Parallel design of SFO optimization algorithm based on FPGA

Taking a lot of time to solve optimization problems has become a challenge for metaheuristic algorithms. Due to independence of the metaheuristics components, parallel processing is a good option to reduce the computational time and to find high quality solutions that are close to the optimum with a...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of supercomputing Vol. 80; no. 8; pp. 10796 - 10817
Main Authors Naji, Hamid Reza, Shadravan, Soodeh, Jafarabadi, Hossien Mousa, Momeni, Hossien
Format Journal Article
LanguageEnglish
Published New York Springer US 01.05.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0920-8542
1573-0484
DOI10.1007/s11227-023-05851-7

Cover

Abstract Taking a lot of time to solve optimization problems has become a challenge for metaheuristic algorithms. Due to independence of the metaheuristics components, parallel processing is a good option to reduce the computational time and to find high quality solutions that are close to the optimum with an acceptable cost. One of these metaheuristic algorithms is the Sailfish Optimizer (SFO) which is inspired by a group of hunting sailfish. The SFO algorithm uses a simple method to provide a dynamic balance between exploration and exploitation phases, creates a swarm diversity, avoids local optima, and guarantees high convergence speed. It has been shown that the SFO algorithm outperforms various state-of-art metaheuristic algorithms for multimodal and high dimensional benchmark functions and complicated real-world optimization problems in terms of accuracy and speed by CPU and GPU implementation. In this paper, to speedup this algorithm and increase its performance we propose a reconfigurable hardware version of SFO implemented on Field Programmable Gate Array (FPGA). The FPGA-based SFO can be a very good option in many applications with massive calculations. Due to the inherent parallelism and high computing capabilities of FPGA, the SFO algorithm gains optimum computational time despite the complexity of optimization problems. We have compared the performance of the proposed FPGA-based SFO with its CPU and GPU implementation and some other metaheuristic algorithms. The results show the FPGA implementation is considerably faster than the CPU and GPU implementation. Also, it outperforms other compared FPGA-based metaheuristic algorithms in terms of execution time and convergence speed.
AbstractList Taking a lot of time to solve optimization problems has become a challenge for metaheuristic algorithms. Due to independence of the metaheuristics components, parallel processing is a good option to reduce the computational time and to find high quality solutions that are close to the optimum with an acceptable cost. One of these metaheuristic algorithms is the Sailfish Optimizer (SFO) which is inspired by a group of hunting sailfish. The SFO algorithm uses a simple method to provide a dynamic balance between exploration and exploitation phases, creates a swarm diversity, avoids local optima, and guarantees high convergence speed. It has been shown that the SFO algorithm outperforms various state-of-art metaheuristic algorithms for multimodal and high dimensional benchmark functions and complicated real-world optimization problems in terms of accuracy and speed by CPU and GPU implementation. In this paper, to speedup this algorithm and increase its performance we propose a reconfigurable hardware version of SFO implemented on Field Programmable Gate Array (FPGA). The FPGA-based SFO can be a very good option in many applications with massive calculations. Due to the inherent parallelism and high computing capabilities of FPGA, the SFO algorithm gains optimum computational time despite the complexity of optimization problems. We have compared the performance of the proposed FPGA-based SFO with its CPU and GPU implementation and some other metaheuristic algorithms. The results show the FPGA implementation is considerably faster than the CPU and GPU implementation. Also, it outperforms other compared FPGA-based metaheuristic algorithms in terms of execution time and convergence speed.
Author Naji, Hamid Reza
Momeni, Hossien
Shadravan, Soodeh
Jafarabadi, Hossien Mousa
Author_xml – sequence: 1
  givenname: Hamid Reza
  surname: Naji
  fullname: Naji, Hamid Reza
  email: naji@kgut.ac.ir
  organization: Department of Computer Engineering and Information Technology, Graduate University of Advanced Technology
– sequence: 2
  givenname: Soodeh
  surname: Shadravan
  fullname: Shadravan, Soodeh
  organization: Department of Computer Engineering, Islamic Azad University
– sequence: 3
  givenname: Hossien Mousa
  surname: Jafarabadi
  fullname: Jafarabadi, Hossien Mousa
  organization: Department of Mathematics, Islamic Azad University
– sequence: 4
  givenname: Hossien
  surname: Momeni
  fullname: Momeni, Hossien
  organization: Department of Computer Engineering and Information Technology, Graduate University of Advanced Technology
BookMark eNp9kE1LAzEQhoNUsK3-AU8Bz9HJ1ybBUym2CoUW7D3E3Wzdst3UZHvQX2_qCt6EgWGG552BZ4JGXeg8QrcU7imAekiUMqYIME5AakmJukBjKlUehRYjNAbDgGgp2BWapLQHAMEVH6PHjYuubX2LK5-aXYdDjV8XaxyOfXNovlzfhA67dhdi078f8JtLvsJ5tdgsZ9fosnZt8je_fYq2i6ft_Jms1suX-WxFSqagJzUtvaklE057BUZSLbURuSollKqKigrOja9KoYGWSnnO68JxD1BkmPMpuhvOHmP4OPnU2304xS5_tJzJQhpFDc0UG6gyhpSir-0xNgcXPy0Fe3ZkB0c2O7I_jqzKIT6EUoa7nY9_p_9JfQO9PGh_
Cites_doi 10.1016/j.advengsoft.2017.01.004
10.1016/j.future.2019.07.015
10.1007/s40031-023-00918-8
10.1109/TII.2015.2440173
10.1016/j.asoc.2015.12.036
10.1126/science.220.4598.671
10.1287/ijoc.1.3.190
10.1016/j.asoc.2012.12.034
10.1007/978-3-319-78890-6_14
10.1016/j.advengsoft.2017.03.014
10.1038/scientificamerican0792-66
10.1109/ICOASE.2018.8548822
10.1016/j.engappai.2018.04.021
10.1016/j.engappai.2019.01.001
10.1007/s00170-017-1447-y
10.1007/978-981-19-9198-1_31
10.1109/CEC48606.2020.9185737
10.1016/j.asoc.2017.04.015
10.1016/j.future.2017.10.052
10.1016/j.cma.2020.113609
10.1016/j.cie.2020.107050
10.1109/CSNT.2012.168
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s11227-023-05851-7
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection (ProQuest)
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (Proquest)
ProQuest Engineering Collection
Engineering Database (Proquest)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Physics
EISSN 1573-0484
EndPage 10817
ExternalDocumentID 10_1007_s11227_023_05851_7
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBD
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-c270t-f1ce9f524a8e7095185894894d7477d6d14339edc4801c77e33f6a3e00695133
IEDL.DBID U2A
ISSN 0920-8542
IngestDate Mon Oct 06 18:37:23 EDT 2025
Wed Oct 01 03:43:57 EDT 2025
Fri Feb 21 02:39:13 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Field programmable gate array
Parallel programming
SFO algorithm
Metaheuristic algorithm
Finite state machine
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-f1ce9f524a8e7095185894894d7477d6d14339edc4801c77e33f6a3e00695133
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3256597191
PQPubID 2043774
PageCount 22
ParticipantIDs proquest_journals_3256597191
crossref_primary_10_1007_s11227_023_05851_7
springer_journals_10_1007_s11227_023_05851_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240500
2024-05-00
20240501
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 5
  year: 2024
  text: 20240500
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal of High-Performance Computer Design, Analysis, and Use
PublicationTitle The Journal of supercomputing
PublicationTitleAbbrev J Supercomput
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References KirkpatrickSDaniel GelattCVecchiMPOptimization by simulated annealingScience1983220459867168070248510.1126/science.220.4598.671
Haval Sadeeq , Adnan Mohsin Abdulazeez , Hardware Implementation of Firefly Optimization Algorithm Using FPGAs, Advanced Science and Engineering (ICOASE)on 2018 International Conference, 2018, pp 30-35.
JiangQGuoYYangZWangZYangDZhouXImproving the performance of whale optimization algorithm through OpenCL-based FPGA acceleratorComplexity20202020115
SadekBAMAnisSFpga implementation of parallel particle swarm optimization algorithm and compared with genetic algorithm”Int J Adv Comput Sci Appl2016785764
Malhotra, G., Duraiswamy, P. and Kishore, J.K., 2023. FPGA Accelerated Parallel HsClone GA for Digital Circuit Configuration in CGP Format. Journal of The Institution of Engineers (India): Series B, pp.1–11.
ShadravanSNajiHRBardsiriVKThe sailfish optimizer: a novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problemEng Appl Artif Intell201980203410.1016/j.engappai.2019.01.001
HashimFAHenry gas solubility optimization: a novel physics-based algorithmFutur Gener Comput Syst201910164666710.1016/j.future.2019.07.015
SaremiSMirjaliliSLewisAGrasshopper optimisation algorithm: theory and applicationAdv Eng Softw20171105304710.1016/j.advengsoft.2017.01.004
Zou, X., Wang, L., Tang, Y. et al. 2018. Parallel design of intelligent optimization algorithm based on FPGA. Int J Adv Manuf Technol, Springer, Vol 94, pp. 3399–3412.
Panda, A. K., Rajput, P., & Shukla, B. 2012. FPGA implementation of 8, 16 and 32 bit LFSR with maximum length feedback polynomial using VHDL. In: 2012 International Conference on Communication Systems and Network Technologies (pp. 769–773). IEEE.
HuangHCA Taguchi-based heterogeneous parallel metaheuristic ACO-PSO and its FPGA realization to optimal polar-space locomotion control of four-wheeled redundant mobile robotsIEEE Trans Industr Inf201511491592210.1109/TII.2015.2440173
Mohammadi-BalaniANayeriMDAzarATaghizadeh-YazdiMGolden eagle optimizer: a nature-inspired metaheuristic algorithmComput Ind Eng2021115210705010.1016/j.cie.2020.107050
Zhao Y, Zhao C, Liu Y. FPGA-Based Hardware Modeling on Pigeon-Inspired Optimization Algorithm. In: Asian Simulation Conference 2022 Dec 9 (pp. 407–423). Singapore: Springer Nature Singapore.
Kennedy J. and Eberhart R. 1995. Particle swarm optimization (PSO). In: Proc. IEEE International Conference on Neural Networks, Perth, Australia, 1942–1948.
KhatibiMSBardsiriVPoor and rich optimization algorithm: a new human-based and multi populations algorithmEng Appl Artif Intell20198665181
HollandJHGenetic algorithmsSci Am1992267667210.1038/scientificamerican0792-66
Suganthan, P.N. et al., 2005. Problem definitions and evaluation criteria for the CEC 2005 special session on RealParameter optimization, KanGAL report 2005005.
Gnana SundariMApplication of improved firefly algorithm for programmed PWM in multilevel inverter with adjustable DC sourcesAppl Soft Comput20164116917910.1016/j.asoc.2015.12.036
AnisSAFPGA implementation of parallel particle swarm optimization algorithm and compared with genetic algorithmInt J Adv Comput Sci Appl2016175764
ShadravanSNajiHKhatibiVA distributed sailfish optimizer based on multi-agent systems for solving non-convex and scalable optimization problems implemented on GPUJ AI Data Mining2021915971
AbualigahLThe arithmetic optimization algorithmComput Methods Appl Mech Eng20211376113609419929910.1016/j.cma.2020.113609
CheraghalipourAHajiaghaei-KeshteliMPaydarMMTree growth algorithm (TGA): a novel approach for solving optimization problemsEng Appl Artif Intell201817239341410.1016/j.engappai.2018.04.021
Jiang Q. et al. A parallel whale optimization algorithm and its implementation on FPGA. IEEE Congress on Evolutionary Computation (CEC), 19–24. 2020.
KavehADadrasAA novel meta-heuristic optimization algorithm: thermal exchange optimizationAdv Eng Softw20171110698410.1016/j.advengsoft.2017.03.014
AmeurMSBSaklyAFPGA based hardware implementation of bat algorithmAppl Soft Comput20175837838710.1016/j.asoc.2017.04.015
KumarMKulkarniAJSatapathySCSocio evolution & learning optimization algorithm: a socio-inspired optimization methodologyFutur Gener Comput Syst201818125227210.1016/j.future.2017.10.052
CalazanRMNadiaNMourelleLMA hardware accelerator for particle swarm optimizationAppl Soft Comput20141434735610.1016/j.asoc.2012.12.034
GloverFTabu search-part IORSA J Comput19891319020694535710.1287/ijoc.1.3.190
Abdoalnasir A., Psarakis M., Dounis A. 2018 An efficient FPGA implementation of the big bang-big crunch optimization algorithm. ARC 2018. Lecture notes in computer science, Springer, vol 10824, pp 166-177.
Q Jiang (5851_CR23) 2020; 2020
JH Holland (5851_CR10) 1992; 267
A Mohammadi-Balani (5851_CR2) 2021; 1
S Shadravan (5851_CR25) 2019; 80
F Glover (5851_CR4) 1989; 1
S Kirkpatrick (5851_CR7) 1983; 220
5851_CR18
5851_CR16
5851_CR17
RM Calazan (5851_CR19) 2014; 14
5851_CR14
FA Hashim (5851_CR9) 2019; 101
S Shadravan (5851_CR26) 2021; 9
5851_CR22
A Cheraghalipour (5851_CR11) 2018; 1
M Gnana Sundari (5851_CR15) 2016; 41
M Kumar (5851_CR5) 2018; 1
L Abualigah (5851_CR12) 2021; 1
5851_CR1
MSB Ameur (5851_CR21) 2017; 58
A Kaveh (5851_CR8) 2017; 1
BAM Sadek (5851_CR29) 2016; 7
SA Anis (5851_CR20) 2016; 1
MS Khatibi (5851_CR6) 2019; 86
S Saremi (5851_CR3) 2017; 1
5851_CR27
5851_CR28
HC Huang (5851_CR13) 2015; 11
5851_CR24
References_xml – reference: Mohammadi-BalaniANayeriMDAzarATaghizadeh-YazdiMGolden eagle optimizer: a nature-inspired metaheuristic algorithmComput Ind Eng2021115210705010.1016/j.cie.2020.107050
– reference: KumarMKulkarniAJSatapathySCSocio evolution & learning optimization algorithm: a socio-inspired optimization methodologyFutur Gener Comput Syst201818125227210.1016/j.future.2017.10.052
– reference: Panda, A. K., Rajput, P., & Shukla, B. 2012. FPGA implementation of 8, 16 and 32 bit LFSR with maximum length feedback polynomial using VHDL. In: 2012 International Conference on Communication Systems and Network Technologies (pp. 769–773). IEEE.
– reference: CheraghalipourAHajiaghaei-KeshteliMPaydarMMTree growth algorithm (TGA): a novel approach for solving optimization problemsEng Appl Artif Intell201817239341410.1016/j.engappai.2018.04.021
– reference: AnisSAFPGA implementation of parallel particle swarm optimization algorithm and compared with genetic algorithmInt J Adv Comput Sci Appl2016175764
– reference: Abdoalnasir A., Psarakis M., Dounis A. 2018 An efficient FPGA implementation of the big bang-big crunch optimization algorithm. ARC 2018. Lecture notes in computer science, Springer, vol 10824, pp 166-177.
– reference: Suganthan, P.N. et al., 2005. Problem definitions and evaluation criteria for the CEC 2005 special session on RealParameter optimization, KanGAL report 2005005.
– reference: CalazanRMNadiaNMourelleLMA hardware accelerator for particle swarm optimizationAppl Soft Comput20141434735610.1016/j.asoc.2012.12.034
– reference: HollandJHGenetic algorithmsSci Am1992267667210.1038/scientificamerican0792-66
– reference: AmeurMSBSaklyAFPGA based hardware implementation of bat algorithmAppl Soft Comput20175837838710.1016/j.asoc.2017.04.015
– reference: Zhao Y, Zhao C, Liu Y. FPGA-Based Hardware Modeling on Pigeon-Inspired Optimization Algorithm. In: Asian Simulation Conference 2022 Dec 9 (pp. 407–423). Singapore: Springer Nature Singapore.
– reference: Kennedy J. and Eberhart R. 1995. Particle swarm optimization (PSO). In: Proc. IEEE International Conference on Neural Networks, Perth, Australia, 1942–1948.
– reference: Haval Sadeeq , Adnan Mohsin Abdulazeez , Hardware Implementation of Firefly Optimization Algorithm Using FPGAs, Advanced Science and Engineering (ICOASE)on 2018 International Conference, 2018, pp 30-35.
– reference: AbualigahLThe arithmetic optimization algorithmComput Methods Appl Mech Eng20211376113609419929910.1016/j.cma.2020.113609
– reference: SadekBAMAnisSFpga implementation of parallel particle swarm optimization algorithm and compared with genetic algorithm”Int J Adv Comput Sci Appl2016785764
– reference: Jiang Q. et al. A parallel whale optimization algorithm and its implementation on FPGA. IEEE Congress on Evolutionary Computation (CEC), 19–24. 2020.
– reference: ShadravanSNajiHRBardsiriVKThe sailfish optimizer: a novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problemEng Appl Artif Intell201980203410.1016/j.engappai.2019.01.001
– reference: ShadravanSNajiHKhatibiVA distributed sailfish optimizer based on multi-agent systems for solving non-convex and scalable optimization problems implemented on GPUJ AI Data Mining2021915971
– reference: KhatibiMSBardsiriVPoor and rich optimization algorithm: a new human-based and multi populations algorithmEng Appl Artif Intell20198665181
– reference: HashimFAHenry gas solubility optimization: a novel physics-based algorithmFutur Gener Comput Syst201910164666710.1016/j.future.2019.07.015
– reference: Gnana SundariMApplication of improved firefly algorithm for programmed PWM in multilevel inverter with adjustable DC sourcesAppl Soft Comput20164116917910.1016/j.asoc.2015.12.036
– reference: HuangHCA Taguchi-based heterogeneous parallel metaheuristic ACO-PSO and its FPGA realization to optimal polar-space locomotion control of four-wheeled redundant mobile robotsIEEE Trans Industr Inf201511491592210.1109/TII.2015.2440173
– reference: JiangQGuoYYangZWangZYangDZhouXImproving the performance of whale optimization algorithm through OpenCL-based FPGA acceleratorComplexity20202020115
– reference: KirkpatrickSDaniel GelattCVecchiMPOptimization by simulated annealingScience1983220459867168070248510.1126/science.220.4598.671
– reference: SaremiSMirjaliliSLewisAGrasshopper optimisation algorithm: theory and applicationAdv Eng Softw20171105304710.1016/j.advengsoft.2017.01.004
– reference: GloverFTabu search-part IORSA J Comput19891319020694535710.1287/ijoc.1.3.190
– reference: Malhotra, G., Duraiswamy, P. and Kishore, J.K., 2023. FPGA Accelerated Parallel HsClone GA for Digital Circuit Configuration in CGP Format. Journal of The Institution of Engineers (India): Series B, pp.1–11.
– reference: KavehADadrasAA novel meta-heuristic optimization algorithm: thermal exchange optimizationAdv Eng Softw20171110698410.1016/j.advengsoft.2017.03.014
– reference: Zou, X., Wang, L., Tang, Y. et al. 2018. Parallel design of intelligent optimization algorithm based on FPGA. Int J Adv Manuf Technol, Springer, Vol 94, pp. 3399–3412.
– volume: 1
  start-page: 30
  issue: 105
  year: 2017
  ident: 5851_CR3
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2017.01.004
– volume: 101
  start-page: 646
  year: 2019
  ident: 5851_CR9
  publication-title: Futur Gener Comput Syst
  doi: 10.1016/j.future.2019.07.015
– ident: 5851_CR24
  doi: 10.1007/s40031-023-00918-8
– volume: 1
  start-page: 57
  issue: 7
  year: 2016
  ident: 5851_CR20
  publication-title: Int J Adv Comput Sci Appl
– volume: 9
  start-page: 59
  issue: 1
  year: 2021
  ident: 5851_CR26
  publication-title: J AI Data Mining
– volume: 11
  start-page: 915
  issue: 4
  year: 2015
  ident: 5851_CR13
  publication-title: IEEE Trans Industr Inf
  doi: 10.1109/TII.2015.2440173
– volume: 41
  start-page: 169
  year: 2016
  ident: 5851_CR15
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2015.12.036
– volume: 220
  start-page: 671
  issue: 4598
  year: 1983
  ident: 5851_CR7
  publication-title: Science
  doi: 10.1126/science.220.4598.671
– volume: 7
  start-page: 57
  issue: 8
  year: 2016
  ident: 5851_CR29
  publication-title: Int J Adv Comput Sci Appl
– volume: 1
  start-page: 190
  issue: 3
  year: 1989
  ident: 5851_CR4
  publication-title: ORSA J Comput
  doi: 10.1287/ijoc.1.3.190
– volume: 14
  start-page: 347
  year: 2014
  ident: 5851_CR19
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2012.12.034
– ident: 5851_CR16
  doi: 10.1007/978-3-319-78890-6_14
– ident: 5851_CR28
– ident: 5851_CR1
– volume: 1
  start-page: 69
  issue: 110
  year: 2017
  ident: 5851_CR8
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2017.03.014
– volume: 267
  start-page: 66
  year: 1992
  ident: 5851_CR10
  publication-title: Sci Am
  doi: 10.1038/scientificamerican0792-66
– ident: 5851_CR18
  doi: 10.1109/ICOASE.2018.8548822
– volume: 1
  start-page: 393
  issue: 72
  year: 2018
  ident: 5851_CR11
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2018.04.021
– volume: 86
  start-page: 65
  year: 2019
  ident: 5851_CR6
  publication-title: Eng Appl Artif Intell
– volume: 2020
  start-page: 1
  year: 2020
  ident: 5851_CR23
  publication-title: Complexity
– volume: 80
  start-page: 20
  year: 2019
  ident: 5851_CR25
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2019.01.001
– ident: 5851_CR17
  doi: 10.1007/s00170-017-1447-y
– ident: 5851_CR22
  doi: 10.1007/978-981-19-9198-1_31
– ident: 5851_CR14
  doi: 10.1109/CEC48606.2020.9185737
– volume: 58
  start-page: 378
  year: 2017
  ident: 5851_CR21
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.04.015
– volume: 1
  start-page: 252
  issue: 81
  year: 2018
  ident: 5851_CR5
  publication-title: Futur Gener Comput Syst
  doi: 10.1016/j.future.2017.10.052
– volume: 1
  start-page: 113609
  issue: 376
  year: 2021
  ident: 5851_CR12
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2020.113609
– volume: 1
  start-page: 107050
  issue: 152
  year: 2021
  ident: 5851_CR2
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2020.107050
– ident: 5851_CR27
  doi: 10.1109/CSNT.2012.168
SSID ssj0004373
Score 2.3501458
Snippet Taking a lot of time to solve optimization problems has become a challenge for metaheuristic algorithms. Due to independence of the metaheuristics components,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 10796
SubjectTerms Algorithms
Central processing units
Compilers
Computer Science
Computing time
Convergence
CPUs
Design optimization
Field programmable gate arrays
Graphics processing units
Heuristic methods
Interpreters
Optimization algorithms
Parallel processing
Physics
Processor Architectures
Programming Languages
Reconfigurable hardware
Simulation
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS8MwED7mhuCLP6bidEoefNNglyZLiohMWR2Cc-iEvZW2SfRhv9zq_2_SphQFhT61EOglufuSu_s-gHMtREJ5orBUkmHKNMEGhniYaaGV4lpSZe8hn4bdwRt9nLBJDYZlL4wtqyx9Yu6o5SK1d-RXvonNBvya48Xt8hNb1SibXS0lNGInrSBvcoqxDWgQy4xVh8Zdfzh6qTol_SLnHJhDk2CUuDaaopmuQwjHJoZhz-bKMP8Zqir8-StlmkeicBe2HYREvWLO96Cm5k3YKeUZkNutTdjMqzvT9T5cj-KV1UyZIpkXbKCFRq_hM1oYfzFzjZgonr6b_80-ZshGNonMq3D00DuAcdgf3w-wU03AKeFehnUnVYFmhMZCcQugBBMBNY80Jwcuu9IgJD9QMrXEMSnnyvd1N_aV5Sy2Yi-HUJ8v5uoIkKdZGmtfaJEISmSaJAYOMsVZIAOeUK8FF6V9omXBjRFVLMjWmpGxZpRbM-ItaJcmjNw-WUfVrLbgsjRr9fnv0Y7_H-0EtohBH0VlYhvq2epLnRr0kCVnbkl8A7QnvjE
  priority: 102
  providerName: ProQuest
Title Parallel design of SFO optimization algorithm based on FPGA
URI https://link.springer.com/article/10.1007/s11227-023-05851-7
https://www.proquest.com/docview/3256597191
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1573-0484
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: ABDBF
  dateStart: 20030501
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 20241101
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: ADMLS
  dateStart: 19870101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-0484
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7odvHib3E6Rw7eNNClyZLiaZN1Q3EO3WCeStskKuyHbPP_96VrKYoehEKgLTl8TfK-1_fe9wAurVIJl4mh2mhBubCMIg3xqLDKGiOt5sb9h3wYtPpjfjcRk7wobFVkuxchyeykLovdmoxJijaGei6WReU2VIWT88JVPGbtshrS38SVA3SMlOAsL5X5fY7v5qjkmD_Copm1CfdhN6eJpL35rgewZeaHsFe0YCD5jjyCm2G8dN1QpkRnqRhkYclz-EgWeBLM8hJLEk9fF8v39duMOJulCd4Kh732MYzC7ui2T_N-CDRl0ltT20xNYAXjsTLSUSMlVMDx0ugTSN3SyH38wOjUScKkUhrft63YN06N2LVxOYHKfDE3p0A8K9LY-sqqRHGm0yRBHIWRItCBTLhXg6sClehjo3oRlfrGDsMIMYwyDCNZg3oBXJTvgFXkI5dCZwXdwRpcF2CWj_-e7ex_r5_DDkOesclBrENlvfw0F8gT1kkDtlXYa0C1HXY6Azf2Xu67OHa6g-FTI1s0X17utxo
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6FRgguUApVQx_sAU6wwlnvZteqqqqvkNIkRJBKua1s7y4c8ihNqqo_rv-NWXstCyR6q-STLe3h83jmG8_jA3jvlMq4zCw11gjKhWMUaUhEhVPOWukMt_4_5GDY6V3yrxMxacB9NQvj2yorn1g4arPI_T_yzzHGZiS_mF4cXv2mXjXKV1crCY00SCuYg2LFWBjsuLB3t5jCLQ_OT_F9f2CsezY-6dGgMkBzJqMVde3cJk4wniorPeFQQiUcL4NMW5qOQUYRJ9bkftFKLqWNY9dJY-t3_HpxFDz2CTR5zBPM_ZrHZ8PR93owMy5L3AnmaEpwFqZ2ytm9NmOSYsikkS_NUfl3ZKzp7j8V2iLwddfhRWCs5Kg0sVfQsPMNeFmpQZDgHDbgadFMmi9fw_4ovfYSLVNiiv4QsnDkR_cbWaB7moW5T5JOfyK8q18z4gOpIXirO_py9AbGjwHfJqzNF3O7BSRyIk9drJzKFGcmzzJkn8JKkZhEZjxqwccKH31VruLQ9dJlj6ZGNHWBppYt2Kkg1OGzXOraiFrwqYK1fvz_094-fNo7eNYbD_q6fz682IbnDIlP2RS5A2ur6xu7i8Rlle0F8yCgH9kg_wAf1Pgn
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LTsMwELSgSIgLb0ShgA_cwGrq2LUjThUQyqtUopV6i5LYBqQ2qUr4f9Z5KIDggJRTYvkwsbOzWc8sQqdGyoiJSBOlFSeMG0qAhjiEG2m0FkYxbf9DPg66_TG7m_DJFxV_ftq9KkkWmgbr0pRk7bky7Vr41qFUEIg3xLF1LSKW0QqzRgmwose0Vysj3aLG7EGSJDmjpWzm9zm-h6aab_4okeaRx99E6yVlxL3iHW-hJZ1so42qHQMud-cOuhiGC9sZZYpVfiwDpwY_-084ha_CrJRb4nD6ki7estcZtvFLYbjlD296u2jkX48u-6TsjUBiKpyMmE6sPcMpC6UWliZJLj0Gl4L8QKiuAh7kelrF1h4mFkK7rumGrrbOxLalyx5qJGmi9xF2DI9D40ojI8moiqMISB_XgnvKExFzmuisQiWYFw4YQe11bDEMAMMgxzAQTdSqgAvK3fAeuMCrIHGB1LCJzisw68d_z3bwv-EnaHV45QcPt4P7Q7RGgX4URxNbqJEtPvQR0IcsOs5XyCe4R7iy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel+design+of+SFO+optimization+algorithm+based+on+FPGA&rft.jtitle=The+Journal+of+supercomputing&rft.au=Naji%2C+Hamid+Reza&rft.au=Shadravan%2C+Soodeh&rft.au=Jafarabadi%2C+Hossien+Mousa&rft.au=Momeni%2C+Hossien&rft.date=2024-05-01&rft.pub=Springer+US&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=80&rft.issue=8&rft.spage=10796&rft.epage=10817&rft_id=info:doi/10.1007%2Fs11227-023-05851-7&rft.externalDocID=10_1007_s11227_023_05851_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon