Optimizing reconfigurable manufacturing system configuration selection with multi-objective grey wolf optimization
Reconfigurable Manufacturing Systems (RMSs) represent a pivotal paradigm in modern manufacturing, offering the flexibility to adapt to varying production demands. The configuration selection of an RMS significantly influences its performance and responsiveness to dynamic manufacturing environments....
Saved in:
| Published in | International journal on interactive design and manufacturing Vol. 19; no. 8; pp. 5567 - 5582 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Paris
Springer Paris
01.08.2025
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1955-2513 1955-2505 |
| DOI | 10.1007/s12008-024-02150-0 |
Cover
| Abstract | Reconfigurable Manufacturing Systems (RMSs) represent a pivotal paradigm in modern manufacturing, offering the flexibility to adapt to varying production demands. The configuration selection of an RMS significantly influences its performance and responsiveness to dynamic manufacturing environments. In the present work, multiple objective grey wolf optimization (MOGWO) is implemented for the optimal configuration design of an RMS. The real encoded solution assisted in maintain the feasibility of solutions and minimization of search space. The discrete set of feasible machine configurations are handled efficiently to be utilized for the RMS configuration design. The non-dominated solutions obtained by MOGWO are an asset to the manufacturing system design. The decision manager may select a suitable candidate from among the non-dominated solutions in light of the current market situation. Evolutionary algorithms generate initial populations by randomly selecting variables. At stage S-1, operation 15, with a real value of 0.6529, is assigned one of three configurations: {
,
,and
}. The selected configuration is determined by multiplying the encoded solution’s real value by the number of alternatives and rounding up to the nearest integer. This approach confines the search space to feasible regions, ensuring equal probability for all alternatives. The production sequence is 15 → 1 → 17 → 3 → 5, with a demand rate of 50 units per hour. Performance metrics use power indices Z and Y set to 2, with parameters w
1
, w
2
, and w
3
valued at 0.5, 0.4, and 0.1, respectively. |
|---|---|
| AbstractList | Reconfigurable Manufacturing Systems (RMSs) represent a pivotal paradigm in modern manufacturing, offering the flexibility to adapt to varying production demands. The configuration selection of an RMS significantly influences its performance and responsiveness to dynamic manufacturing environments. In the present work, multiple objective grey wolf optimization (MOGWO) is implemented for the optimal configuration design of an RMS. The real encoded solution assisted in maintain the feasibility of solutions and minimization of search space. The discrete set of feasible machine configurations are handled efficiently to be utilized for the RMS configuration design. The non-dominated solutions obtained by MOGWO are an asset to the manufacturing system design. The decision manager may select a suitable candidate from among the non-dominated solutions in light of the current market situation. Evolutionary algorithms generate initial populations by randomly selecting variables. At stage S-1, operation 15, with a real value of 0.6529, is assigned one of three configurations: {, ,and }. The selected configuration is determined by multiplying the encoded solution’s real value by the number of alternatives and rounding up to the nearest integer. This approach confines the search space to feasible regions, ensuring equal probability for all alternatives. The production sequence is 15 → 1 → 17 → 3 → 5, with a demand rate of 50 units per hour. Performance metrics use power indices Z and Y set to 2, with parameters w1, w2, and w3 valued at 0.5, 0.4, and 0.1, respectively. Reconfigurable Manufacturing Systems (RMSs) represent a pivotal paradigm in modern manufacturing, offering the flexibility to adapt to varying production demands. The configuration selection of an RMS significantly influences its performance and responsiveness to dynamic manufacturing environments. In the present work, multiple objective grey wolf optimization (MOGWO) is implemented for the optimal configuration design of an RMS. The real encoded solution assisted in maintain the feasibility of solutions and minimization of search space. The discrete set of feasible machine configurations are handled efficiently to be utilized for the RMS configuration design. The non-dominated solutions obtained by MOGWO are an asset to the manufacturing system design. The decision manager may select a suitable candidate from among the non-dominated solutions in light of the current market situation. Evolutionary algorithms generate initial populations by randomly selecting variables. At stage S-1, operation 15, with a real value of 0.6529, is assigned one of three configurations: { , ,and }. The selected configuration is determined by multiplying the encoded solution’s real value by the number of alternatives and rounding up to the nearest integer. This approach confines the search space to feasible regions, ensuring equal probability for all alternatives. The production sequence is 15 → 1 → 17 → 3 → 5, with a demand rate of 50 units per hour. Performance metrics use power indices Z and Y set to 2, with parameters w 1 , w 2 , and w 3 valued at 0.5, 0.4, and 0.1, respectively. |
| Author | Goyal, Kapil Kumar Mehdi, Husain Kumar, Gaurav Batra, N. K. |
| Author_xml | – sequence: 1 givenname: Gaurav surname: Kumar fullname: Kumar, Gaurav organization: Department of Mechanical Engineering, M.M. Deemed to be University Mullana – sequence: 2 givenname: Kapil Kumar surname: Goyal fullname: Goyal, Kapil Kumar organization: Department of Industrial and Production Engineering, Dr B R Ambedkar National Institute of Technology Jalandhar – sequence: 3 givenname: N. K. surname: Batra fullname: Batra, N. K. organization: Department of Mechanical Engineering, M.M. Deemed to be University Mullana – sequence: 4 givenname: Husain orcidid: 0000-0003-4191-0142 surname: Mehdi fullname: Mehdi, Husain email: husainmehdi4u@gmail.com organization: Department of Mechanical Engineering, Meerut Institute of Engineering and Technology, Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University |
| BookMark | eNp9kE9PwzAMxSM0JLbBF-AUiXPBSZa2OaKJf9KkXeAcpZ0zMrXNSFqm8elpVwQ3DpYt-71n6Tcjk8Y3SMg1g1sGkN1FxgHyBPiiLyYhgTMyZUrKhEuQk9-ZiQsyi3EHkOaQw5SE9b51tftyzZYGLH1j3bYLpqiQ1qbprCnbLgzHeIwt1vRX0Trf0IgVlqfp4Np3WndV6xJf7IblJ9JtwCM9-MpSP345uS7JuTVVxKufPidvjw-vy-dktX56Wd6vkpJn0CaoCrOxTCiJUmZyYTZGWAWYKsGgVEKYNJdQWiUKlSIaYazJuVkYA0xuhBVzcjPm7oP_6DC2eue70PQvteBcKQWZkr2Kj6oy-BgDWr0PrjbhqBnoga0e2eqerT6x1dCbxGiK-wEOhr_of1zfAJ-CGg |
| Cites_doi | 10.1007/978-981-19-2091-2_10 10.1007/978-981-15-8704-7_76 10.2507/22nd.daaam.proceedings.468 10.1016/j.eswa.2015.10.039 10.1007/s00521-022-07704-5 10.1080/00207543.2011.599345 10.1080/00207543.2020.1756507 10.1007/s12652-020-02701-9 10.1023/A:1014536330551 10.1007/s10696-007-9020-x 10.1002/9780470618813 10.1016/S0007-8506(07)63232-6 10.1016/j.advengsoft.2013.12.007 10.1108/JMTM-06-2011-0064 10.1007/s00170-023-11847-7 10.1088/1742-6596/1240/1/012161 10.1007/s12597-021-00550-4 10.1016/S0007-8506(07)60603-9 10.1080/00207540600620955 10.2507/IJSIMM12(1)2.220 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag France SAS, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer-Verlag France SAS, part of Springer Nature 2024. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag France SAS, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer-Verlag France SAS, part of Springer Nature 2024. |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s12008-024-02150-0 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1955-2505 |
| EndPage | 5582 |
| ExternalDocumentID | 10_1007_s12008_024_02150_0 |
| GroupedDBID | -Y2 .86 .VR 06D 0R~ 0VY 1N0 203 29J 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 875 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHHG ADHIR ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ATHPR AXYYD AYFIA AYJHY B-. BA0 BDATZ BENPR BGLVJ BGNMA CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HZ~ IJ- IKXTQ IWAJR IXC IXD IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KOV LLZTM M4Y M7S MA- NPVJJ NQJWS NU0 O9- O93 O9J OAM P9P PF0 PHGZM PHGZT PQBIZ PQBZA PQGLB PT4 PTHSS QOS R89 R9I RNS ROL RPX RSV S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 ZMTXR ~A9 AAYXX CITATION PUEGO |
| ID | FETCH-LOGICAL-c270t-e9badf1395e55754ada3f90e69310c933a6850cf93b96eea3afa82a4aa015d3f3 |
| IEDL.DBID | U2A |
| ISSN | 1955-2513 |
| IngestDate | Fri Jul 25 08:50:45 EDT 2025 Wed Oct 01 05:25:56 EDT 2025 Tue Jul 15 01:12:11 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | Multi-objective optimization Configuration selection Grey Wolf Optimization Reconfigurable Manufacturing Systems |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c270t-e9badf1395e55754ada3f90e69310c933a6850cf93b96eea3afa82a4aa015d3f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4191-0142 |
| PQID | 3229990795 |
| PQPubID | 2044253 |
| PageCount | 16 |
| ParticipantIDs | proquest_journals_3229990795 crossref_primary_10_1007_s12008_024_02150_0 springer_journals_10_1007_s12008_024_02150_0 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20250800 2025-08-00 20250801 |
| PublicationDateYYYYMMDD | 2025-08-01 |
| PublicationDate_xml | – month: 8 year: 2025 text: 20250800 |
| PublicationDecade | 2020 |
| PublicationPlace | Paris |
| PublicationPlace_xml | – name: Paris – name: Heidelberg |
| PublicationTitle | International journal on interactive design and manufacturing |
| PublicationTitleAbbrev | Int J Interact Des Manuf |
| PublicationYear | 2025 |
| Publisher | Springer Paris Springer Nature B.V |
| Publisher_xml | – name: Springer Paris – name: Springer Nature B.V |
| References | KK Goyal (2150_CR16) 2012; 50 D Jianping (2150_CR11) 2021; 59 S Mirjalili (2150_CR18) 2014; 69 2150_CR8 G Yildirim (2150_CR7) 2021; 12 SN Makhadmeh (2150_CR6) 2022; 34 KK Goyal (2150_CR22) 2016; 84 2150_CR4 Y Koren (2150_CR3) 1999; 48 KK Goyal (2150_CR23) 2013; 12 2150_CR1 2150_CR12 2150_CR13 HI Garbie (2150_CR15) 2014; 25 N Swamy (2150_CR9) 2022 AM Youssef (2150_CR19) 2006; 44 S Mirjalili (2150_CR20) 2016; 47 V Maler-Speredelozzi (2150_CR17) 2003; 52 2150_CR21 G Kumar (2150_CR5) 2022; 59 M Ameer (2150_CR10) 2023; 128 AM Youssef (2150_CR14) 2007; 19 MG Mehrabi (2150_CR2) 2002; 13 |
| References_xml | – volume-title: Recent Advances in Hybrid and Electric Automotive Technologies year: 2022 ident: 2150_CR9 doi: 10.1007/978-981-19-2091-2_10 – ident: 2150_CR12 doi: 10.1007/978-981-15-8704-7_76 – ident: 2150_CR13 doi: 10.2507/22nd.daaam.proceedings.468 – volume: 47 start-page: 106 year: 2016 ident: 2150_CR20 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.10.039 – ident: 2150_CR8 doi: 10.1016/j.eswa.2015.10.039 – volume: 34 start-page: 19723 year: 2022 ident: 2150_CR6 publication-title: Neural Comput. Applic doi: 10.1007/s00521-022-07704-5 – volume: 50 start-page: 4175 issue: 15 year: 2012 ident: 2150_CR16 publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2011.599345 – volume: 84 start-page: 1587 issue: 5–8 year: 2016 ident: 2150_CR22 publication-title: J. Adv. Manuf. Technol. – volume: 59 start-page: 3975 issue: 13 year: 2021 ident: 2150_CR11 publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2020.1756507 – volume: 12 start-page: 9611 year: 2021 ident: 2150_CR7 publication-title: J. Ambient Intell. Hum. Comput. doi: 10.1007/s12652-020-02701-9 – volume: 13 start-page: 135 issue: 2 year: 2002 ident: 2150_CR2 publication-title: J. Intell. Manuf. doi: 10.1023/A:1014536330551 – volume: 19 start-page: 67 issue: 2 year: 2007 ident: 2150_CR14 publication-title: Syst. Int. J. Flex. Manuf. Syst. doi: 10.1007/s10696-007-9020-x – ident: 2150_CR1 doi: 10.1002/9780470618813 – volume: 48 start-page: 527 issue: 2 year: 1999 ident: 2150_CR3 publication-title: Annals CIRP doi: 10.1016/S0007-8506(07)63232-6 – volume: 69 start-page: 46 year: 2014 ident: 2150_CR18 publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – volume: 25 start-page: 891 issue: 6 year: 2014 ident: 2150_CR15 publication-title: J. Manuf. Technol. Manage. doi: 10.1108/JMTM-06-2011-0064 – volume: 128 start-page: 2499 year: 2023 ident: 2150_CR10 publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-023-11847-7 – ident: 2150_CR4 doi: 10.1088/1742-6596/1240/1/012161 – volume: 59 start-page: 603 issue: 2 year: 2022 ident: 2150_CR5 publication-title: Opsearch doi: 10.1007/s12597-021-00550-4 – volume: 52 start-page: 367 issue: 1 year: 2003 ident: 2150_CR17 publication-title: CIRP Ann. doi: 10.1016/S0007-8506(07)60603-9 – ident: 2150_CR21 – volume: 44 start-page: 4929 issue: 22 year: 2006 ident: 2150_CR19 publication-title: Int. J. Prod. Res. doi: 10.1080/00207540600620955 – volume: 12 start-page: 17 issue: 1 year: 2013 ident: 2150_CR23 publication-title: Int. J. Simul. Modelling doi: 10.2507/IJSIMM12(1)2.220 |
| SSID | ssj0068080 |
| Score | 2.3330793 |
| Snippet | Reconfigurable Manufacturing Systems (RMSs) represent a pivotal paradigm in modern manufacturing, offering the flexibility to adapt to varying production... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 5567 |
| SubjectTerms | Adaptability Algorithms Alternatives CAE) and Design Coding Computer-Aided Engineering (CAD Configuration management Costs Efficiency Electronics and Microelectronics Engineering Engineering Design Evolutionary algorithms Feasibility Flexibility Industrial Design Industry 4.0 Instrumentation Manufacturing Mechanical Engineering Multiple objective analysis Optimization Original Article Performance measurement Process planning Product mixes Reconfiguration Systems design |
| Title | Optimizing reconfigurable manufacturing system configuration selection with multi-objective grey wolf optimization |
| URI | https://link.springer.com/article/10.1007/s12008-024-02150-0 https://www.proquest.com/docview/3229990795 |
| Volume | 19 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1955-2505 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0068080 issn: 1955-2513 databaseCode: AFBBN dateStart: 20070401 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1955-2505 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0068080 issn: 1955-2513 databaseCode: AGYKE dateStart: 20070101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1955-2505 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0068080 issn: 1955-2513 databaseCode: U2A dateStart: 20070425 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQu8CAeIpCqTywgSUTPxKPLWqpQCoLlcoUOYmNimiD-hCCX8_ZSQggGJiSKI4jne277-z77hA6i8DtMZYpIpQxhAMGJ0pmkiQmpCqQkQyLbJ8jORzzm4mYlKSwZRXtXh1Jek1dk92Ko_qAE2enKAFHvSlcOi-YxeOgW-lfV0vC0yCVEASsNyupMr_38d0c1Rjzx7GotzaDHbRdwkTcLcZ1F22Y-R7a-pI8cB8t7mC1z6bv8IC9W2unj-uFY0LhmZ6vHWPBUxBxkawZf7ZwQ4GXvv6Nu3M7sdjHFZI8eSr0HwYv_A2_5s8W58Vf_FcHaDzo318NSVlBgaRBSFfEqERnFkCeMAJwGdeZZlZRIxWgulQxpmUkaGoVS5Q0RjNtdRRorjWghIxZdoga83xujhBOBaOWX6pIUsM1V0lkwaOVNjSaWsZUC51XgoxfikQZcZ0SuSh2GfDYiz2mLdSuZB2Xi2YZg24BuEpDJVroopJ__frv3o7_1_wEbQauiq8P42ujxmqxNqcALVZJBzW7g15v5K7XD7f9jp9ZH7eFykA |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6hMgADb0ShgAc2cGXiR-KxQpQCpSxUgilyUhsVaIP6EIJfj2MnFBAMbIniOI9z7r7L3XcHcBhZt0cbKjGXWmNmMTiWoidwokMiAxGJ0Ff77IhWl13e8buCFDYus93LkKTT1DOymw_VBwzndopg66jPM-ugBBWYb5zfX52VGjjvJuGIkJJzbO03Lcgyv8_y3SDNUOaPwKizN80V6JZ36tNMnurTSVJP338Ucfzvo6zCcgFAUcOvmDWY08N1WPpSlnADRjdWjwz673YHOYfZ9B-mo5xjhQZqOM25EI7ciHwZaPQ5IhcyGrvOOvlW_o8XuYxFnCWPXrMi69-_odfs2aDMX8WdtQnd5tntaQsXvRlwGoRkgrVMVM9Y-Mg1t4iPqZ6iRhItpMWLqaRUiYiT1EiaSKG1osqoKFBMKYs_etTQLagMs6HeBpRySgw7kZEgmikmk8hYX1mYUCtiKJVVOCoFFL_4EhzxrNiyb6MZsNi9yZhUoVbKMC4-x3FstZYFwiSUvArHpUhmh_-ebed_ww9goXV73Y7bF52rXVgM8l7BLlmwBpXJaKr3LICZJPvFev0AliDm_Q |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA4yQfRBvOJ0ah5807DYXNo8DnV4Y_rgYG8lbROZuG5sHaK_3lxaO0UffGtpmsLJ5XynJ993ADiJTNijNBGICaUQNRgcCZ5xlKgQi4BHPPRqnz1-3ae3AzZYYPG70-5VStJzGqxKU160J5lu18Q3n7YPKLI-CyMTtC9TK5RgZnQ_6FR7sa0r4SiRgjFkPDkpaTO_9_HdNdV480eK1Hme7gZYLyEj7Pgx3gRLKt8CawtCgttg-mBW_mj4YW6gC3H18Hk-tawoOJL53LIXHB0ReuFm-NXCDgucuVo49sr-lYXujCEaJy9-L4QmIn-Hb-NXDcf-K-6tHdDvXj1dXKOymgJKgxAXSIlEZtoAPqaYwWhUZpJogRUXBuGlghDJI4ZTLUgiuFKSSC2jQFIpDWLIiCa7oJGPc7UHYMoI1vRcRBwrKqlIIm2iW65DJbEmRDTBaWXIeOJFM-JaHtkXvgxo7Mwe4yZoVbaOywU0i80-Y6ArDgVrgrPK_vXjv3vb_1_zY7DyeNmN7296dwdgNbDFfd3pvhZoFNO5OjSIo0iO3KT6BGtMzlg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+reconfigurable+manufacturing+system+configuration+selection+with+multi-objective+grey+wolf+optimization&rft.jtitle=International+journal+on+interactive+design+and+manufacturing&rft.au=Kumar%2C+Gaurav&rft.au=Goyal%2C+Kapil+Kumar&rft.au=Batra%2C+N.+K.&rft.au=Mehdi%2C+Husain&rft.date=2025-08-01&rft.pub=Springer+Paris&rft.issn=1955-2513&rft.eissn=1955-2505&rft.volume=19&rft.issue=8&rft.spage=5567&rft.epage=5582&rft_id=info:doi/10.1007%2Fs12008-024-02150-0&rft.externalDocID=10_1007_s12008_024_02150_0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1955-2513&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1955-2513&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1955-2513&client=summon |