Analysis and implementation of computer network graph based on iterative control algorithm theory
This study aims to use the theory of iterative control algorithm to learn and extract the semantic structural features of large-scale network data by analyzing and exploring the semantic structural features of large-scale networks with the help of data visualization analysis methods. In addition, it...
Saved in:
Published in | Soft computing (Berlin, Germany) Vol. 27; no. 23; pp. 18113 - 18128 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1432-7643 1433-7479 |
DOI | 10.1007/s00500-023-09222-5 |
Cover
Abstract | This study aims to use the theory of iterative control algorithm to learn and extract the semantic structural features of large-scale network data by analyzing and exploring the semantic structural features of large-scale networks with the help of data visualization analysis methods. In addition, it conducts relevant research on the high-quality simplified representation of computer network graphs based on the effective extraction of structural features and combined with graph sampling techniques. An iterative learning control algorithm based on reference trajectory update is proposed for the tracking control problem of discrete linear control system output subject to non-repetitive perturbation. First, the controller is parametrically optimized by constructing a performance index function to track the system output quickly and accurately at the desired point of reference trajectory update. Second, when the system output is affected by a batch of non-repetitive perturbations, a new performance indicator function is further constructed by introducing a Lagrange multiplier algorithm to establish multi-objective performance indicators to optimize the robust iterative learning controller. Finally, the algorithm is applied to a computer network graph design system, and the simulation results verify the reasonableness and effectiveness of the algorithm. These results show that the suggested technique surpassed the existing approaches with accomplishments such as an average degree of 12.5%, a clustering coefficient of 65%, network efficiency of 91%, and higher modularity, community identification, and network embedding scores. |
---|---|
AbstractList | This study aims to use the theory of iterative control algorithm to learn and extract the semantic structural features of large-scale network data by analyzing and exploring the semantic structural features of large-scale networks with the help of data visualization analysis methods. In addition, it conducts relevant research on the high-quality simplified representation of computer network graphs based on the effective extraction of structural features and combined with graph sampling techniques. An iterative learning control algorithm based on reference trajectory update is proposed for the tracking control problem of discrete linear control system output subject to non-repetitive perturbation. First, the controller is parametrically optimized by constructing a performance index function to track the system output quickly and accurately at the desired point of reference trajectory update. Second, when the system output is affected by a batch of non-repetitive perturbations, a new performance indicator function is further constructed by introducing a Lagrange multiplier algorithm to establish multi-objective performance indicators to optimize the robust iterative learning controller. Finally, the algorithm is applied to a computer network graph design system, and the simulation results verify the reasonableness and effectiveness of the algorithm. These results show that the suggested technique surpassed the existing approaches with accomplishments such as an average degree of 12.5%, a clustering coefficient of 65%, network efficiency of 91%, and higher modularity, community identification, and network embedding scores. |
Author | Zhang, Chunqian Li, Yajuan Zhang, Jinfang Rong, Jingyi |
Author_xml | – sequence: 1 givenname: Jinfang surname: Zhang fullname: Zhang, Jinfang organization: Computer Department, Hebei University of Water Resources and Electric Engineering – sequence: 2 givenname: Jingyi surname: Rong fullname: Rong, Jingyi email: rongjy0015@163.com organization: Computer Department, Hebei University of Water Resources and Electric Engineering – sequence: 3 givenname: Chunqian surname: Zhang fullname: Zhang, Chunqian organization: Department of Electrical Automation, Hebei University of Water Resources and Electric Engineering – sequence: 4 givenname: Yajuan surname: Li fullname: Li, Yajuan organization: Computer Department, Hebei University of Water Resources and Electric Engineering |
BookMark | eNp9kE1LAzEQhoNUsK3-AU8Bz9HZpNl0j6X4BYIXPYd0d9Ju3U3WJFX6701bwZunGZjnfWGeCRk575CQ6wJuCwB1FwEkAAMuGFSccybPyLiYCcHUTFWj486ZKmfigkxi3ALwQkkxJmbhTLePbaTGNbTthw57dMmk1jvqLa19P-wSBuowffvwQdfBDBu6MhEbmpE23zL8hZl0KfiOmm7tQ5s2PU0b9GF_Sc6t6SJe_c4peX-4f1s-sZfXx-fl4oXVXEFiyKU1iGhEVc3BrppSKptPFpUsy6axprZYltDUIKxVgCil5Ku5QMNrJaWYkptT7xD85w5j0lu_C_m7qHlVqEoURTXPFD9RdfAxBrR6CG1vwl4XoA8q9Umlzir1UaU-VItTKGbYrTH8Vf-T-gE5L3tK |
Cites_doi | 10.1007/s00500-023-08026-x 10.23919/CCC50068.2020.9188843 10.1007/s10489-020-01894-y 10.1109/TWC.2022.3219840 10.23919/ChiCC.2017.8028015 10.1007/s11071-018-4732-x 10.1109/JSAC.2018.2869958 10.1007/s10479-021-04410-8 10.1049/cth2.12136 10.2352/J.ImagingSci.Technol.2023.67.3.030402 10.1002/asjc.2762 10.3390/jmse10101399 10.1109/TKDE.2020.2970044 10.1016/j.comnet.2022.108795 10.1109/TII.2020.2994747 10.1109/TIE.2022.3142428 10.1049/iet-cta.2018.5469 10.1016/j.jvcir.2022.103731 10.1109/ACCESS.2023.3283218 10.1007/s00500-023-07923-5 10.1109/TVT.2022.3159681 10.1371/journal.pone.0283932 10.3390/rs14174175 10.1117/12.2540362 10.1016/j.trc.2022.103961 10.1109/TCSVT.2022.3182426 10.3837/tiis.2022.07.013 10.1145/3450626.3459676 10.3390/rs11070820 10.1007/s11424-022-1030-y 10.1109/TMC.2022.3199876 10.1016/j.image.2022.116742 10.1109/TCSVT.2021.3107035 10.1007/s00500-023-09037-4 10.1109/TEVC.2022.3233364 10.23919/ChiCC.2019.8866334 10.1109/TCSVT.2021.3121062 10.1007/s10489-021-03121-8 10.29026/oea.2022.210021 10.1002/rnc.4839 10.1016/j.inffus.2023.101862 10.3390/rs12213539 10.1109/TNNLS.2020.3042975 10.1504/IJCAT.2019.102852 10.3390/electronics11182950 10.1007/s10470-021-01965-1 10.1109/TGRS.2022.3223911 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
DOI | 10.1007/s00500-023-09222-5 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1433-7479 |
EndPage | 18128 |
ExternalDocumentID | 10_1007_s00500_023_09222_5 |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 203 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV LAS LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9P PF0 PT4 PT5 QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI |
ID | FETCH-LOGICAL-c270t-e25faeeea39980fbd657fc27fe7566ddfacfe660dc03ff70ee5552b83ea2c7553 |
IEDL.DBID | 8FG |
ISSN | 1432-7643 |
IngestDate | Fri Jul 25 20:57:01 EDT 2025 Wed Oct 01 03:00:35 EDT 2025 Fri Feb 21 02:42:28 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Keywords | Feature learning Computer network graph Iterative control Network graph data |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c270t-e25faeeea39980fbd657fc27fe7566ddfacfe660dc03ff70ee5552b83ea2c7553 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2917931198 |
PQPubID | 2043697 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2917931198 crossref_primary_10_1007_s00500_023_09222_5 springer_journals_10_1007_s00500_023_09222_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20231200 2023-12-00 20231201 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 20231200 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | A Fusion of Foundations, Methodologies and Applications |
PublicationTitle | Soft computing (Berlin, Germany) |
PublicationTitleAbbrev | Soft Comput |
PublicationYear | 2023 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | ShenYDingNZhengHTLiYYangMModeling relation paths for knowledge graph completionIEEE Trans Knowl Data Eng202133113607361710.1109/TKDE.2020.2970044 SongFLiuYShenDLiLTanJLearning control for motion coordination in wafer scanners: toward gain adaptationIEEE Trans Industr Electron20226912134281343810.1109/TIE.2022.3142428 Yao W, Guo Y, Wu Y, Guo J (2017) Experimental validation of fuzzy PID control of flexible joint system in presence of uncertainties. In 2017 36th Chinese Control Conference (CCC). IEEE, p 4192–4197. DOI: https://doi.org/10.23919/ChiCC.2017.8028015 Ali M, Yin B, Kumar A, Sheikh AM et al. (2020) Reduction of multiplications in convolutional neural networks. In 2020 39th Chinese Control Conference (CCC). IEEE. p 7406–7411. DOI: https://doi.org/10.23919/CCC50068.2020.9188843. XuHSunZCaoYA data-driven approach for intrusion and anomaly detection using automated machine learning for the Internet of ThingsSoft Comput202310.1007/s00500-023-09037-4 GuzmánJAPizarroGNúñezFA reinforcement learning-based distributed control scheme for cooperative intersection traffic controlIEEE Access202311570375704510.1109/ACCESS.2023.3283218 XiaoZShuJJiangHLuiJCSMinGLiuJMulti-objective parallel task offloading and content caching in D2D-aided MEC networksIEEE Trans Mob Comput202210.1109/TMC.2022.3199876 UllahRDaiXShengAEvent-triggered scheme for fault detection and isolation of non-linear system with time-varying delayIET Control Theory Appl2020141624292438441797310.1049/iet-cta.2018.5469 ZhouXZhangLSA-FPN: An effective feature pyramid network for crowded human detectionAppl Intell20225211125561256810.1007/s10489-021-03121-8 ChengXWuYMinGNetwork function virtualization in dynamic networks: a stochastic perspectiveIEEE J Sel Areas Commun201836102218223210.1109/JSAC.2018.2869958 SongFLiuYJinWTanJHeWData-driven feedforward learning with force ripple compensation for wafer stages: a variable-gain robust approachIEEE Trans Neural Netw Learn Syst202233415941608440782010.1109/TNNLS.2020.3042975 WangWChenZYuanXSimple low-light image enhancement based on Weber-Fechner law in logarithmic spaceSignal Process Image Commun202210610.1016/j.image.2022.116742 YangSLiQLiWLiXLiuADual-level representation enhancement on characteristic and context for image-text retrievalIEEE Trans Circuits Syst Video Technol202232118037805010.1109/TCSVT.2022.3182426 DangWXiangLLiuSYangBLiuMYin, Z.,... Zheng, W. A feature matching method based on the convolutional neural networkJ Imaging Sci Technol202310.2352/J.ImagingSci.Technol.2023.67.3.030402 ZhaiDWangCZhangRCaoHYuFREnergy-saving deployment optimization and resource management for UAV-assisted wireless sensor networks with NOMAIEEE Trans Veh Technol20227166609662310.1109/TVT.2022.3159681 AslamMSDaiXHouJLiQUllahRNiZLiuYReliable control design for composite-driven scheme based on delay networked T-S fuzzy systemInt J Robust Nonlinear Control202030416221642408539310.1002/rnc.48391465.93103 WangBZhangYZhangWA composite adaptive fault-tolerant attitude control for a quadrotor UAV with multiple uncertaintiesJ Syst Sci Complex202235181104437665610.1007/s11424-022-1030-y1485.93302 MaoYZhuYTangZChenZA novel airspace planning algorithm for cooperative target localizationElectronics20221118295010.3390/electronics11182950 ZhengYYZhangYQianLZhangXDiaoSLiuXA lightweight ship target detection model based on improved YOLOv5s algorithmPLoS ONE2023184e28393210.1371/journal.pone.0283932 Irfan QaisarMMajidAShamroozSAdaptive event-triggered robust H∞ control for Takagi-Sugeno fuzzy networked Markov jump systems with time-varying delayAsian J Control2023251213228456232910.1002/asjc.2762 MonkamYJKingniSTTchitngaRWoafoPElectronic simulation and microcontroller real implementation of an autonomous chaotic and hyperchaotic system made of a Colpitts-Josephson junction like circuitAnalog Integr Circ Signal Process202211039540710.1007/s10470-021-01965-1 Yin B, Khan J, Wang L, Zhang J, Kumar A (2019) Real-time lane detection and tracking for advanced driver assistance systems. In 2019 Chinese Control Conference (CCC). IEEE, p. 6772–6777. DOI: https://doi.org/10.23919/ChiCC.2019.8866334 KumarAShaikhAMLiYPruning filters with L1-norm and capped L1-norm for CNN compressionAppl Intell2021511152116010.1007/s10489-020-01894-y LiuAZhaiYXuNNieWLiWRegion-aware image captioning via interaction learningIEEE Trans Circuits Syst Video Technol20223263685369610.1109/TCSVT.2021.3107035 ZhouGLiHSongRWangQXuJOrthorectification of fisheye image under equidistant projection modelRemote Sens20221417417510.3390/rs14174175 FuCYuanHXuHZhangHShenLTMSO-Net: Texture adaptive multi-scale observation for light field image depth estimationJ vis Commun Image Represent20239010.1016/j.jvcir.2022.103731 ZhouGLiuXOrthorectification model for extra-length linear array imageryIEEE Trans Geosci Remote Sens202210.1109/TGRS.2022.3223911 MoshahediNKattanLAlpha-fair large-scale urban network control: a perimeter control based on a macroscopic fundamental diagramTransp Res C Emerg Technol202314610.1016/j.trc.2022.103961 ShenYZhangJSongSHLetaiefKBGraph neural networks for wireless communications: from theory to practiceIEEE Trans Wirel Commun2022223554356910.1109/TWC.2022.3219840 ZhangJZhuCZhengLXuKROSEFusion: random optimization for online dense reconstruction under fast camera motionACM Trans Graphics202140411710.1145/3450626.3459676 ChenZObserver-based dissipative output feedback control for network T-S fuzzy systems under time delays with mismatch premiseNonlinear Dyn2019952923294110.1007/s11071-018-4732-x1437.93063 LuZChengRJinYTanKCDebKNeural architecture search as multiobjective optimization benchmarks: problem formulation and performance assessmentIEEE Trans Evol Comput202210.1109/TEVC.2022.3233364 TianHPeiJHuangJLiXWangJZhouBGarlic and winter wheat identification based on active and passive satellite imagery and the google earth engine in Northern ChinaRemote Sens (basel, Switzerland)2020123539353910.3390/rs12213539 KumarSSharmaDRaoSLimWMManglaSKPast, present, and future of sustainable finance: insights from big data analytics through machine learning of scholarly researchAnn Oper Res202210.1007/s10479-021-04410-8 ShamroozMLiQHouJFault detection for asynchronous T-S fuzzy networked Markov jump systems with new event-triggered schemeIET Control Theory Appl2021151114611473458335110.1049/cth2.12136 KoyuncuİAlçinMTunaMReal-time high-speed 5-D hyperchaotic Lorenz system on FPGAInt J Comput Appl Technol201961315216510.1504/IJCAT.2019.102852 YinBAslamMSA practical study of active disturbance rejection control for rotary flexible joint robot manipulatorSoft Comput2023274987500110.1007/s00500-023-08026-x TianHHuangNNiuZQinYPeiWangJJMapping winter crops in China with multi-source satellite imagery and phenology-based algorithmRemote Sens (basel, Switzerland)201911782010.3390/rs11070820 LvZHanYSinghAKTrustworthiness in industrial IoT systems based on artificial intelligenceIEEE Trans Ind Inf20201721496150410.1109/TII.2020.2994747 ZhengYLvXQianLLiuXAn optimal BP neural network track prediction method based on a GA-ACO hybrid algorithmJ Mar Sci Eng20221010139910.3390/jmse10101399 LiYQianJFengSChenQZuoCDeep-learning-enabled dual-frequency composite fringe projection profilometry for single-shot absolute 3D shape measurementOpto-Electron Adv20225521002110.29026/oea.2022.210021 Wang L, Zhai Q, Yin B, et al. (2019) Second-order convolutional network for crowd counting. In Proc. SPIE 11198, Fourth International Workshop on Pattern Recognition, 111980T (31 July 2019). https://doi.org/10.1117/12.2540362 LiLWangPZhengXXieQTaoXDual-interactive fusion for code-mixed deep representation learning in tag recommendationInf Fusion20239910186210.1016/j.inffus.2023.101862 WangYXuNLiuALiWZhangYHigh-order interaction learning for image captioningIEEE Trans Circuits Syst Video Technol20223274417443010.1109/TCSVT.2021.3121062 ZhuangYChenSJiangNHuHAn effective WSSENet-based similarity retrieval method of large lung CT image databasesKSII Trans Internet Inf Syst20221672359237610.3837/tiis.2022.07.013 HazratBYinBKumarAAliMZhangJYaoJJerk-bounded trajectory planning for rotary flexible joint manipulator: an experimental approachSoft Comput20232774029403910.1007/s00500-023-07923-5 SaburAChowdharyAHuangDAlshamraniAToward scalable graph-based security analysis for cloud networksComput Netw202220610.1016/j.comnet.2022.108795 X Zhou (9222_CR45) 2022; 52 Z Xiao (9222_CR34) 2022 Z Lu (9222_CR16) 2022 J Zhang (9222_CR41) 2021; 40 S Kumar (9222_CR12) 2022 C Fu (9222_CR6) 2023; 90 MS Aslam (9222_CR2) 2020; 30 JA Guzmán (9222_CR7) 2023; 11 A Kumar (9222_CR11) 2021; 51 YJ Monkam (9222_CR19) 2022; 110 B Yin (9222_CR38) 2023; 27 İ Koyuncu (9222_CR10) 2019; 61 Y Wang (9222_CR30) 2022; 32 Y Mao (9222_CR18) 2022; 11 G Zhou (9222_CR44) 2022 F Song (9222_CR26) 2022; 33 Y Zhuang (9222_CR47) 2022; 16 Y Li (9222_CR13) 2022; 5 B Wang (9222_CR32) 2022; 35 F Song (9222_CR25) 2022; 69 Y Shen (9222_CR23) 2021; 33 H Tian (9222_CR27) 2019; 11 W Dang (9222_CR5) 2023 A Sabur (9222_CR21) 2022; 206 H Tian (9222_CR28) 2020; 12 B Hazrat (9222_CR8) 2023; 27 R Ullah (9222_CR29) 2020; 14 Z Chen (9222_CR3) 2019; 95 W Wang (9222_CR31) 2022; 106 9222_CR39 YY Zheng (9222_CR43) 2023; 18 9222_CR37 H Xu (9222_CR35) 2023 9222_CR1 A Liu (9222_CR15) 2022; 32 N Moshahedi (9222_CR20) 2023; 146 Z Lv (9222_CR17) 2020; 17 X Cheng (9222_CR4) 2018; 36 M Irfan Qaisar (9222_CR9) 2023; 25 D Zhai (9222_CR40) 2022; 71 Y Shen (9222_CR24) 2022; 22 L Li (9222_CR14) 2023; 99 9222_CR33 S Yang (9222_CR36) 2022; 32 M Shamrooz (9222_CR22) 2021; 15 G Zhou (9222_CR46) 2022; 14 Y Zheng (9222_CR42) 2022; 10 |
References_xml | – reference: ShamroozMLiQHouJFault detection for asynchronous T-S fuzzy networked Markov jump systems with new event-triggered schemeIET Control Theory Appl2021151114611473458335110.1049/cth2.12136 – reference: WangBZhangYZhangWA composite adaptive fault-tolerant attitude control for a quadrotor UAV with multiple uncertaintiesJ Syst Sci Complex202235181104437665610.1007/s11424-022-1030-y1485.93302 – reference: XiaoZShuJJiangHLuiJCSMinGLiuJMulti-objective parallel task offloading and content caching in D2D-aided MEC networksIEEE Trans Mob Comput202210.1109/TMC.2022.3199876 – reference: Yao W, Guo Y, Wu Y, Guo J (2017) Experimental validation of fuzzy PID control of flexible joint system in presence of uncertainties. In 2017 36th Chinese Control Conference (CCC). IEEE, p 4192–4197. DOI: https://doi.org/10.23919/ChiCC.2017.8028015 – reference: ZhaiDWangCZhangRCaoHYuFREnergy-saving deployment optimization and resource management for UAV-assisted wireless sensor networks with NOMAIEEE Trans Veh Technol20227166609662310.1109/TVT.2022.3159681 – reference: YinBAslamMSA practical study of active disturbance rejection control for rotary flexible joint robot manipulatorSoft Comput2023274987500110.1007/s00500-023-08026-x – reference: ZhouGLiuXOrthorectification model for extra-length linear array imageryIEEE Trans Geosci Remote Sens202210.1109/TGRS.2022.3223911 – reference: DangWXiangLLiuSYangBLiuMYin, Z.,... Zheng, W. A feature matching method based on the convolutional neural networkJ Imaging Sci Technol202310.2352/J.ImagingSci.Technol.2023.67.3.030402 – reference: FuCYuanHXuHZhangHShenLTMSO-Net: Texture adaptive multi-scale observation for light field image depth estimationJ vis Commun Image Represent20239010.1016/j.jvcir.2022.103731 – reference: XuHSunZCaoYA data-driven approach for intrusion and anomaly detection using automated machine learning for the Internet of ThingsSoft Comput202310.1007/s00500-023-09037-4 – reference: MaoYZhuYTangZChenZA novel airspace planning algorithm for cooperative target localizationElectronics20221118295010.3390/electronics11182950 – reference: Yin B, Khan J, Wang L, Zhang J, Kumar A (2019) Real-time lane detection and tracking for advanced driver assistance systems. In 2019 Chinese Control Conference (CCC). IEEE, p. 6772–6777. DOI: https://doi.org/10.23919/ChiCC.2019.8866334 – reference: ShenYDingNZhengHTLiYYangMModeling relation paths for knowledge graph completionIEEE Trans Knowl Data Eng202133113607361710.1109/TKDE.2020.2970044 – reference: Ali M, Yin B, Kumar A, Sheikh AM et al. (2020) Reduction of multiplications in convolutional neural networks. In 2020 39th Chinese Control Conference (CCC). IEEE. p 7406–7411. DOI: https://doi.org/10.23919/CCC50068.2020.9188843. – reference: ZhangJZhuCZhengLXuKROSEFusion: random optimization for online dense reconstruction under fast camera motionACM Trans Graphics202140411710.1145/3450626.3459676 – reference: ZhuangYChenSJiangNHuHAn effective WSSENet-based similarity retrieval method of large lung CT image databasesKSII Trans Internet Inf Syst20221672359237610.3837/tiis.2022.07.013 – reference: MonkamYJKingniSTTchitngaRWoafoPElectronic simulation and microcontroller real implementation of an autonomous chaotic and hyperchaotic system made of a Colpitts-Josephson junction like circuitAnalog Integr Circ Signal Process202211039540710.1007/s10470-021-01965-1 – reference: GuzmánJAPizarroGNúñezFA reinforcement learning-based distributed control scheme for cooperative intersection traffic controlIEEE Access202311570375704510.1109/ACCESS.2023.3283218 – reference: KumarSSharmaDRaoSLimWMManglaSKPast, present, and future of sustainable finance: insights from big data analytics through machine learning of scholarly researchAnn Oper Res202210.1007/s10479-021-04410-8 – reference: LiYQianJFengSChenQZuoCDeep-learning-enabled dual-frequency composite fringe projection profilometry for single-shot absolute 3D shape measurementOpto-Electron Adv20225521002110.29026/oea.2022.210021 – reference: AslamMSDaiXHouJLiQUllahRNiZLiuYReliable control design for composite-driven scheme based on delay networked T-S fuzzy systemInt J Robust Nonlinear Control202030416221642408539310.1002/rnc.48391465.93103 – reference: LuZChengRJinYTanKCDebKNeural architecture search as multiobjective optimization benchmarks: problem formulation and performance assessmentIEEE Trans Evol Comput202210.1109/TEVC.2022.3233364 – reference: SongFLiuYShenDLiLTanJLearning control for motion coordination in wafer scanners: toward gain adaptationIEEE Trans Industr Electron20226912134281343810.1109/TIE.2022.3142428 – reference: TianHHuangNNiuZQinYPeiWangJJMapping winter crops in China with multi-source satellite imagery and phenology-based algorithmRemote Sens (basel, Switzerland)201911782010.3390/rs11070820 – reference: Wang L, Zhai Q, Yin B, et al. (2019) Second-order convolutional network for crowd counting. In Proc. SPIE 11198, Fourth International Workshop on Pattern Recognition, 111980T (31 July 2019). https://doi.org/10.1117/12.2540362 – reference: WangWChenZYuanXSimple low-light image enhancement based on Weber-Fechner law in logarithmic spaceSignal Process Image Commun202210610.1016/j.image.2022.116742 – reference: YangSLiQLiWLiXLiuADual-level representation enhancement on characteristic and context for image-text retrievalIEEE Trans Circuits Syst Video Technol202232118037805010.1109/TCSVT.2022.3182426 – reference: HazratBYinBKumarAAliMZhangJYaoJJerk-bounded trajectory planning for rotary flexible joint manipulator: an experimental approachSoft Comput20232774029403910.1007/s00500-023-07923-5 – reference: TianHPeiJHuangJLiXWangJZhouBGarlic and winter wheat identification based on active and passive satellite imagery and the google earth engine in Northern ChinaRemote Sens (basel, Switzerland)2020123539353910.3390/rs12213539 – reference: ChengXWuYMinGNetwork function virtualization in dynamic networks: a stochastic perspectiveIEEE J Sel Areas Commun201836102218223210.1109/JSAC.2018.2869958 – reference: Irfan QaisarMMajidAShamroozSAdaptive event-triggered robust H∞ control for Takagi-Sugeno fuzzy networked Markov jump systems with time-varying delayAsian J Control2023251213228456232910.1002/asjc.2762 – reference: UllahRDaiXShengAEvent-triggered scheme for fault detection and isolation of non-linear system with time-varying delayIET Control Theory Appl2020141624292438441797310.1049/iet-cta.2018.5469 – reference: ShenYZhangJSongSHLetaiefKBGraph neural networks for wireless communications: from theory to practiceIEEE Trans Wirel Commun2022223554356910.1109/TWC.2022.3219840 – reference: ZhengYYZhangYQianLZhangXDiaoSLiuXA lightweight ship target detection model based on improved YOLOv5s algorithmPLoS ONE2023184e28393210.1371/journal.pone.0283932 – reference: WangYXuNLiuALiWZhangYHigh-order interaction learning for image captioningIEEE Trans Circuits Syst Video Technol20223274417443010.1109/TCSVT.2021.3121062 – reference: KoyuncuİAlçinMTunaMReal-time high-speed 5-D hyperchaotic Lorenz system on FPGAInt J Comput Appl Technol201961315216510.1504/IJCAT.2019.102852 – reference: SaburAChowdharyAHuangDAlshamraniAToward scalable graph-based security analysis for cloud networksComput Netw202220610.1016/j.comnet.2022.108795 – reference: MoshahediNKattanLAlpha-fair large-scale urban network control: a perimeter control based on a macroscopic fundamental diagramTransp Res C Emerg Technol202314610.1016/j.trc.2022.103961 – reference: SongFLiuYJinWTanJHeWData-driven feedforward learning with force ripple compensation for wafer stages: a variable-gain robust approachIEEE Trans Neural Netw Learn Syst202233415941608440782010.1109/TNNLS.2020.3042975 – reference: LvZHanYSinghAKTrustworthiness in industrial IoT systems based on artificial intelligenceIEEE Trans Ind Inf20201721496150410.1109/TII.2020.2994747 – reference: ZhouXZhangLSA-FPN: An effective feature pyramid network for crowded human detectionAppl Intell20225211125561256810.1007/s10489-021-03121-8 – reference: ZhengYLvXQianLLiuXAn optimal BP neural network track prediction method based on a GA-ACO hybrid algorithmJ Mar Sci Eng20221010139910.3390/jmse10101399 – reference: ChenZObserver-based dissipative output feedback control for network T-S fuzzy systems under time delays with mismatch premiseNonlinear Dyn2019952923294110.1007/s11071-018-4732-x1437.93063 – reference: LiuAZhaiYXuNNieWLiWRegion-aware image captioning via interaction learningIEEE Trans Circuits Syst Video Technol20223263685369610.1109/TCSVT.2021.3107035 – reference: ZhouGLiHSongRWangQXuJOrthorectification of fisheye image under equidistant projection modelRemote Sens20221417417510.3390/rs14174175 – reference: LiLWangPZhengXXieQTaoXDual-interactive fusion for code-mixed deep representation learning in tag recommendationInf Fusion20239910186210.1016/j.inffus.2023.101862 – reference: KumarAShaikhAMLiYPruning filters with L1-norm and capped L1-norm for CNN compressionAppl Intell2021511152116010.1007/s10489-020-01894-y – volume: 27 start-page: 4987 year: 2023 ident: 9222_CR38 publication-title: Soft Comput doi: 10.1007/s00500-023-08026-x – ident: 9222_CR1 doi: 10.23919/CCC50068.2020.9188843 – volume: 51 start-page: 1152 year: 2021 ident: 9222_CR11 publication-title: Appl Intell doi: 10.1007/s10489-020-01894-y – volume: 22 start-page: 3554 year: 2022 ident: 9222_CR24 publication-title: IEEE Trans Wirel Commun doi: 10.1109/TWC.2022.3219840 – ident: 9222_CR37 doi: 10.23919/ChiCC.2017.8028015 – volume: 95 start-page: 2923 year: 2019 ident: 9222_CR3 publication-title: Nonlinear Dyn doi: 10.1007/s11071-018-4732-x – volume: 36 start-page: 2218 issue: 10 year: 2018 ident: 9222_CR4 publication-title: IEEE J Sel Areas Commun doi: 10.1109/JSAC.2018.2869958 – year: 2022 ident: 9222_CR12 publication-title: Ann Oper Res doi: 10.1007/s10479-021-04410-8 – volume: 15 start-page: 1461 issue: 11 year: 2021 ident: 9222_CR22 publication-title: IET Control Theory Appl doi: 10.1049/cth2.12136 – year: 2023 ident: 9222_CR5 publication-title: J Imaging Sci Technol doi: 10.2352/J.ImagingSci.Technol.2023.67.3.030402 – volume: 25 start-page: 213 issue: 1 year: 2023 ident: 9222_CR9 publication-title: Asian J Control doi: 10.1002/asjc.2762 – volume: 10 start-page: 1399 issue: 10 year: 2022 ident: 9222_CR42 publication-title: J Mar Sci Eng doi: 10.3390/jmse10101399 – volume: 33 start-page: 3607 issue: 11 year: 2021 ident: 9222_CR23 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2020.2970044 – volume: 206 year: 2022 ident: 9222_CR21 publication-title: Comput Netw doi: 10.1016/j.comnet.2022.108795 – volume: 17 start-page: 1496 issue: 2 year: 2020 ident: 9222_CR17 publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2020.2994747 – volume: 69 start-page: 13428 issue: 12 year: 2022 ident: 9222_CR25 publication-title: IEEE Trans Industr Electron doi: 10.1109/TIE.2022.3142428 – volume: 14 start-page: 2429 issue: 16 year: 2020 ident: 9222_CR29 publication-title: IET Control Theory Appl doi: 10.1049/iet-cta.2018.5469 – volume: 90 year: 2023 ident: 9222_CR6 publication-title: J vis Commun Image Represent doi: 10.1016/j.jvcir.2022.103731 – volume: 11 start-page: 57037 year: 2023 ident: 9222_CR7 publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3283218 – volume: 27 start-page: 4029 issue: 7 year: 2023 ident: 9222_CR8 publication-title: Soft Comput doi: 10.1007/s00500-023-07923-5 – volume: 71 start-page: 6609 issue: 6 year: 2022 ident: 9222_CR40 publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2022.3159681 – volume: 18 start-page: e283932 issue: 4 year: 2023 ident: 9222_CR43 publication-title: PLoS ONE doi: 10.1371/journal.pone.0283932 – volume: 14 start-page: 4175 issue: 17 year: 2022 ident: 9222_CR46 publication-title: Remote Sens doi: 10.3390/rs14174175 – ident: 9222_CR33 doi: 10.1117/12.2540362 – volume: 146 year: 2023 ident: 9222_CR20 publication-title: Transp Res C Emerg Technol doi: 10.1016/j.trc.2022.103961 – volume: 32 start-page: 8037 issue: 11 year: 2022 ident: 9222_CR36 publication-title: IEEE Trans Circuits Syst Video Technol doi: 10.1109/TCSVT.2022.3182426 – volume: 16 start-page: 2359 issue: 7 year: 2022 ident: 9222_CR47 publication-title: KSII Trans Internet Inf Syst doi: 10.3837/tiis.2022.07.013 – volume: 40 start-page: 1 issue: 4 year: 2021 ident: 9222_CR41 publication-title: ACM Trans Graphics doi: 10.1145/3450626.3459676 – volume: 11 start-page: 820 issue: 7 year: 2019 ident: 9222_CR27 publication-title: Remote Sens (basel, Switzerland) doi: 10.3390/rs11070820 – volume: 35 start-page: 81 issue: 1 year: 2022 ident: 9222_CR32 publication-title: J Syst Sci Complex doi: 10.1007/s11424-022-1030-y – year: 2022 ident: 9222_CR34 publication-title: IEEE Trans Mob Comput doi: 10.1109/TMC.2022.3199876 – volume: 106 year: 2022 ident: 9222_CR31 publication-title: Signal Process Image Commun doi: 10.1016/j.image.2022.116742 – volume: 32 start-page: 3685 issue: 6 year: 2022 ident: 9222_CR15 publication-title: IEEE Trans Circuits Syst Video Technol doi: 10.1109/TCSVT.2021.3107035 – year: 2023 ident: 9222_CR35 publication-title: Soft Comput doi: 10.1007/s00500-023-09037-4 – year: 2022 ident: 9222_CR16 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2022.3233364 – ident: 9222_CR39 doi: 10.23919/ChiCC.2019.8866334 – volume: 32 start-page: 4417 issue: 7 year: 2022 ident: 9222_CR30 publication-title: IEEE Trans Circuits Syst Video Technol doi: 10.1109/TCSVT.2021.3121062 – volume: 52 start-page: 12556 issue: 11 year: 2022 ident: 9222_CR45 publication-title: Appl Intell doi: 10.1007/s10489-021-03121-8 – volume: 5 start-page: 210021 issue: 5 year: 2022 ident: 9222_CR13 publication-title: Opto-Electron Adv doi: 10.29026/oea.2022.210021 – volume: 30 start-page: 1622 issue: 4 year: 2020 ident: 9222_CR2 publication-title: Int J Robust Nonlinear Control doi: 10.1002/rnc.4839 – volume: 99 start-page: 101862 year: 2023 ident: 9222_CR14 publication-title: Inf Fusion doi: 10.1016/j.inffus.2023.101862 – volume: 12 start-page: 3539 issue: 3539 year: 2020 ident: 9222_CR28 publication-title: Remote Sens (basel, Switzerland) doi: 10.3390/rs12213539 – volume: 33 start-page: 1594 issue: 4 year: 2022 ident: 9222_CR26 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2020.3042975 – volume: 61 start-page: 152 issue: 3 year: 2019 ident: 9222_CR10 publication-title: Int J Comput Appl Technol doi: 10.1504/IJCAT.2019.102852 – volume: 11 start-page: 2950 issue: 18 year: 2022 ident: 9222_CR18 publication-title: Electronics doi: 10.3390/electronics11182950 – volume: 110 start-page: 395 year: 2022 ident: 9222_CR19 publication-title: Analog Integr Circ Signal Process doi: 10.1007/s10470-021-01965-1 – year: 2022 ident: 9222_CR44 publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2022.3223911 |
SSID | ssj0021753 |
Score | 2.352361 |
Snippet | This study aims to use the theory of iterative control algorithm to learn and extract the semantic structural features of large-scale network data by analyzing... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 18113 |
SubjectTerms | Algorithms Application of Soft Computing Artificial Intelligence Clustering Computational Intelligence Computer networks Control Control algorithms Control systems Control theory Controllers Data analysis Efficiency Engineering Graph representations Graphical representations Iterative methods Lagrange multiplier Linear control Machine learning Mathematical Logic and Foundations Mechatronics Modularity Multiple objective analysis Optimization Performance indices Perturbation Process controls Robotics Robust control Scientific visualization Semantics Systems design Tracking control |
SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5Bu8BAeYrykgc2cOU8nMdYIQoCwUQlmCI_AUFTVMIAvx47sVuoYOhsx3LuznffyXefAY6FMSOLtLHMtMZxnOaYy1xjGqdE5UKmLLTdyDe3yeUwvrqn964p7N1Xu_srydpTT5vdLFUJwSbGYJKHNoVahja1CUoL2v2Lh-vzaaLl2CcNFDDo0YRc1yzz9yq_A9IMZc5djNbxZtCBod9pU2by0vuoeE98zZE4Lvor67DmACjqNxazAUuq3ISOf9wBubO-Cas_mAq3gHnyEsRKiZ5HvurcqhWNNRL--7IpK0c1ETayMVIiM6UhbzaeFbnaeMReH8eT5-pphOpeys9tGA7O784usXudAYswJRVWIdVMKcUMxMmI5jKhqTZDWqUGIkqpmdAqSYgUJNLaaF5RSkOeRYqFIqU02oFWOS7VLqCYG1ASCGJ740w-y7nBVCSRjAsZBZHMu3DiVVS8NSQcxZRuuZZlYWRZ1LIsaBcOvBYLdyDfizC3nigI8qwLp14ps-H_V9tbbPo-rNgH6ZuClwNoVZMPdWhgS8WPnJV-A3Wc5CY priority: 102 providerName: Springer Nature |
Title | Analysis and implementation of computer network graph based on iterative control algorithm theory |
URI | https://link.springer.com/article/10.1007/s00500-023-09222-5 https://www.proquest.com/docview/2917931198 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1433-7479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: AFBBN dateStart: 19970401 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1433-7479 dateEnd: 20241001 omitProxy: true ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1433-7479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1433-7479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: U2A dateStart: 19970404 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagXVh4Iwql8sAGFo4TJ82EWtRQgagQolKZIscPQKJpoWHg33NOnFYgweThEg-fz77v7HsgdCpBjSzTJqprDAmCKCaZig3hQUR1LFUkmM1GvhuFw3FwM-ETd-G2cGGV9ZlYHtRqJu0d-QWLrSp54CNfzt-J7RplX1ddC4111PQYaJLNFE-ulw6Xq0IJlABYJJhelzRTps7ZwieUgMUiNGbWIftpmFZs89cDaWl3km206Qgj7lUrvIPWdL6LtupmDNjtzT0k6vIiWOQKv07ruHALPJ4ZLOs_8irwG5elqrG1YgrDJ1V5ZTj7sItex-LtGQAoXqa4zHb82kfjZPB4NSSufwKRLKIF0YwbobUWQEK61GQq5JEBkdERkDiljJBGhyFVkvrGwNpozjnLur4WTEac-weokc9yfYhwkAFt8CS12WvgcWYZsB4aKpFJ5Xu-ilvorAYvnVdlMtJlQeQS6hSgTkuoU95C7Rrf1G2ZRbpa4BY6rzFfif-e7ej_2Y7Rhm0RX4WgtFGj-PjUJ0AkiqxTaksHNXtJvz-y4_XT7QDG_mB0_wDSMet9A1ACy4g |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB1VcIALO6KsPsAJLFwnTpoDQggoZeuplbgFxwsgQcpShPpTfCPjJG4FEtw4J7Gi58nMm3jmDcC2QjNyTJvqprU0DOOEZjqxVIQxM4nSseSuG_m6E7V74cWNuKnBp--FcWWV3icWjlr3lftHvs8TZ0oNzJEPn1-omxrlTlf9CI3SLC7N8ANTtreD8xPc3x3OW6fd4zatpgpQxWM2oIYLK40xEkNzk9lMRyK2eMmaGKmN1lYqa6KIacUCa_GNjRCCZ83ASK5i4aZEoMufDIMgcFr9zdbZKMGrVC-RgiBrxVBfNekUrXpOaIVRjJCUJdwlgN8D4Zjd_jiQLeJcaw5mKoJKjkqLmoeayRdg1g9_IJUvWATp5UyIzDV5ePJ16G6jSd8S5Z_Iy0JzUkhjExc1NcFbSjln9LWkqpYn8vEOAR_cP5Giu3K4BL1_QXYZJvJ-blaAhBnSlIZirlsOM9wsQ5bFIi0zpYNGoJM67Hrw0udSliMdCTAXUKcIdVpAnYo6rHt80-oTfUvHBlWHPY_5-PLvq63-vdoWTLW711fp1Xnncg2m3Xj6svxlHSYGr-9mA0nMINssLIfA7X-b6hcvmQV0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV25TgMxEB1BkBAUHAFEIIALOrDiPbybLSMgCldEQaR0K68PiEQ2UVgK_p7xHklAUFD7KGZszxt53huAc4nHyCJtqtrGUN8PI5qoyFDuh0xHUoXCtWzkx37QG_h3Qz5cYvHn1e7Vl2TBabAqTWnWmirTmhPfrGwJoxhvKItcm06twpqPsdqmXwO3M0-5Sh1KBAWIIzH4lrSZ3_f4HpoWePPHF2keebo7sFVCRtIpfLwLKzqtw3bVjoGUt7MOm0vagnsgKrkRIlJFRuOqTtw6gkwMkdX6tCgEJ7l0NbFRTRGcUsgt41tIymp2It5eJrNR9jomOfvxcx8G3Zvnqx4t-ylQ6YYso9rlRmitBYKSNjOJCnhocMjoEEGdUkZIo4OAKck8Y9BXmnPuJm1PC1eGnHsHUEsnqT4E4icIIxzJLJsNM9AkQRTEAiUSqTzHU1EDLipTxtNCNiOeCyTnho_R8HFu-Jg3oFlZOy6v0HvsRvbtcJyo3YDLygOL4b93O_rf9DNYf7ruxg-3_ftj2LDd5ItqlSbUstmHPkHMkSWn-bH6ArYXzm0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+and+implementation+of+computer+network+graph+based+on+iterative+control+algorithm+theory&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Zhang%2C+Jinfang&rft.au=Rong%2C+Jingyi&rft.au=Zhang%2C+Chunqian&rft.au=Li%2C+Yajuan&rft.date=2023-12-01&rft.pub=Springer+Nature+B.V&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=27&rft.issue=23&rft.spage=18113&rft.epage=18128&rft_id=info:doi/10.1007%2Fs00500-023-09222-5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon |