q-Supercongruences modulo the fourth power of a cyclotomic polynomial via creative microscoping
By applying the Chinese remainder theorem for coprime polynomials and the “creative microscoping” method recently introduced by the author and Zudilin, we establish parametric generalizations of three q-supercongruences modulo the fourth power of a cyclotomic polynomial. The original q-supercongruen...
Saved in:
Published in | Advances in applied mathematics Vol. 120; p. 102078 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.09.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0196-8858 |
DOI | 10.1016/j.aam.2020.102078 |
Cover
Abstract | By applying the Chinese remainder theorem for coprime polynomials and the “creative microscoping” method recently introduced by the author and Zudilin, we establish parametric generalizations of three q-supercongruences modulo the fourth power of a cyclotomic polynomial. The original q-supercongruences then follow from these parametric generalizations by taking the limits as the parameter tends to 1 (l'Hôpital's rule is utilized here). In particular, we prove a complete q-analogue of the (J.2) supercongruence of Van Hamme and a complete q-analogue of a “divergent” Ramanujan-type supercongruence, thus confirming two recent conjectures of the author. We also put forward some related conjectures, including a q-supercongruence modulo the fifth power of a cyclotomic polynomial. |
---|---|
AbstractList | By applying the Chinese remainder theorem for coprime polynomials and the “creative microscoping” method recently introduced by the author and Zudilin, we establish parametric generalizations of three q-supercongruences modulo the fourth power of a cyclotomic polynomial. The original q-supercongruences then follow from these parametric generalizations by taking the limits as the parameter tends to 1 (l'Hôpital's rule is utilized here). In particular, we prove a complete q-analogue of the (J.2) supercongruence of Van Hamme and a complete q-analogue of a “divergent” Ramanujan-type supercongruence, thus confirming two recent conjectures of the author. We also put forward some related conjectures, including a q-supercongruence modulo the fifth power of a cyclotomic polynomial. |
ArticleNumber | 102078 |
Author | Guo, Victor J.W. |
Author_xml | – sequence: 1 givenname: Victor J.W. surname: Guo fullname: Guo, Victor J.W. email: jwguo@hytc.edu.cn organization: School of Mathematics and Statistics, Huaiyin Normal University, Huai'an 223300, Jiangsu, People's Republic of China |
BookMark | eNp9kL1OwzAQgD0UibbwAGx-gRTbaRJHTKjiT6rEAMyWY59bV0kcbKeob4-jMjF0uj99d7pvgWa96wGhO0pWlNDy_rCSslsxwqaakYrP0JzQusw4L_g1WoRwIITUrMznSHxnH-MAXrl-50foFQTcOT22Dsc9YONGH_d4cD_gsTNYYnVSrYuusyp121OfMtnio00TDzLaI-A08y4oN9h-d4OujGwD3P7FJfp6fvrcvGbb95e3zeM2U6wiMTNE5TovG13IRnPa8KYuCiO1kVRSCjUjmq_BmDVUZVWxhvK1ZgWrdZ0rzXKeLxE9751OBw9GDN520p8EJWKyIg4iWRGTFXG2kpjqH6NsTC-4Pnpp24vkw5mE9NLRghdB2Umeth5UFNrZC_Qv8heDCQ |
CitedBy_id | crossref_primary_10_1016_j_jmaa_2022_126062 crossref_primary_10_1007_s13398_023_01428_4 crossref_primary_10_1080_10236198_2021_2013477 crossref_primary_10_1007_s13398_021_01172_7 crossref_primary_10_1007_s00025_023_02119_7 crossref_primary_10_1007_s00025_025_02369_7 crossref_primary_10_1007_s11139_021_00452_5 crossref_primary_10_1007_s11139_022_00558_4 crossref_primary_10_1080_10236198_2020_1862808 crossref_primary_10_1007_s11139_020_00369_5 crossref_primary_10_1007_s11139_022_00597_x crossref_primary_10_1007_s13398_022_01364_9 crossref_primary_10_1007_s13398_021_01092_6 crossref_primary_10_1016_j_bulsci_2021_102992 crossref_primary_10_1007_s13398_022_01338_x crossref_primary_10_1007_s00025_024_02237_w crossref_primary_10_1007_s13398_023_01534_3 crossref_primary_10_1080_10236198_2021_1906236 crossref_primary_10_1007_s00025_020_01272_7 crossref_primary_10_1016_j_jcta_2021_105469 crossref_primary_10_1007_s00025_021_01536_w crossref_primary_10_1016_j_jcta_2022_105705 crossref_primary_10_1007_s00025_023_01913_7 crossref_primary_10_1007_s00365_020_09524_z crossref_primary_10_1007_s13398_023_01432_8 crossref_primary_10_1007_s10998_022_00452_y crossref_primary_10_1007_s13398_020_00946_9 crossref_primary_10_1016_j_jcta_2020_105362 crossref_primary_10_1016_j_aam_2022_102376 crossref_primary_10_3934_math_2022228 crossref_primary_10_1007_s10801_021_01096_w crossref_primary_10_1016_j_jmaa_2023_127344 crossref_primary_10_3934_math_2022227 crossref_primary_10_1016_j_jmaa_2021_125238 crossref_primary_10_1007_s00025_021_01350_4 crossref_primary_10_1007_s00025_020_01203_6 crossref_primary_10_1142_S1793042121500329 crossref_primary_10_1090_proc_16923 crossref_primary_10_1007_s00025_022_01753_x crossref_primary_10_1007_s13398_020_00991_4 crossref_primary_10_1007_s40993_025_00619_9 crossref_primary_10_1080_10236198_2021_1900140 |
Cites_doi | 10.1017/prm.2018.96 10.1007/s11425-011-4302-x 10.1142/S1793042120500694 10.1007/s00026-019-00461-8 10.1007/s11139-019-00161-0 10.1007/BF02100618 10.1016/j.jnt.2016.09.011 10.1016/j.jmaa.2019.07.062 10.4064/cm133-1-9 10.1090/S0002-9939-08-09389-1 10.1090/proc/14301 10.1007/s00025-019-1126-4 10.1016/j.aam.2020.102003 10.4153/CJM-1993-020-8 10.1186/s40687-015-0037-6 10.1016/j.aim.2019.02.008 10.1142/S1793042119501069 10.1016/j.jnt.2009.01.013 10.1007/s11856-020-2081-1 10.2140/pjm.2011.249.405 10.1007/s11139-018-0096-6 10.1016/j.jmaa.2020.124022 10.1016/j.jmaa.2017.09.022 10.1016/j.jmaa.2018.06.021 10.1016/j.aam.2020.102016 10.1007/s00025-020-1168-7 10.1016/j.jmaa.2015.08.009 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Inc. |
Copyright_xml | – notice: 2020 Elsevier Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.aam.2020.102078 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
ExternalDocumentID | 10_1016_j_aam_2020_102078 S0196885820300816 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AASFE AATTM AAXKI AAXUO ABAOU ABFNM ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACRLP ACRPL ADBBV ADEZE ADFGL ADMUD ADNMO ADVLN AEBSH AEIPS AEKER AENEX AEXQZ AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CAG COF CS3 DM4 EBS EFBJH EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE IXB J1W KOM LG5 M25 M41 MHUIS MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSH SSW SSZ T5K TN5 UPT VOH WUQ XPP ZMT ~G- AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c270t-f0c3d36bd5abd81b8b955fadfa1a11e920d84eff4e76772b184d2529d93cd2383 |
IEDL.DBID | IXB |
ISSN | 0196-8858 |
IngestDate | Tue Jul 01 02:56:02 EDT 2025 Thu Apr 24 23:07:38 EDT 2025 Sun Apr 06 06:53:04 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | 11A07 q-Congruence Creative microscoping 11B65 Cyclotomic polynomial The Chinese remainder theorem 33D15 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c270t-f0c3d36bd5abd81b8b955fadfa1a11e920d84eff4e76772b184d2529d93cd2383 |
OpenAccessLink | https://doi.org/10.1016/j.aam.2020.102078 |
ParticipantIDs | crossref_primary_10_1016_j_aam_2020_102078 crossref_citationtrail_10_1016_j_aam_2020_102078 elsevier_sciencedirect_doi_10_1016_j_aam_2020_102078 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2020 2020-09-00 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: September 2020 |
PublicationDecade | 2020 |
PublicationTitle | Advances in applied mathematics |
PublicationYear | 2020 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Straub (br0270) 2019; 147 Osburn, Zudilin (br0230) 2016; 433 Guo (br0050) 2018; 466 Guo (br0110) 2020 Berndt (br0010) 1994 Guo, Wang (br0160) 2020; 150 Wang, Yue (br0310) 2020 Guo (br0090) 2020; 487 Long (br0200) 2011; 249 Mortenson (br0210) 2008; 136 Gasper, Rahman (br0020) 2004; vol. 96 Guo (br0100) 2020; 52 Guo, Schlosser (br0130) 2020; 75 Tauraso (br0290) 2013; 133 Guo (br0060) 2020; 114 Wilf, Zeilberger (br0320) 1992; 108 Sun (br0260) 2011; 54 Guo (br0040) 2018; 458 Gorodetsky (br0030) 2019; 15 Zudilin (br0340) 2019; 23 Liu, Petrov (br0190) 2020; 116 Guo (br0080) 2020; 75 Ni, Pan (br0220) 2020; 481 Guo, Schlosser (br0140) 2020 Guo, Schlosser (br0150) 2020 Van Hamme (br0300) 1997; vol. 192 Guo, Zudilin (br0180) 2020; 75 Rahman (br0240) 1993; 45 Guo (br0070) 2020; 116 Guo, Pan, Zhang (br0120) 2017; 174 Guo, Zudilin (br0170) 2019; 346 Swisher (br0280) 2015; 2 Ramanujan (br0250) 1914; 45 Zudilin (br0330) 2009; 129 Guo (10.1016/j.aam.2020.102078_br0120) 2017; 174 Ni (10.1016/j.aam.2020.102078_br0220) 2020; 481 Guo (10.1016/j.aam.2020.102078_br0170) 2019; 346 Guo (10.1016/j.aam.2020.102078_br0050) 2018; 466 Guo (10.1016/j.aam.2020.102078_br0040) 2018; 458 Zudilin (10.1016/j.aam.2020.102078_br0330) 2009; 129 Liu (10.1016/j.aam.2020.102078_br0190) 2020; 116 Wang (10.1016/j.aam.2020.102078_br0310) 2020 Mortenson (10.1016/j.aam.2020.102078_br0210) 2008; 136 Guo (10.1016/j.aam.2020.102078_br0090) 2020; 487 Van Hamme (10.1016/j.aam.2020.102078_br0300) 1997; vol. 192 Sun (10.1016/j.aam.2020.102078_br0260) 2011; 54 Osburn (10.1016/j.aam.2020.102078_br0230) 2016; 433 Swisher (10.1016/j.aam.2020.102078_br0280) 2015; 2 Tauraso (10.1016/j.aam.2020.102078_br0290) 2013; 133 Gorodetsky (10.1016/j.aam.2020.102078_br0030) 2019; 15 Gasper (10.1016/j.aam.2020.102078_br0020) 2004; vol. 96 Rahman (10.1016/j.aam.2020.102078_br0240) 1993; 45 Berndt (10.1016/j.aam.2020.102078_br0010) 1994 Guo (10.1016/j.aam.2020.102078_br0180) 2020; 75 Guo (10.1016/j.aam.2020.102078_br0080) 2020; 75 Guo (10.1016/j.aam.2020.102078_br0100) 2020; 52 Guo (10.1016/j.aam.2020.102078_br0110) 2020 Straub (10.1016/j.aam.2020.102078_br0270) 2019; 147 Guo (10.1016/j.aam.2020.102078_br0140) 2020 Guo (10.1016/j.aam.2020.102078_br0150) 2020 Guo (10.1016/j.aam.2020.102078_br0160) 2020; 150 Guo (10.1016/j.aam.2020.102078_br0070) 2020; 116 Ramanujan (10.1016/j.aam.2020.102078_br0250) 1914; 45 Zudilin (10.1016/j.aam.2020.102078_br0340) 2019; 23 Guo (10.1016/j.aam.2020.102078_br0130) 2020; 75 Long (10.1016/j.aam.2020.102078_br0200) 2011; 249 Guo (10.1016/j.aam.2020.102078_br0060) 2020; 114 Wilf (10.1016/j.aam.2020.102078_br0320) 1992; 108 |
References_xml | – year: 1994 ident: br0010 article-title: Ramanujan's Notebooks, Part IV – volume: 75 year: 2020 ident: br0080 article-title: Proof of some publication-title: Results Math. – volume: 15 start-page: 1919 year: 2019 end-page: 1968 ident: br0030 article-title: -congruences, with applications to supercongruences and the cyclic sieving phenomenon publication-title: Int. J. Number Theory – year: 2020 ident: br0150 article-title: A family of publication-title: Isr. J. Math. – volume: 150 start-page: 1127 year: 2020 end-page: 1138 ident: br0160 article-title: Some congruences involving fourth powers of central publication-title: Proc. R. Soc. Edinb., Sect. A – volume: 45 start-page: 394 year: 1993 end-page: 411 ident: br0240 article-title: Some quadratic and cubic summation formulas for basic hypergeometric series publication-title: Can. J. Math. – volume: 481 year: 2020 ident: br0220 article-title: Some symmetric publication-title: J. Math. Anal. Appl. – volume: 116 year: 2020 ident: br0190 article-title: Congruences on sums of publication-title: Adv. Appl. Math. – volume: 346 start-page: 329 year: 2019 end-page: 358 ident: br0170 article-title: A publication-title: Adv. Math. – year: 2020 ident: br0310 article-title: A publication-title: Int. J. Number Theory – volume: 129 start-page: 1848 year: 2009 end-page: 1857 ident: br0330 article-title: Ramanujan-type supercongruences publication-title: J. Number Theory – volume: 487 year: 2020 ident: br0090 article-title: -Analogues of Dwork-type supercongruences publication-title: J. Math. Anal. Appl. – volume: 147 start-page: 1023 year: 2019 end-page: 1036 ident: br0270 article-title: Supercongruences for polynomial analogs of the Apéry numbers publication-title: Proc. Am. Math. Soc. – volume: 54 start-page: 2509 year: 2011 end-page: 2535 ident: br0260 article-title: Super congruences and Euler numbers publication-title: Sci. China Math. – volume: 45 start-page: 350 year: 1914 end-page: 372 ident: br0250 article-title: Modular equations and approximations to publication-title: Q. J. Math. Oxf. Ser. (2) – volume: 23 start-page: 1123 year: 2019 end-page: 1135 ident: br0340 article-title: Congruences for publication-title: Ann. Comb. – volume: vol. 96 year: 2004 ident: br0020 article-title: Basic Hypergeometric Series publication-title: Encyclopedia of Mathematics and Its Applications – volume: 249 start-page: 405 year: 2011 end-page: 418 ident: br0200 article-title: Hypergeometric evaluation identities and supercongruences publication-title: Pac. J. Math. – volume: vol. 192 start-page: 223 year: 1997 end-page: 236 ident: br0300 article-title: Some conjectures concerning partial sums of generalized hypergeometric series publication-title: -Adic Functional Analysis – volume: 466 start-page: 776 year: 2018 end-page: 788 ident: br0050 article-title: A publication-title: J. Math. Anal. Appl. – volume: 75 year: 2020 ident: br0180 article-title: A common publication-title: Results Math. – volume: 133 start-page: 133 year: 2013 end-page: 143 ident: br0290 article-title: Some publication-title: Colloq. Math. – year: 2020 ident: br0110 article-title: -Analogues of two “divergent” Ramanujan-type supercongruences publication-title: Ramanujan J. – volume: 174 start-page: 358 year: 2017 end-page: 368 ident: br0120 article-title: The Rodriguez-Villegas type congruences for truncated publication-title: J. Number Theory – volume: 458 start-page: 590 year: 2018 end-page: 600 ident: br0040 article-title: A publication-title: J. Math. Anal. Appl. – year: 2020 ident: br0140 article-title: Some publication-title: Constr. Approx. – volume: 136 start-page: 4321 year: 2008 end-page: 4328 ident: br0210 article-title: A publication-title: Proc. Am. Math. Soc. – volume: 75 year: 2020 ident: br0130 article-title: Some new publication-title: Results Math. – volume: 114 year: 2020 ident: br0060 article-title: A publication-title: Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. – volume: 116 year: 2020 ident: br0070 article-title: Proof of a generalization of the (B.2) supercongruence of Van Hamme through a publication-title: Adv. Appl. Math. – volume: 433 start-page: 706 year: 2016 end-page: 711 ident: br0230 article-title: On the (K.2) supercongruence of Van Hamme publication-title: J. Math. Anal. Appl. – volume: 108 start-page: 575 year: 1992 end-page: 633 ident: br0320 article-title: An algorithmic proof theory for hypergeometric (ordinary and “ publication-title: Invent. Math. – volume: 2 year: 2015 ident: br0280 article-title: On the supercongruence conjectures of van Hamme publication-title: Res. Math. Sci. – volume: 52 start-page: 123 year: 2020 end-page: 132 ident: br0100 article-title: -Analogues of three Ramanujan-type formulas for publication-title: Ramanujan J. – volume: 150 start-page: 1127 year: 2020 ident: 10.1016/j.aam.2020.102078_br0160 article-title: Some congruences involving fourth powers of central q-binomial coefficients publication-title: Proc. R. Soc. Edinb., Sect. A doi: 10.1017/prm.2018.96 – volume: 54 start-page: 2509 year: 2011 ident: 10.1016/j.aam.2020.102078_br0260 article-title: Super congruences and Euler numbers publication-title: Sci. China Math. doi: 10.1007/s11425-011-4302-x – year: 2020 ident: 10.1016/j.aam.2020.102078_br0310 article-title: A q-analogue of the (A.2) supercongruence of Van Hamme for any prime p≡3(mod4) publication-title: Int. J. Number Theory doi: 10.1142/S1793042120500694 – volume: 23 start-page: 1123 year: 2019 ident: 10.1016/j.aam.2020.102078_br0340 article-title: Congruences for q-binomial coefficients publication-title: Ann. Comb. doi: 10.1007/s00026-019-00461-8 – volume: 45 start-page: 350 year: 1914 ident: 10.1016/j.aam.2020.102078_br0250 article-title: Modular equations and approximations to π publication-title: Q. J. Math. Oxf. Ser. (2) – year: 2020 ident: 10.1016/j.aam.2020.102078_br0110 article-title: q-Analogues of two “divergent” Ramanujan-type supercongruences publication-title: Ramanujan J. doi: 10.1007/s11139-019-00161-0 – volume: 75 year: 2020 ident: 10.1016/j.aam.2020.102078_br0080 article-title: Proof of some q-supercongruences modulo the fourth power of a cyclotomic polynomial publication-title: Results Math. – year: 2020 ident: 10.1016/j.aam.2020.102078_br0140 article-title: Some q-supercongruences from transformation formulas for basic hypergeometric series publication-title: Constr. Approx. – volume: 108 start-page: 575 year: 1992 ident: 10.1016/j.aam.2020.102078_br0320 article-title: An algorithmic proof theory for hypergeometric (ordinary and “q”) multisum/integral identities publication-title: Invent. Math. doi: 10.1007/BF02100618 – volume: 174 start-page: 358 year: 2017 ident: 10.1016/j.aam.2020.102078_br0120 article-title: The Rodriguez-Villegas type congruences for truncated q-hypergeometric functions publication-title: J. Number Theory doi: 10.1016/j.jnt.2016.09.011 – volume: 481 year: 2020 ident: 10.1016/j.aam.2020.102078_br0220 article-title: Some symmetric q-congruences modulo the square of a cyclotomic polynomial publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2019.07.062 – volume: 133 start-page: 133 year: 2013 ident: 10.1016/j.aam.2020.102078_br0290 article-title: Some q-analogs of congruences for central binomial sums publication-title: Colloq. Math. doi: 10.4064/cm133-1-9 – volume: 136 start-page: 4321 year: 2008 ident: 10.1016/j.aam.2020.102078_br0210 article-title: A p-adic supercongruence conjecture of van Hamme publication-title: Proc. Am. Math. Soc. doi: 10.1090/S0002-9939-08-09389-1 – volume: 147 start-page: 1023 year: 2019 ident: 10.1016/j.aam.2020.102078_br0270 article-title: Supercongruences for polynomial analogs of the Apéry numbers publication-title: Proc. Am. Math. Soc. doi: 10.1090/proc/14301 – volume: 75 year: 2020 ident: 10.1016/j.aam.2020.102078_br0130 article-title: Some new q-congruences for truncated basic hypergeometric series: even powers publication-title: Results Math. doi: 10.1007/s00025-019-1126-4 – volume: vol. 192 start-page: 223 year: 1997 ident: 10.1016/j.aam.2020.102078_br0300 article-title: Some conjectures concerning partial sums of generalized hypergeometric series – volume: 116 year: 2020 ident: 10.1016/j.aam.2020.102078_br0190 article-title: Congruences on sums of q-binomial coefficients publication-title: Adv. Appl. Math. doi: 10.1016/j.aam.2020.102003 – volume: 45 start-page: 394 year: 1993 ident: 10.1016/j.aam.2020.102078_br0240 article-title: Some quadratic and cubic summation formulas for basic hypergeometric series publication-title: Can. J. Math. doi: 10.4153/CJM-1993-020-8 – volume: 2 year: 2015 ident: 10.1016/j.aam.2020.102078_br0280 article-title: On the supercongruence conjectures of van Hamme publication-title: Res. Math. Sci. doi: 10.1186/s40687-015-0037-6 – volume: 346 start-page: 329 year: 2019 ident: 10.1016/j.aam.2020.102078_br0170 article-title: A q-microscope for supercongruences publication-title: Adv. Math. doi: 10.1016/j.aim.2019.02.008 – volume: 15 start-page: 1919 year: 2019 ident: 10.1016/j.aam.2020.102078_br0030 article-title: q-congruences, with applications to supercongruences and the cyclic sieving phenomenon publication-title: Int. J. Number Theory doi: 10.1142/S1793042119501069 – volume: 129 start-page: 1848 year: 2009 ident: 10.1016/j.aam.2020.102078_br0330 article-title: Ramanujan-type supercongruences publication-title: J. Number Theory doi: 10.1016/j.jnt.2009.01.013 – volume: vol. 96 year: 2004 ident: 10.1016/j.aam.2020.102078_br0020 article-title: Basic Hypergeometric Series – year: 2020 ident: 10.1016/j.aam.2020.102078_br0150 article-title: A family of q-hypergeometric congruences modulo the fourth power of a cyclotomic polynomial publication-title: Isr. J. Math. doi: 10.1007/s11856-020-2081-1 – volume: 249 start-page: 405 year: 2011 ident: 10.1016/j.aam.2020.102078_br0200 article-title: Hypergeometric evaluation identities and supercongruences publication-title: Pac. J. Math. doi: 10.2140/pjm.2011.249.405 – volume: 52 start-page: 123 year: 2020 ident: 10.1016/j.aam.2020.102078_br0100 article-title: q-Analogues of three Ramanujan-type formulas for 1/π publication-title: Ramanujan J. doi: 10.1007/s11139-018-0096-6 – volume: 114 year: 2020 ident: 10.1016/j.aam.2020.102078_br0060 article-title: A q-analogue of the (A.2) supercongruence of Van Hamme for primes p≡1(mod4) publication-title: Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. – volume: 487 year: 2020 ident: 10.1016/j.aam.2020.102078_br0090 article-title: q-Analogues of Dwork-type supercongruences publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2020.124022 – volume: 458 start-page: 590 year: 2018 ident: 10.1016/j.aam.2020.102078_br0040 article-title: A q-analogue of a Ramanujan-type supercongruence involving central binomial coefficients publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2017.09.022 – volume: 466 start-page: 776 year: 2018 ident: 10.1016/j.aam.2020.102078_br0050 article-title: A q-analogue of the (J.2) supercongruence of Van Hamme publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2018.06.021 – volume: 116 year: 2020 ident: 10.1016/j.aam.2020.102078_br0070 article-title: Proof of a generalization of the (B.2) supercongruence of Van Hamme through a q-microscope publication-title: Adv. Appl. Math. doi: 10.1016/j.aam.2020.102016 – year: 1994 ident: 10.1016/j.aam.2020.102078_br0010 – volume: 75 year: 2020 ident: 10.1016/j.aam.2020.102078_br0180 article-title: A common q-analogue of two supercongruences publication-title: Results Math. doi: 10.1007/s00025-020-1168-7 – volume: 433 start-page: 706 year: 2016 ident: 10.1016/j.aam.2020.102078_br0230 article-title: On the (K.2) supercongruence of Van Hamme publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2015.08.009 |
SSID | ssj0009263 |
Score | 2.4378283 |
Snippet | By applying the Chinese remainder theorem for coprime polynomials and the “creative microscoping” method recently introduced by the author and Zudilin, we... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 102078 |
SubjectTerms | Creative microscoping Cyclotomic polynomial q-Congruence The Chinese remainder theorem |
Title | q-Supercongruences modulo the fourth power of a cyclotomic polynomial via creative microscoping |
URI | https://dx.doi.org/10.1016/j.aam.2020.102078 |
Volume | 120 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5gXOCAeIrnlAMnpLK0SdfuCBPTYIIDD7FbldQNDI11jDJpF347dh88JODAqWpqt5Wb2k7r7zNjB9oaAE-FTgiudBQYfOcAE7k4NKBVIA0owg5fXDa7t-q87_fnWLvCwlBZZen7C5-ee-typFFaszEeDBrXxOwShj6GMEmBjWi3CVVKIL7-ySfxrld0U0Nhh6SrP5t5jZfWBEb3cgIDQZ3WfopNX-JNZ4Utl4kiPy7uZZXNJaM1tnTxwbL6ss6iZ-f6dZxMcEl7PykKovlTCq_DlKMUt3iK7IGPqQ8aTy3XPJ7FwzQjHDKODmeESMZLTAd4JM8dpwl_ogI9gqpgSNtgt53Tm3bXKRsmOLEXiMyxIpYgmwZ8bQDz0dC0fN9qsNrVrpu0PAGhSqxVSdDErNrg6g4832tBS8aAsVtustooHSVbjBOnjh94UjatUNL49K1I2FiAFQkG_WCbicpUUVyyiVNTi2FUlY09RmjdiKwbFdbdZocfKuOCSuMvYVXZP_o2HyJ09b-r7fxPbZct0l5RO7bHahk-tH1MNjJTZ_NHb26dLRyf9bqXtO1d3fXq-Rx7B_bJ1wA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JT-swEB7xyoHHAbE9seMDJ6SobuwsPSIEKkt7ASRulp2Joag0BQIS_56ZJmGR4B242jNJNHHmGzsz3wDsWe8QQ50GKXZUoNHRN4cUyGWpQ6sT5VBz7XB_EPeu9Ol1dD0Dh00tDKdV1r6_8ulTb12PtGtrtifDYfuCmV3SNCIIUwxs8R-Y1dzUugWzBydnvcEH925YNVQj-YAVmp-b0zQva7kePZxyGEhutvYdPH2CnONFWKhjRXFQPc4SzOTjZZjvvxOtPq2AeQgunif5I-1qbx6rnGhxX-DzqBAkJTxdorwVE26FJgovrMhes1FRcikyjY5euSiZbvEypJlp-PiSi3vO0eNqFUK1Vbg6Pro87AV1z4QgCxNZBl5mClXsMLIOKSRNXTeKvEVvO7bTybuhxFTn3us8iSmwdrTBwzAKu9hVGRJ8q3_QGhfjfA0E0-pESahU7KVWLuLjIukziV7mhPvJOsjGVCarCcW5r8XINJljd4asa9i6prLuOuy_q0wqNo3_CevG_ubLkjDk7X9W2_id2i7M9S775-b8ZHC2CX95pkol24JWSS9wm2KP0u3Ua-sNi0rXAg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=q-Supercongruences+modulo+the+fourth+power+of+a+cyclotomic+polynomial+via+creative+microscoping&rft.jtitle=Advances+in+applied+mathematics&rft.au=Guo%2C+Victor+J.W.&rft.date=2020-09-01&rft.pub=Elsevier+Inc&rft.issn=0196-8858&rft.volume=120&rft_id=info:doi/10.1016%2Fj.aam.2020.102078&rft.externalDocID=S0196885820300816 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8858&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8858&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8858&client=summon |