhATtqPulvjrbAmft0ePYBv1Pz0PlZfqx3jjxRsNo-vH2PvNcB2bzCt1DmqfHLhXGGccrWstsg37n8uH8ChZdEqBCoZ_CmFgSYGysGVkyp5T1SMK1sigT00KulYjlWHHEqZaK-zriLIgoNzjMhFew4XgH1JJxYnaBh7RpcR3KgEtDTBAwgwMssY2pYkljQ-vgpARITHIxDFHJHjs4hYVTZHAKXgeNEkNROMZMYKe_zznhrA5OS1yr6b932_vf8iOwfH_REXfXvdt9sIKclbMMvAaopdMXc2CZRCoPs8PyCQ7lvn4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Algorithmic+study+on+liar%E2%80%99s+vertex-edge+domination+problem&rft.jtitle=Journal+of+combinatorial+optimization&rft.au=Bhattacharya%2C+Debojyoti&rft.au=Paul%2C+Subhabrata&rft.date=2024-10-01&rft.issn=1382-6905&rft.eissn=1573-2886&rft.volume=48&rft.issue=3&rft_id=info:doi/10.1007%2Fs10878-024-01208-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10878_024_01208_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-6905&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-6905&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-6905&client=summon