q-Supercongruences modulo the fourth power of a cyclotomic polynomial via creative microscoping

By applying the Chinese remainder theorem for coprime polynomials and the “creative microscoping” method recently introduced by the author and Zudilin, we establish parametric generalizations of three q-supercongruences modulo the fourth power of a cyclotomic polynomial. The original q-supercongruen...

Full description

Saved in:
Bibliographic Details
Published inAdvances in applied mathematics Vol. 120; p. 102078
Main Author Guo, Victor J.W.
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.09.2020
Subjects
Online AccessGet full text
ISSN0196-8858
DOI10.1016/j.aam.2020.102078

Cover

Abstract By applying the Chinese remainder theorem for coprime polynomials and the “creative microscoping” method recently introduced by the author and Zudilin, we establish parametric generalizations of three q-supercongruences modulo the fourth power of a cyclotomic polynomial. The original q-supercongruences then follow from these parametric generalizations by taking the limits as the parameter tends to 1 (l'Hôpital's rule is utilized here). In particular, we prove a complete q-analogue of the (J.2) supercongruence of Van Hamme and a complete q-analogue of a “divergent” Ramanujan-type supercongruence, thus confirming two recent conjectures of the author. We also put forward some related conjectures, including a q-supercongruence modulo the fifth power of a cyclotomic polynomial.
AbstractList By applying the Chinese remainder theorem for coprime polynomials and the “creative microscoping” method recently introduced by the author and Zudilin, we establish parametric generalizations of three q-supercongruences modulo the fourth power of a cyclotomic polynomial. The original q-supercongruences then follow from these parametric generalizations by taking the limits as the parameter tends to 1 (l'Hôpital's rule is utilized here). In particular, we prove a complete q-analogue of the (J.2) supercongruence of Van Hamme and a complete q-analogue of a “divergent” Ramanujan-type supercongruence, thus confirming two recent conjectures of the author. We also put forward some related conjectures, including a q-supercongruence modulo the fifth power of a cyclotomic polynomial.
ArticleNumber 102078
Author Guo, Victor J.W.
Author_xml – sequence: 1
  givenname: Victor J.W.
  surname: Guo
  fullname: Guo, Victor J.W.
  email: jwguo@hytc.edu.cn
  organization: School of Mathematics and Statistics, Huaiyin Normal University, Huai'an 223300, Jiangsu, People's Republic of China
BookMark eNp9kL1OwzAQgD0UibbwAGx-gRTbaRJHTKjiT6rEAMyWY59bV0kcbKeob4-jMjF0uj99d7pvgWa96wGhO0pWlNDy_rCSslsxwqaakYrP0JzQusw4L_g1WoRwIITUrMznSHxnH-MAXrl-50foFQTcOT22Dsc9YONGH_d4cD_gsTNYYnVSrYuusyp121OfMtnio00TDzLaI-A08y4oN9h-d4OujGwD3P7FJfp6fvrcvGbb95e3zeM2U6wiMTNE5TovG13IRnPa8KYuCiO1kVRSCjUjmq_BmDVUZVWxhvK1ZgWrdZ0rzXKeLxE9751OBw9GDN520p8EJWKyIg4iWRGTFXG2kpjqH6NsTC-4Pnpp24vkw5mE9NLRghdB2Umeth5UFNrZC_Qv8heDCQ
CitedBy_id crossref_primary_10_1016_j_jmaa_2022_126062
crossref_primary_10_1007_s13398_023_01428_4
crossref_primary_10_1080_10236198_2021_2013477
crossref_primary_10_1007_s13398_021_01172_7
crossref_primary_10_1007_s00025_023_02119_7
crossref_primary_10_1007_s00025_025_02369_7
crossref_primary_10_1007_s11139_021_00452_5
crossref_primary_10_1007_s11139_022_00558_4
crossref_primary_10_1080_10236198_2020_1862808
crossref_primary_10_1007_s11139_020_00369_5
crossref_primary_10_1007_s11139_022_00597_x
crossref_primary_10_1007_s13398_022_01364_9
crossref_primary_10_1007_s13398_021_01092_6
crossref_primary_10_1016_j_bulsci_2021_102992
crossref_primary_10_1007_s13398_022_01338_x
crossref_primary_10_1007_s00025_024_02237_w
crossref_primary_10_1007_s13398_023_01534_3
crossref_primary_10_1080_10236198_2021_1906236
crossref_primary_10_1007_s00025_020_01272_7
crossref_primary_10_1016_j_jcta_2021_105469
crossref_primary_10_1007_s00025_021_01536_w
crossref_primary_10_1016_j_jcta_2022_105705
crossref_primary_10_1007_s00025_023_01913_7
crossref_primary_10_1007_s00365_020_09524_z
crossref_primary_10_1007_s13398_023_01432_8
crossref_primary_10_1007_s10998_022_00452_y
crossref_primary_10_1007_s13398_020_00946_9
crossref_primary_10_1016_j_jcta_2020_105362
crossref_primary_10_1016_j_aam_2022_102376
crossref_primary_10_3934_math_2022228
crossref_primary_10_1007_s10801_021_01096_w
crossref_primary_10_1016_j_jmaa_2023_127344
crossref_primary_10_3934_math_2022227
crossref_primary_10_1016_j_jmaa_2021_125238
crossref_primary_10_1007_s00025_021_01350_4
crossref_primary_10_1007_s00025_020_01203_6
crossref_primary_10_1142_S1793042121500329
crossref_primary_10_1090_proc_16923
crossref_primary_10_1007_s00025_022_01753_x
crossref_primary_10_1007_s13398_020_00991_4
crossref_primary_10_1007_s40993_025_00619_9
crossref_primary_10_1080_10236198_2021_1900140
Cites_doi 10.1017/prm.2018.96
10.1007/s11425-011-4302-x
10.1142/S1793042120500694
10.1007/s00026-019-00461-8
10.1007/s11139-019-00161-0
10.1007/BF02100618
10.1016/j.jnt.2016.09.011
10.1016/j.jmaa.2019.07.062
10.4064/cm133-1-9
10.1090/S0002-9939-08-09389-1
10.1090/proc/14301
10.1007/s00025-019-1126-4
10.1016/j.aam.2020.102003
10.4153/CJM-1993-020-8
10.1186/s40687-015-0037-6
10.1016/j.aim.2019.02.008
10.1142/S1793042119501069
10.1016/j.jnt.2009.01.013
10.1007/s11856-020-2081-1
10.2140/pjm.2011.249.405
10.1007/s11139-018-0096-6
10.1016/j.jmaa.2020.124022
10.1016/j.jmaa.2017.09.022
10.1016/j.jmaa.2018.06.021
10.1016/j.aam.2020.102016
10.1007/s00025-020-1168-7
10.1016/j.jmaa.2015.08.009
ContentType Journal Article
Copyright 2020 Elsevier Inc.
Copyright_xml – notice: 2020 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.aam.2020.102078
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
ExternalDocumentID 10_1016_j_aam_2020_102078
S0196885820300816
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AATTM
AAXKI
AAXUO
ABAOU
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACRLP
ACRPL
ADBBV
ADEZE
ADFGL
ADMUD
ADNMO
ADVLN
AEBSH
AEIPS
AEKER
AENEX
AEXQZ
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CAG
COF
CS3
DM4
EBS
EFBJH
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG5
M25
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSH
SSW
SSZ
T5K
TN5
UPT
VOH
WUQ
XPP
ZMT
~G-
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c270t-f0c3d36bd5abd81b8b955fadfa1a11e920d84eff4e76772b184d2529d93cd2383
IEDL.DBID IXB
ISSN 0196-8858
IngestDate Tue Jul 01 02:56:02 EDT 2025
Thu Apr 24 23:07:38 EDT 2025
Sun Apr 06 06:53:04 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords 11A07
q-Congruence
Creative microscoping
11B65
Cyclotomic polynomial
The Chinese remainder theorem
33D15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-f0c3d36bd5abd81b8b955fadfa1a11e920d84eff4e76772b184d2529d93cd2383
OpenAccessLink https://doi.org/10.1016/j.aam.2020.102078
ParticipantIDs crossref_primary_10_1016_j_aam_2020_102078
crossref_citationtrail_10_1016_j_aam_2020_102078
elsevier_sciencedirect_doi_10_1016_j_aam_2020_102078
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2020
2020-09-00
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: September 2020
PublicationDecade 2020
PublicationTitle Advances in applied mathematics
PublicationYear 2020
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Straub (br0270) 2019; 147
Osburn, Zudilin (br0230) 2016; 433
Guo (br0050) 2018; 466
Guo (br0110) 2020
Berndt (br0010) 1994
Guo, Wang (br0160) 2020; 150
Wang, Yue (br0310) 2020
Guo (br0090) 2020; 487
Long (br0200) 2011; 249
Mortenson (br0210) 2008; 136
Gasper, Rahman (br0020) 2004; vol. 96
Guo (br0100) 2020; 52
Guo, Schlosser (br0130) 2020; 75
Tauraso (br0290) 2013; 133
Guo (br0060) 2020; 114
Wilf, Zeilberger (br0320) 1992; 108
Sun (br0260) 2011; 54
Guo (br0040) 2018; 458
Gorodetsky (br0030) 2019; 15
Zudilin (br0340) 2019; 23
Liu, Petrov (br0190) 2020; 116
Guo (br0080) 2020; 75
Ni, Pan (br0220) 2020; 481
Guo, Schlosser (br0140) 2020
Guo, Schlosser (br0150) 2020
Van Hamme (br0300) 1997; vol. 192
Guo, Zudilin (br0180) 2020; 75
Rahman (br0240) 1993; 45
Guo (br0070) 2020; 116
Guo, Pan, Zhang (br0120) 2017; 174
Guo, Zudilin (br0170) 2019; 346
Swisher (br0280) 2015; 2
Ramanujan (br0250) 1914; 45
Zudilin (br0330) 2009; 129
Guo (10.1016/j.aam.2020.102078_br0120) 2017; 174
Ni (10.1016/j.aam.2020.102078_br0220) 2020; 481
Guo (10.1016/j.aam.2020.102078_br0170) 2019; 346
Guo (10.1016/j.aam.2020.102078_br0050) 2018; 466
Guo (10.1016/j.aam.2020.102078_br0040) 2018; 458
Zudilin (10.1016/j.aam.2020.102078_br0330) 2009; 129
Liu (10.1016/j.aam.2020.102078_br0190) 2020; 116
Wang (10.1016/j.aam.2020.102078_br0310) 2020
Mortenson (10.1016/j.aam.2020.102078_br0210) 2008; 136
Guo (10.1016/j.aam.2020.102078_br0090) 2020; 487
Van Hamme (10.1016/j.aam.2020.102078_br0300) 1997; vol. 192
Sun (10.1016/j.aam.2020.102078_br0260) 2011; 54
Osburn (10.1016/j.aam.2020.102078_br0230) 2016; 433
Swisher (10.1016/j.aam.2020.102078_br0280) 2015; 2
Tauraso (10.1016/j.aam.2020.102078_br0290) 2013; 133
Gorodetsky (10.1016/j.aam.2020.102078_br0030) 2019; 15
Gasper (10.1016/j.aam.2020.102078_br0020) 2004; vol. 96
Rahman (10.1016/j.aam.2020.102078_br0240) 1993; 45
Berndt (10.1016/j.aam.2020.102078_br0010) 1994
Guo (10.1016/j.aam.2020.102078_br0180) 2020; 75
Guo (10.1016/j.aam.2020.102078_br0080) 2020; 75
Guo (10.1016/j.aam.2020.102078_br0100) 2020; 52
Guo (10.1016/j.aam.2020.102078_br0110) 2020
Straub (10.1016/j.aam.2020.102078_br0270) 2019; 147
Guo (10.1016/j.aam.2020.102078_br0140) 2020
Guo (10.1016/j.aam.2020.102078_br0150) 2020
Guo (10.1016/j.aam.2020.102078_br0160) 2020; 150
Guo (10.1016/j.aam.2020.102078_br0070) 2020; 116
Ramanujan (10.1016/j.aam.2020.102078_br0250) 1914; 45
Zudilin (10.1016/j.aam.2020.102078_br0340) 2019; 23
Guo (10.1016/j.aam.2020.102078_br0130) 2020; 75
Long (10.1016/j.aam.2020.102078_br0200) 2011; 249
Guo (10.1016/j.aam.2020.102078_br0060) 2020; 114
Wilf (10.1016/j.aam.2020.102078_br0320) 1992; 108
References_xml – year: 1994
  ident: br0010
  article-title: Ramanujan's Notebooks, Part IV
– volume: 75
  year: 2020
  ident: br0080
  article-title: Proof of some
  publication-title: Results Math.
– volume: 15
  start-page: 1919
  year: 2019
  end-page: 1968
  ident: br0030
  article-title: -congruences, with applications to supercongruences and the cyclic sieving phenomenon
  publication-title: Int. J. Number Theory
– year: 2020
  ident: br0150
  article-title: A family of
  publication-title: Isr. J. Math.
– volume: 150
  start-page: 1127
  year: 2020
  end-page: 1138
  ident: br0160
  article-title: Some congruences involving fourth powers of central
  publication-title: Proc. R. Soc. Edinb., Sect. A
– volume: 45
  start-page: 394
  year: 1993
  end-page: 411
  ident: br0240
  article-title: Some quadratic and cubic summation formulas for basic hypergeometric series
  publication-title: Can. J. Math.
– volume: 481
  year: 2020
  ident: br0220
  article-title: Some symmetric
  publication-title: J. Math. Anal. Appl.
– volume: 116
  year: 2020
  ident: br0190
  article-title: Congruences on sums of
  publication-title: Adv. Appl. Math.
– volume: 346
  start-page: 329
  year: 2019
  end-page: 358
  ident: br0170
  article-title: A
  publication-title: Adv. Math.
– year: 2020
  ident: br0310
  article-title: A
  publication-title: Int. J. Number Theory
– volume: 129
  start-page: 1848
  year: 2009
  end-page: 1857
  ident: br0330
  article-title: Ramanujan-type supercongruences
  publication-title: J. Number Theory
– volume: 487
  year: 2020
  ident: br0090
  article-title: -Analogues of Dwork-type supercongruences
  publication-title: J. Math. Anal. Appl.
– volume: 147
  start-page: 1023
  year: 2019
  end-page: 1036
  ident: br0270
  article-title: Supercongruences for polynomial analogs of the Apéry numbers
  publication-title: Proc. Am. Math. Soc.
– volume: 54
  start-page: 2509
  year: 2011
  end-page: 2535
  ident: br0260
  article-title: Super congruences and Euler numbers
  publication-title: Sci. China Math.
– volume: 45
  start-page: 350
  year: 1914
  end-page: 372
  ident: br0250
  article-title: Modular equations and approximations to
  publication-title: Q. J. Math. Oxf. Ser. (2)
– volume: 23
  start-page: 1123
  year: 2019
  end-page: 1135
  ident: br0340
  article-title: Congruences for
  publication-title: Ann. Comb.
– volume: vol. 96
  year: 2004
  ident: br0020
  article-title: Basic Hypergeometric Series
  publication-title: Encyclopedia of Mathematics and Its Applications
– volume: 249
  start-page: 405
  year: 2011
  end-page: 418
  ident: br0200
  article-title: Hypergeometric evaluation identities and supercongruences
  publication-title: Pac. J. Math.
– volume: vol. 192
  start-page: 223
  year: 1997
  end-page: 236
  ident: br0300
  article-title: Some conjectures concerning partial sums of generalized hypergeometric series
  publication-title: -Adic Functional Analysis
– volume: 466
  start-page: 776
  year: 2018
  end-page: 788
  ident: br0050
  article-title: A
  publication-title: J. Math. Anal. Appl.
– volume: 75
  year: 2020
  ident: br0180
  article-title: A common
  publication-title: Results Math.
– volume: 133
  start-page: 133
  year: 2013
  end-page: 143
  ident: br0290
  article-title: Some
  publication-title: Colloq. Math.
– year: 2020
  ident: br0110
  article-title: -Analogues of two “divergent” Ramanujan-type supercongruences
  publication-title: Ramanujan J.
– volume: 174
  start-page: 358
  year: 2017
  end-page: 368
  ident: br0120
  article-title: The Rodriguez-Villegas type congruences for truncated
  publication-title: J. Number Theory
– volume: 458
  start-page: 590
  year: 2018
  end-page: 600
  ident: br0040
  article-title: A
  publication-title: J. Math. Anal. Appl.
– year: 2020
  ident: br0140
  article-title: Some
  publication-title: Constr. Approx.
– volume: 136
  start-page: 4321
  year: 2008
  end-page: 4328
  ident: br0210
  article-title: A
  publication-title: Proc. Am. Math. Soc.
– volume: 75
  year: 2020
  ident: br0130
  article-title: Some new
  publication-title: Results Math.
– volume: 114
  year: 2020
  ident: br0060
  article-title: A
  publication-title: Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat.
– volume: 116
  year: 2020
  ident: br0070
  article-title: Proof of a generalization of the (B.2) supercongruence of Van Hamme through a
  publication-title: Adv. Appl. Math.
– volume: 433
  start-page: 706
  year: 2016
  end-page: 711
  ident: br0230
  article-title: On the (K.2) supercongruence of Van Hamme
  publication-title: J. Math. Anal. Appl.
– volume: 108
  start-page: 575
  year: 1992
  end-page: 633
  ident: br0320
  article-title: An algorithmic proof theory for hypergeometric (ordinary and “
  publication-title: Invent. Math.
– volume: 2
  year: 2015
  ident: br0280
  article-title: On the supercongruence conjectures of van Hamme
  publication-title: Res. Math. Sci.
– volume: 52
  start-page: 123
  year: 2020
  end-page: 132
  ident: br0100
  article-title: -Analogues of three Ramanujan-type formulas for
  publication-title: Ramanujan J.
– volume: 150
  start-page: 1127
  year: 2020
  ident: 10.1016/j.aam.2020.102078_br0160
  article-title: Some congruences involving fourth powers of central q-binomial coefficients
  publication-title: Proc. R. Soc. Edinb., Sect. A
  doi: 10.1017/prm.2018.96
– volume: 54
  start-page: 2509
  year: 2011
  ident: 10.1016/j.aam.2020.102078_br0260
  article-title: Super congruences and Euler numbers
  publication-title: Sci. China Math.
  doi: 10.1007/s11425-011-4302-x
– year: 2020
  ident: 10.1016/j.aam.2020.102078_br0310
  article-title: A q-analogue of the (A.2) supercongruence of Van Hamme for any prime p≡3(mod4)
  publication-title: Int. J. Number Theory
  doi: 10.1142/S1793042120500694
– volume: 23
  start-page: 1123
  year: 2019
  ident: 10.1016/j.aam.2020.102078_br0340
  article-title: Congruences for q-binomial coefficients
  publication-title: Ann. Comb.
  doi: 10.1007/s00026-019-00461-8
– volume: 45
  start-page: 350
  year: 1914
  ident: 10.1016/j.aam.2020.102078_br0250
  article-title: Modular equations and approximations to π
  publication-title: Q. J. Math. Oxf. Ser. (2)
– year: 2020
  ident: 10.1016/j.aam.2020.102078_br0110
  article-title: q-Analogues of two “divergent” Ramanujan-type supercongruences
  publication-title: Ramanujan J.
  doi: 10.1007/s11139-019-00161-0
– volume: 75
  year: 2020
  ident: 10.1016/j.aam.2020.102078_br0080
  article-title: Proof of some q-supercongruences modulo the fourth power of a cyclotomic polynomial
  publication-title: Results Math.
– year: 2020
  ident: 10.1016/j.aam.2020.102078_br0140
  article-title: Some q-supercongruences from transformation formulas for basic hypergeometric series
  publication-title: Constr. Approx.
– volume: 108
  start-page: 575
  year: 1992
  ident: 10.1016/j.aam.2020.102078_br0320
  article-title: An algorithmic proof theory for hypergeometric (ordinary and “q”) multisum/integral identities
  publication-title: Invent. Math.
  doi: 10.1007/BF02100618
– volume: 174
  start-page: 358
  year: 2017
  ident: 10.1016/j.aam.2020.102078_br0120
  article-title: The Rodriguez-Villegas type congruences for truncated q-hypergeometric functions
  publication-title: J. Number Theory
  doi: 10.1016/j.jnt.2016.09.011
– volume: 481
  year: 2020
  ident: 10.1016/j.aam.2020.102078_br0220
  article-title: Some symmetric q-congruences modulo the square of a cyclotomic polynomial
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2019.07.062
– volume: 133
  start-page: 133
  year: 2013
  ident: 10.1016/j.aam.2020.102078_br0290
  article-title: Some q-analogs of congruences for central binomial sums
  publication-title: Colloq. Math.
  doi: 10.4064/cm133-1-9
– volume: 136
  start-page: 4321
  year: 2008
  ident: 10.1016/j.aam.2020.102078_br0210
  article-title: A p-adic supercongruence conjecture of van Hamme
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-08-09389-1
– volume: 147
  start-page: 1023
  year: 2019
  ident: 10.1016/j.aam.2020.102078_br0270
  article-title: Supercongruences for polynomial analogs of the Apéry numbers
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/proc/14301
– volume: 75
  year: 2020
  ident: 10.1016/j.aam.2020.102078_br0130
  article-title: Some new q-congruences for truncated basic hypergeometric series: even powers
  publication-title: Results Math.
  doi: 10.1007/s00025-019-1126-4
– volume: vol. 192
  start-page: 223
  year: 1997
  ident: 10.1016/j.aam.2020.102078_br0300
  article-title: Some conjectures concerning partial sums of generalized hypergeometric series
– volume: 116
  year: 2020
  ident: 10.1016/j.aam.2020.102078_br0190
  article-title: Congruences on sums of q-binomial coefficients
  publication-title: Adv. Appl. Math.
  doi: 10.1016/j.aam.2020.102003
– volume: 45
  start-page: 394
  year: 1993
  ident: 10.1016/j.aam.2020.102078_br0240
  article-title: Some quadratic and cubic summation formulas for basic hypergeometric series
  publication-title: Can. J. Math.
  doi: 10.4153/CJM-1993-020-8
– volume: 2
  year: 2015
  ident: 10.1016/j.aam.2020.102078_br0280
  article-title: On the supercongruence conjectures of van Hamme
  publication-title: Res. Math. Sci.
  doi: 10.1186/s40687-015-0037-6
– volume: 346
  start-page: 329
  year: 2019
  ident: 10.1016/j.aam.2020.102078_br0170
  article-title: A q-microscope for supercongruences
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2019.02.008
– volume: 15
  start-page: 1919
  year: 2019
  ident: 10.1016/j.aam.2020.102078_br0030
  article-title: q-congruences, with applications to supercongruences and the cyclic sieving phenomenon
  publication-title: Int. J. Number Theory
  doi: 10.1142/S1793042119501069
– volume: 129
  start-page: 1848
  year: 2009
  ident: 10.1016/j.aam.2020.102078_br0330
  article-title: Ramanujan-type supercongruences
  publication-title: J. Number Theory
  doi: 10.1016/j.jnt.2009.01.013
– volume: vol. 96
  year: 2004
  ident: 10.1016/j.aam.2020.102078_br0020
  article-title: Basic Hypergeometric Series
– year: 2020
  ident: 10.1016/j.aam.2020.102078_br0150
  article-title: A family of q-hypergeometric congruences modulo the fourth power of a cyclotomic polynomial
  publication-title: Isr. J. Math.
  doi: 10.1007/s11856-020-2081-1
– volume: 249
  start-page: 405
  year: 2011
  ident: 10.1016/j.aam.2020.102078_br0200
  article-title: Hypergeometric evaluation identities and supercongruences
  publication-title: Pac. J. Math.
  doi: 10.2140/pjm.2011.249.405
– volume: 52
  start-page: 123
  year: 2020
  ident: 10.1016/j.aam.2020.102078_br0100
  article-title: q-Analogues of three Ramanujan-type formulas for 1/π
  publication-title: Ramanujan J.
  doi: 10.1007/s11139-018-0096-6
– volume: 114
  year: 2020
  ident: 10.1016/j.aam.2020.102078_br0060
  article-title: A q-analogue of the (A.2) supercongruence of Van Hamme for primes p≡1(mod4)
  publication-title: Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat.
– volume: 487
  year: 2020
  ident: 10.1016/j.aam.2020.102078_br0090
  article-title: q-Analogues of Dwork-type supercongruences
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2020.124022
– volume: 458
  start-page: 590
  year: 2018
  ident: 10.1016/j.aam.2020.102078_br0040
  article-title: A q-analogue of a Ramanujan-type supercongruence involving central binomial coefficients
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2017.09.022
– volume: 466
  start-page: 776
  year: 2018
  ident: 10.1016/j.aam.2020.102078_br0050
  article-title: A q-analogue of the (J.2) supercongruence of Van Hamme
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2018.06.021
– volume: 116
  year: 2020
  ident: 10.1016/j.aam.2020.102078_br0070
  article-title: Proof of a generalization of the (B.2) supercongruence of Van Hamme through a q-microscope
  publication-title: Adv. Appl. Math.
  doi: 10.1016/j.aam.2020.102016
– year: 1994
  ident: 10.1016/j.aam.2020.102078_br0010
– volume: 75
  year: 2020
  ident: 10.1016/j.aam.2020.102078_br0180
  article-title: A common q-analogue of two supercongruences
  publication-title: Results Math.
  doi: 10.1007/s00025-020-1168-7
– volume: 433
  start-page: 706
  year: 2016
  ident: 10.1016/j.aam.2020.102078_br0230
  article-title: On the (K.2) supercongruence of Van Hamme
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2015.08.009
SSID ssj0009263
Score 2.4378283
Snippet By applying the Chinese remainder theorem for coprime polynomials and the “creative microscoping” method recently introduced by the author and Zudilin, we...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 102078
SubjectTerms Creative microscoping
Cyclotomic polynomial
q-Congruence
The Chinese remainder theorem
Title q-Supercongruences modulo the fourth power of a cyclotomic polynomial via creative microscoping
URI https://dx.doi.org/10.1016/j.aam.2020.102078
Volume 120
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5gXOCAeIrnlAMnpLK0SdfuCBPTYIIDD7FbldQNDI11jDJpF347dh88JODAqWpqt5Wb2k7r7zNjB9oaAE-FTgiudBQYfOcAE7k4NKBVIA0owg5fXDa7t-q87_fnWLvCwlBZZen7C5-ee-typFFaszEeDBrXxOwShj6GMEmBjWi3CVVKIL7-ySfxrld0U0Nhh6SrP5t5jZfWBEb3cgIDQZ3WfopNX-JNZ4Utl4kiPy7uZZXNJaM1tnTxwbL6ss6iZ-f6dZxMcEl7PykKovlTCq_DlKMUt3iK7IGPqQ8aTy3XPJ7FwzQjHDKODmeESMZLTAd4JM8dpwl_ogI9gqpgSNtgt53Tm3bXKRsmOLEXiMyxIpYgmwZ8bQDz0dC0fN9qsNrVrpu0PAGhSqxVSdDErNrg6g4832tBS8aAsVtustooHSVbjBOnjh94UjatUNL49K1I2FiAFQkG_WCbicpUUVyyiVNTi2FUlY09RmjdiKwbFdbdZocfKuOCSuMvYVXZP_o2HyJ09b-r7fxPbZct0l5RO7bHahk-tH1MNjJTZ_NHb26dLRyf9bqXtO1d3fXq-Rx7B_bJ1wA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JT-swEB7xyoHHAbE9seMDJ6SobuwsPSIEKkt7ASRulp2Joag0BQIS_56ZJmGR4B242jNJNHHmGzsz3wDsWe8QQ50GKXZUoNHRN4cUyGWpQ6sT5VBz7XB_EPeu9Ol1dD0Dh00tDKdV1r6_8ulTb12PtGtrtifDYfuCmV3SNCIIUwxs8R-Y1dzUugWzBydnvcEH925YNVQj-YAVmp-b0zQva7kePZxyGEhutvYdPH2CnONFWKhjRXFQPc4SzOTjZZjvvxOtPq2AeQgunif5I-1qbx6rnGhxX-DzqBAkJTxdorwVE26FJgovrMhes1FRcikyjY5euSiZbvEypJlp-PiSi3vO0eNqFUK1Vbg6Pro87AV1z4QgCxNZBl5mClXsMLIOKSRNXTeKvEVvO7bTybuhxFTn3us8iSmwdrTBwzAKu9hVGRJ8q3_QGhfjfA0E0-pESahU7KVWLuLjIukziV7mhPvJOsjGVCarCcW5r8XINJljd4asa9i6prLuOuy_q0wqNo3_CevG_ubLkjDk7X9W2_id2i7M9S775-b8ZHC2CX95pkol24JWSS9wm2KP0u3Ua-sNi0rXAg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=q-Supercongruences+modulo+the+fourth+power+of+a+cyclotomic+polynomial+via+creative+microscoping&rft.jtitle=Advances+in+applied+mathematics&rft.au=Guo%2C+Victor+J.W.&rft.date=2020-09-01&rft.pub=Elsevier+Inc&rft.issn=0196-8858&rft.volume=120&rft_id=info:doi/10.1016%2Fj.aam.2020.102078&rft.externalDocID=S0196885820300816
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8858&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8858&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8858&client=summon