Analysis and implementation of computer network graph based on iterative control algorithm theory

This study aims to use the theory of iterative control algorithm to learn and extract the semantic structural features of large-scale network data by analyzing and exploring the semantic structural features of large-scale networks with the help of data visualization analysis methods. In addition, it...

Full description

Saved in:
Bibliographic Details
Published inSoft computing (Berlin, Germany) Vol. 27; no. 23; pp. 18113 - 18128
Main Authors Zhang, Jinfang, Rong, Jingyi, Zhang, Chunqian, Li, Yajuan
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1432-7643
1433-7479
DOI10.1007/s00500-023-09222-5

Cover

Abstract This study aims to use the theory of iterative control algorithm to learn and extract the semantic structural features of large-scale network data by analyzing and exploring the semantic structural features of large-scale networks with the help of data visualization analysis methods. In addition, it conducts relevant research on the high-quality simplified representation of computer network graphs based on the effective extraction of structural features and combined with graph sampling techniques. An iterative learning control algorithm based on reference trajectory update is proposed for the tracking control problem of discrete linear control system output subject to non-repetitive perturbation. First, the controller is parametrically optimized by constructing a performance index function to track the system output quickly and accurately at the desired point of reference trajectory update. Second, when the system output is affected by a batch of non-repetitive perturbations, a new performance indicator function is further constructed by introducing a Lagrange multiplier algorithm to establish multi-objective performance indicators to optimize the robust iterative learning controller. Finally, the algorithm is applied to a computer network graph design system, and the simulation results verify the reasonableness and effectiveness of the algorithm. These results show that the suggested technique surpassed the existing approaches with accomplishments such as an average degree of 12.5%, a clustering coefficient of 65%, network efficiency of 91%, and higher modularity, community identification, and network embedding scores.
AbstractList This study aims to use the theory of iterative control algorithm to learn and extract the semantic structural features of large-scale network data by analyzing and exploring the semantic structural features of large-scale networks with the help of data visualization analysis methods. In addition, it conducts relevant research on the high-quality simplified representation of computer network graphs based on the effective extraction of structural features and combined with graph sampling techniques. An iterative learning control algorithm based on reference trajectory update is proposed for the tracking control problem of discrete linear control system output subject to non-repetitive perturbation. First, the controller is parametrically optimized by constructing a performance index function to track the system output quickly and accurately at the desired point of reference trajectory update. Second, when the system output is affected by a batch of non-repetitive perturbations, a new performance indicator function is further constructed by introducing a Lagrange multiplier algorithm to establish multi-objective performance indicators to optimize the robust iterative learning controller. Finally, the algorithm is applied to a computer network graph design system, and the simulation results verify the reasonableness and effectiveness of the algorithm. These results show that the suggested technique surpassed the existing approaches with accomplishments such as an average degree of 12.5%, a clustering coefficient of 65%, network efficiency of 91%, and higher modularity, community identification, and network embedding scores.
Author Zhang, Chunqian
Li, Yajuan
Zhang, Jinfang
Rong, Jingyi
Author_xml – sequence: 1
  givenname: Jinfang
  surname: Zhang
  fullname: Zhang, Jinfang
  organization: Computer Department, Hebei University of Water Resources and Electric Engineering
– sequence: 2
  givenname: Jingyi
  surname: Rong
  fullname: Rong, Jingyi
  email: rongjy0015@163.com
  organization: Computer Department, Hebei University of Water Resources and Electric Engineering
– sequence: 3
  givenname: Chunqian
  surname: Zhang
  fullname: Zhang, Chunqian
  organization: Department of Electrical Automation, Hebei University of Water Resources and Electric Engineering
– sequence: 4
  givenname: Yajuan
  surname: Li
  fullname: Li, Yajuan
  organization: Computer Department, Hebei University of Water Resources and Electric Engineering
BookMark eNp9kE1LAzEQhoNUsK3-AU8Bz9HZpNl0j6X4BYIXPYd0d9Ju3U3WJFX6701bwZunGZjnfWGeCRk575CQ6wJuCwB1FwEkAAMuGFSccybPyLiYCcHUTFWj486ZKmfigkxi3ALwQkkxJmbhTLePbaTGNbTthw57dMmk1jvqLa19P-wSBuowffvwQdfBDBu6MhEbmpE23zL8hZl0KfiOmm7tQ5s2PU0b9GF_Sc6t6SJe_c4peX-4f1s-sZfXx-fl4oXVXEFiyKU1iGhEVc3BrppSKptPFpUsy6axprZYltDUIKxVgCil5Ku5QMNrJaWYkptT7xD85w5j0lu_C_m7qHlVqEoURTXPFD9RdfAxBrR6CG1vwl4XoA8q9Umlzir1UaU-VItTKGbYrTH8Vf-T-gE5L3tK
Cites_doi 10.1007/s00500-023-08026-x
10.23919/CCC50068.2020.9188843
10.1007/s10489-020-01894-y
10.1109/TWC.2022.3219840
10.23919/ChiCC.2017.8028015
10.1007/s11071-018-4732-x
10.1109/JSAC.2018.2869958
10.1007/s10479-021-04410-8
10.1049/cth2.12136
10.2352/J.ImagingSci.Technol.2023.67.3.030402
10.1002/asjc.2762
10.3390/jmse10101399
10.1109/TKDE.2020.2970044
10.1016/j.comnet.2022.108795
10.1109/TII.2020.2994747
10.1109/TIE.2022.3142428
10.1049/iet-cta.2018.5469
10.1016/j.jvcir.2022.103731
10.1109/ACCESS.2023.3283218
10.1007/s00500-023-07923-5
10.1109/TVT.2022.3159681
10.1371/journal.pone.0283932
10.3390/rs14174175
10.1117/12.2540362
10.1016/j.trc.2022.103961
10.1109/TCSVT.2022.3182426
10.3837/tiis.2022.07.013
10.1145/3450626.3459676
10.3390/rs11070820
10.1007/s11424-022-1030-y
10.1109/TMC.2022.3199876
10.1016/j.image.2022.116742
10.1109/TCSVT.2021.3107035
10.1007/s00500-023-09037-4
10.1109/TEVC.2022.3233364
10.23919/ChiCC.2019.8866334
10.1109/TCSVT.2021.3121062
10.1007/s10489-021-03121-8
10.29026/oea.2022.210021
10.1002/rnc.4839
10.1016/j.inffus.2023.101862
10.3390/rs12213539
10.1109/TNNLS.2020.3042975
10.1504/IJCAT.2019.102852
10.3390/electronics11182950
10.1007/s10470-021-01965-1
10.1109/TGRS.2022.3223911
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s00500-023-09222-5
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1433-7479
EndPage 18128
ExternalDocumentID 10_1007_s00500_023_09222_5
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
203
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9P
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c270t-e25faeeea39980fbd657fc27fe7566ddfacfe660dc03ff70ee5552b83ea2c7553
IEDL.DBID 8FG
ISSN 1432-7643
IngestDate Fri Jul 25 20:57:01 EDT 2025
Wed Oct 01 03:00:35 EDT 2025
Fri Feb 21 02:42:28 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords Feature learning
Computer network graph
Iterative control
Network graph data
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-e25faeeea39980fbd657fc27fe7566ddfacfe660dc03ff70ee5552b83ea2c7553
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2917931198
PQPubID 2043697
PageCount 16
ParticipantIDs proquest_journals_2917931198
crossref_primary_10_1007_s00500_023_09222_5
springer_journals_10_1007_s00500_023_09222_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20231200
2023-12-00
20231201
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 20231200
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Fusion of Foundations, Methodologies and Applications
PublicationTitle Soft computing (Berlin, Germany)
PublicationTitleAbbrev Soft Comput
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References ShenYDingNZhengHTLiYYangMModeling relation paths for knowledge graph completionIEEE Trans Knowl Data Eng202133113607361710.1109/TKDE.2020.2970044
SongFLiuYShenDLiLTanJLearning control for motion coordination in wafer scanners: toward gain adaptationIEEE Trans Industr Electron20226912134281343810.1109/TIE.2022.3142428
Yao W, Guo Y, Wu Y, Guo J (2017) Experimental validation of fuzzy PID control of flexible joint system in presence of uncertainties. In 2017 36th Chinese Control Conference (CCC). IEEE, p 4192–4197. DOI: https://doi.org/10.23919/ChiCC.2017.8028015
Ali M, Yin B, Kumar A, Sheikh AM et al. (2020) Reduction of multiplications in convolutional neural networks. In 2020 39th Chinese Control Conference (CCC). IEEE. p 7406–7411. DOI: https://doi.org/10.23919/CCC50068.2020.9188843.
XuHSunZCaoYA data-driven approach for intrusion and anomaly detection using automated machine learning for the Internet of ThingsSoft Comput202310.1007/s00500-023-09037-4
GuzmánJAPizarroGNúñezFA reinforcement learning-based distributed control scheme for cooperative intersection traffic controlIEEE Access202311570375704510.1109/ACCESS.2023.3283218
XiaoZShuJJiangHLuiJCSMinGLiuJMulti-objective parallel task offloading and content caching in D2D-aided MEC networksIEEE Trans Mob Comput202210.1109/TMC.2022.3199876
UllahRDaiXShengAEvent-triggered scheme for fault detection and isolation of non-linear system with time-varying delayIET Control Theory Appl2020141624292438441797310.1049/iet-cta.2018.5469
ZhouXZhangLSA-FPN: An effective feature pyramid network for crowded human detectionAppl Intell20225211125561256810.1007/s10489-021-03121-8
ChengXWuYMinGNetwork function virtualization in dynamic networks: a stochastic perspectiveIEEE J Sel Areas Commun201836102218223210.1109/JSAC.2018.2869958
SongFLiuYJinWTanJHeWData-driven feedforward learning with force ripple compensation for wafer stages: a variable-gain robust approachIEEE Trans Neural Netw Learn Syst202233415941608440782010.1109/TNNLS.2020.3042975
WangWChenZYuanXSimple low-light image enhancement based on Weber-Fechner law in logarithmic spaceSignal Process Image Commun202210610.1016/j.image.2022.116742
YangSLiQLiWLiXLiuADual-level representation enhancement on characteristic and context for image-text retrievalIEEE Trans Circuits Syst Video Technol202232118037805010.1109/TCSVT.2022.3182426
DangWXiangLLiuSYangBLiuMYin, Z.,... Zheng, W. A feature matching method based on the convolutional neural networkJ Imaging Sci Technol202310.2352/J.ImagingSci.Technol.2023.67.3.030402
ZhaiDWangCZhangRCaoHYuFREnergy-saving deployment optimization and resource management for UAV-assisted wireless sensor networks with NOMAIEEE Trans Veh Technol20227166609662310.1109/TVT.2022.3159681
AslamMSDaiXHouJLiQUllahRNiZLiuYReliable control design for composite-driven scheme based on delay networked T-S fuzzy systemInt J Robust Nonlinear Control202030416221642408539310.1002/rnc.48391465.93103
WangBZhangYZhangWA composite adaptive fault-tolerant attitude control for a quadrotor UAV with multiple uncertaintiesJ Syst Sci Complex202235181104437665610.1007/s11424-022-1030-y1485.93302
MaoYZhuYTangZChenZA novel airspace planning algorithm for cooperative target localizationElectronics20221118295010.3390/electronics11182950
ZhengYYZhangYQianLZhangXDiaoSLiuXA lightweight ship target detection model based on improved YOLOv5s algorithmPLoS ONE2023184e28393210.1371/journal.pone.0283932
Irfan QaisarMMajidAShamroozSAdaptive event-triggered robust H∞ control for Takagi-Sugeno fuzzy networked Markov jump systems with time-varying delayAsian J Control2023251213228456232910.1002/asjc.2762
MonkamYJKingniSTTchitngaRWoafoPElectronic simulation and microcontroller real implementation of an autonomous chaotic and hyperchaotic system made of a Colpitts-Josephson junction like circuitAnalog Integr Circ Signal Process202211039540710.1007/s10470-021-01965-1
Yin B, Khan J, Wang L, Zhang J, Kumar A (2019) Real-time lane detection and tracking for advanced driver assistance systems. In 2019 Chinese Control Conference (CCC). IEEE, p. 6772–6777. DOI: https://doi.org/10.23919/ChiCC.2019.8866334
KumarAShaikhAMLiYPruning filters with L1-norm and capped L1-norm for CNN compressionAppl Intell2021511152116010.1007/s10489-020-01894-y
LiuAZhaiYXuNNieWLiWRegion-aware image captioning via interaction learningIEEE Trans Circuits Syst Video Technol20223263685369610.1109/TCSVT.2021.3107035
ZhouGLiHSongRWangQXuJOrthorectification of fisheye image under equidistant projection modelRemote Sens20221417417510.3390/rs14174175
FuCYuanHXuHZhangHShenLTMSO-Net: Texture adaptive multi-scale observation for light field image depth estimationJ vis Commun Image Represent20239010.1016/j.jvcir.2022.103731
ZhouGLiuXOrthorectification model for extra-length linear array imageryIEEE Trans Geosci Remote Sens202210.1109/TGRS.2022.3223911
MoshahediNKattanLAlpha-fair large-scale urban network control: a perimeter control based on a macroscopic fundamental diagramTransp Res C Emerg Technol202314610.1016/j.trc.2022.103961
ShenYZhangJSongSHLetaiefKBGraph neural networks for wireless communications: from theory to practiceIEEE Trans Wirel Commun2022223554356910.1109/TWC.2022.3219840
ZhangJZhuCZhengLXuKROSEFusion: random optimization for online dense reconstruction under fast camera motionACM Trans Graphics202140411710.1145/3450626.3459676
ChenZObserver-based dissipative output feedback control for network T-S fuzzy systems under time delays with mismatch premiseNonlinear Dyn2019952923294110.1007/s11071-018-4732-x1437.93063
LuZChengRJinYTanKCDebKNeural architecture search as multiobjective optimization benchmarks: problem formulation and performance assessmentIEEE Trans Evol Comput202210.1109/TEVC.2022.3233364
TianHPeiJHuangJLiXWangJZhouBGarlic and winter wheat identification based on active and passive satellite imagery and the google earth engine in Northern ChinaRemote Sens (basel, Switzerland)2020123539353910.3390/rs12213539
KumarSSharmaDRaoSLimWMManglaSKPast, present, and future of sustainable finance: insights from big data analytics through machine learning of scholarly researchAnn Oper Res202210.1007/s10479-021-04410-8
ShamroozMLiQHouJFault detection for asynchronous T-S fuzzy networked Markov jump systems with new event-triggered schemeIET Control Theory Appl2021151114611473458335110.1049/cth2.12136
KoyuncuİAlçinMTunaMReal-time high-speed 5-D hyperchaotic Lorenz system on FPGAInt J Comput Appl Technol201961315216510.1504/IJCAT.2019.102852
YinBAslamMSA practical study of active disturbance rejection control for rotary flexible joint robot manipulatorSoft Comput2023274987500110.1007/s00500-023-08026-x
TianHHuangNNiuZQinYPeiWangJJMapping winter crops in China with multi-source satellite imagery and phenology-based algorithmRemote Sens (basel, Switzerland)201911782010.3390/rs11070820
LvZHanYSinghAKTrustworthiness in industrial IoT systems based on artificial intelligenceIEEE Trans Ind Inf20201721496150410.1109/TII.2020.2994747
ZhengYLvXQianLLiuXAn optimal BP neural network track prediction method based on a GA-ACO hybrid algorithmJ Mar Sci Eng20221010139910.3390/jmse10101399
LiYQianJFengSChenQZuoCDeep-learning-enabled dual-frequency composite fringe projection profilometry for single-shot absolute 3D shape measurementOpto-Electron Adv20225521002110.29026/oea.2022.210021
Wang L, Zhai Q, Yin B, et al. (2019) Second-order convolutional network for crowd counting. In Proc. SPIE 11198, Fourth International Workshop on Pattern Recognition, 111980T (31 July 2019). https://doi.org/10.1117/12.2540362
LiLWangPZhengXXieQTaoXDual-interactive fusion for code-mixed deep representation learning in tag recommendationInf Fusion20239910186210.1016/j.inffus.2023.101862
WangYXuNLiuALiWZhangYHigh-order interaction learning for image captioningIEEE Trans Circuits Syst Video Technol20223274417443010.1109/TCSVT.2021.3121062
ZhuangYChenSJiangNHuHAn effective WSSENet-based similarity retrieval method of large lung CT image databasesKSII Trans Internet Inf Syst20221672359237610.3837/tiis.2022.07.013
HazratBYinBKumarAAliMZhangJYaoJJerk-bounded trajectory planning for rotary flexible joint manipulator: an experimental approachSoft Comput20232774029403910.1007/s00500-023-07923-5
SaburAChowdharyAHuangDAlshamraniAToward scalable graph-based security analysis for cloud networksComput Netw202220610.1016/j.comnet.2022.108795
X Zhou (9222_CR45) 2022; 52
Z Xiao (9222_CR34) 2022
Z Lu (9222_CR16) 2022
J Zhang (9222_CR41) 2021; 40
S Kumar (9222_CR12) 2022
C Fu (9222_CR6) 2023; 90
MS Aslam (9222_CR2) 2020; 30
JA Guzmán (9222_CR7) 2023; 11
A Kumar (9222_CR11) 2021; 51
YJ Monkam (9222_CR19) 2022; 110
B Yin (9222_CR38) 2023; 27
İ Koyuncu (9222_CR10) 2019; 61
Y Wang (9222_CR30) 2022; 32
Y Mao (9222_CR18) 2022; 11
G Zhou (9222_CR44) 2022
F Song (9222_CR26) 2022; 33
Y Zhuang (9222_CR47) 2022; 16
Y Li (9222_CR13) 2022; 5
B Wang (9222_CR32) 2022; 35
F Song (9222_CR25) 2022; 69
Y Shen (9222_CR23) 2021; 33
H Tian (9222_CR27) 2019; 11
W Dang (9222_CR5) 2023
A Sabur (9222_CR21) 2022; 206
H Tian (9222_CR28) 2020; 12
B Hazrat (9222_CR8) 2023; 27
R Ullah (9222_CR29) 2020; 14
Z Chen (9222_CR3) 2019; 95
W Wang (9222_CR31) 2022; 106
9222_CR39
YY Zheng (9222_CR43) 2023; 18
9222_CR37
H Xu (9222_CR35) 2023
9222_CR1
A Liu (9222_CR15) 2022; 32
N Moshahedi (9222_CR20) 2023; 146
Z Lv (9222_CR17) 2020; 17
X Cheng (9222_CR4) 2018; 36
M Irfan Qaisar (9222_CR9) 2023; 25
D Zhai (9222_CR40) 2022; 71
Y Shen (9222_CR24) 2022; 22
L Li (9222_CR14) 2023; 99
9222_CR33
S Yang (9222_CR36) 2022; 32
M Shamrooz (9222_CR22) 2021; 15
G Zhou (9222_CR46) 2022; 14
Y Zheng (9222_CR42) 2022; 10
References_xml – reference: ShamroozMLiQHouJFault detection for asynchronous T-S fuzzy networked Markov jump systems with new event-triggered schemeIET Control Theory Appl2021151114611473458335110.1049/cth2.12136
– reference: WangBZhangYZhangWA composite adaptive fault-tolerant attitude control for a quadrotor UAV with multiple uncertaintiesJ Syst Sci Complex202235181104437665610.1007/s11424-022-1030-y1485.93302
– reference: XiaoZShuJJiangHLuiJCSMinGLiuJMulti-objective parallel task offloading and content caching in D2D-aided MEC networksIEEE Trans Mob Comput202210.1109/TMC.2022.3199876
– reference: Yao W, Guo Y, Wu Y, Guo J (2017) Experimental validation of fuzzy PID control of flexible joint system in presence of uncertainties. In 2017 36th Chinese Control Conference (CCC). IEEE, p 4192–4197. DOI: https://doi.org/10.23919/ChiCC.2017.8028015
– reference: ZhaiDWangCZhangRCaoHYuFREnergy-saving deployment optimization and resource management for UAV-assisted wireless sensor networks with NOMAIEEE Trans Veh Technol20227166609662310.1109/TVT.2022.3159681
– reference: YinBAslamMSA practical study of active disturbance rejection control for rotary flexible joint robot manipulatorSoft Comput2023274987500110.1007/s00500-023-08026-x
– reference: ZhouGLiuXOrthorectification model for extra-length linear array imageryIEEE Trans Geosci Remote Sens202210.1109/TGRS.2022.3223911
– reference: DangWXiangLLiuSYangBLiuMYin, Z.,... Zheng, W. A feature matching method based on the convolutional neural networkJ Imaging Sci Technol202310.2352/J.ImagingSci.Technol.2023.67.3.030402
– reference: FuCYuanHXuHZhangHShenLTMSO-Net: Texture adaptive multi-scale observation for light field image depth estimationJ vis Commun Image Represent20239010.1016/j.jvcir.2022.103731
– reference: XuHSunZCaoYA data-driven approach for intrusion and anomaly detection using automated machine learning for the Internet of ThingsSoft Comput202310.1007/s00500-023-09037-4
– reference: MaoYZhuYTangZChenZA novel airspace planning algorithm for cooperative target localizationElectronics20221118295010.3390/electronics11182950
– reference: Yin B, Khan J, Wang L, Zhang J, Kumar A (2019) Real-time lane detection and tracking for advanced driver assistance systems. In 2019 Chinese Control Conference (CCC). IEEE, p. 6772–6777. DOI: https://doi.org/10.23919/ChiCC.2019.8866334
– reference: ShenYDingNZhengHTLiYYangMModeling relation paths for knowledge graph completionIEEE Trans Knowl Data Eng202133113607361710.1109/TKDE.2020.2970044
– reference: Ali M, Yin B, Kumar A, Sheikh AM et al. (2020) Reduction of multiplications in convolutional neural networks. In 2020 39th Chinese Control Conference (CCC). IEEE. p 7406–7411. DOI: https://doi.org/10.23919/CCC50068.2020.9188843.
– reference: ZhangJZhuCZhengLXuKROSEFusion: random optimization for online dense reconstruction under fast camera motionACM Trans Graphics202140411710.1145/3450626.3459676
– reference: ZhuangYChenSJiangNHuHAn effective WSSENet-based similarity retrieval method of large lung CT image databasesKSII Trans Internet Inf Syst20221672359237610.3837/tiis.2022.07.013
– reference: MonkamYJKingniSTTchitngaRWoafoPElectronic simulation and microcontroller real implementation of an autonomous chaotic and hyperchaotic system made of a Colpitts-Josephson junction like circuitAnalog Integr Circ Signal Process202211039540710.1007/s10470-021-01965-1
– reference: GuzmánJAPizarroGNúñezFA reinforcement learning-based distributed control scheme for cooperative intersection traffic controlIEEE Access202311570375704510.1109/ACCESS.2023.3283218
– reference: KumarSSharmaDRaoSLimWMManglaSKPast, present, and future of sustainable finance: insights from big data analytics through machine learning of scholarly researchAnn Oper Res202210.1007/s10479-021-04410-8
– reference: LiYQianJFengSChenQZuoCDeep-learning-enabled dual-frequency composite fringe projection profilometry for single-shot absolute 3D shape measurementOpto-Electron Adv20225521002110.29026/oea.2022.210021
– reference: AslamMSDaiXHouJLiQUllahRNiZLiuYReliable control design for composite-driven scheme based on delay networked T-S fuzzy systemInt J Robust Nonlinear Control202030416221642408539310.1002/rnc.48391465.93103
– reference: LuZChengRJinYTanKCDebKNeural architecture search as multiobjective optimization benchmarks: problem formulation and performance assessmentIEEE Trans Evol Comput202210.1109/TEVC.2022.3233364
– reference: SongFLiuYShenDLiLTanJLearning control for motion coordination in wafer scanners: toward gain adaptationIEEE Trans Industr Electron20226912134281343810.1109/TIE.2022.3142428
– reference: TianHHuangNNiuZQinYPeiWangJJMapping winter crops in China with multi-source satellite imagery and phenology-based algorithmRemote Sens (basel, Switzerland)201911782010.3390/rs11070820
– reference: Wang L, Zhai Q, Yin B, et al. (2019) Second-order convolutional network for crowd counting. In Proc. SPIE 11198, Fourth International Workshop on Pattern Recognition, 111980T (31 July 2019). https://doi.org/10.1117/12.2540362
– reference: WangWChenZYuanXSimple low-light image enhancement based on Weber-Fechner law in logarithmic spaceSignal Process Image Commun202210610.1016/j.image.2022.116742
– reference: YangSLiQLiWLiXLiuADual-level representation enhancement on characteristic and context for image-text retrievalIEEE Trans Circuits Syst Video Technol202232118037805010.1109/TCSVT.2022.3182426
– reference: HazratBYinBKumarAAliMZhangJYaoJJerk-bounded trajectory planning for rotary flexible joint manipulator: an experimental approachSoft Comput20232774029403910.1007/s00500-023-07923-5
– reference: TianHPeiJHuangJLiXWangJZhouBGarlic and winter wheat identification based on active and passive satellite imagery and the google earth engine in Northern ChinaRemote Sens (basel, Switzerland)2020123539353910.3390/rs12213539
– reference: ChengXWuYMinGNetwork function virtualization in dynamic networks: a stochastic perspectiveIEEE J Sel Areas Commun201836102218223210.1109/JSAC.2018.2869958
– reference: Irfan QaisarMMajidAShamroozSAdaptive event-triggered robust H∞ control for Takagi-Sugeno fuzzy networked Markov jump systems with time-varying delayAsian J Control2023251213228456232910.1002/asjc.2762
– reference: UllahRDaiXShengAEvent-triggered scheme for fault detection and isolation of non-linear system with time-varying delayIET Control Theory Appl2020141624292438441797310.1049/iet-cta.2018.5469
– reference: ShenYZhangJSongSHLetaiefKBGraph neural networks for wireless communications: from theory to practiceIEEE Trans Wirel Commun2022223554356910.1109/TWC.2022.3219840
– reference: ZhengYYZhangYQianLZhangXDiaoSLiuXA lightweight ship target detection model based on improved YOLOv5s algorithmPLoS ONE2023184e28393210.1371/journal.pone.0283932
– reference: WangYXuNLiuALiWZhangYHigh-order interaction learning for image captioningIEEE Trans Circuits Syst Video Technol20223274417443010.1109/TCSVT.2021.3121062
– reference: KoyuncuİAlçinMTunaMReal-time high-speed 5-D hyperchaotic Lorenz system on FPGAInt J Comput Appl Technol201961315216510.1504/IJCAT.2019.102852
– reference: SaburAChowdharyAHuangDAlshamraniAToward scalable graph-based security analysis for cloud networksComput Netw202220610.1016/j.comnet.2022.108795
– reference: MoshahediNKattanLAlpha-fair large-scale urban network control: a perimeter control based on a macroscopic fundamental diagramTransp Res C Emerg Technol202314610.1016/j.trc.2022.103961
– reference: SongFLiuYJinWTanJHeWData-driven feedforward learning with force ripple compensation for wafer stages: a variable-gain robust approachIEEE Trans Neural Netw Learn Syst202233415941608440782010.1109/TNNLS.2020.3042975
– reference: LvZHanYSinghAKTrustworthiness in industrial IoT systems based on artificial intelligenceIEEE Trans Ind Inf20201721496150410.1109/TII.2020.2994747
– reference: ZhouXZhangLSA-FPN: An effective feature pyramid network for crowded human detectionAppl Intell20225211125561256810.1007/s10489-021-03121-8
– reference: ZhengYLvXQianLLiuXAn optimal BP neural network track prediction method based on a GA-ACO hybrid algorithmJ Mar Sci Eng20221010139910.3390/jmse10101399
– reference: ChenZObserver-based dissipative output feedback control for network T-S fuzzy systems under time delays with mismatch premiseNonlinear Dyn2019952923294110.1007/s11071-018-4732-x1437.93063
– reference: LiuAZhaiYXuNNieWLiWRegion-aware image captioning via interaction learningIEEE Trans Circuits Syst Video Technol20223263685369610.1109/TCSVT.2021.3107035
– reference: ZhouGLiHSongRWangQXuJOrthorectification of fisheye image under equidistant projection modelRemote Sens20221417417510.3390/rs14174175
– reference: LiLWangPZhengXXieQTaoXDual-interactive fusion for code-mixed deep representation learning in tag recommendationInf Fusion20239910186210.1016/j.inffus.2023.101862
– reference: KumarAShaikhAMLiYPruning filters with L1-norm and capped L1-norm for CNN compressionAppl Intell2021511152116010.1007/s10489-020-01894-y
– volume: 27
  start-page: 4987
  year: 2023
  ident: 9222_CR38
  publication-title: Soft Comput
  doi: 10.1007/s00500-023-08026-x
– ident: 9222_CR1
  doi: 10.23919/CCC50068.2020.9188843
– volume: 51
  start-page: 1152
  year: 2021
  ident: 9222_CR11
  publication-title: Appl Intell
  doi: 10.1007/s10489-020-01894-y
– volume: 22
  start-page: 3554
  year: 2022
  ident: 9222_CR24
  publication-title: IEEE Trans Wirel Commun
  doi: 10.1109/TWC.2022.3219840
– ident: 9222_CR37
  doi: 10.23919/ChiCC.2017.8028015
– volume: 95
  start-page: 2923
  year: 2019
  ident: 9222_CR3
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-018-4732-x
– volume: 36
  start-page: 2218
  issue: 10
  year: 2018
  ident: 9222_CR4
  publication-title: IEEE J Sel Areas Commun
  doi: 10.1109/JSAC.2018.2869958
– year: 2022
  ident: 9222_CR12
  publication-title: Ann Oper Res
  doi: 10.1007/s10479-021-04410-8
– volume: 15
  start-page: 1461
  issue: 11
  year: 2021
  ident: 9222_CR22
  publication-title: IET Control Theory Appl
  doi: 10.1049/cth2.12136
– year: 2023
  ident: 9222_CR5
  publication-title: J Imaging Sci Technol
  doi: 10.2352/J.ImagingSci.Technol.2023.67.3.030402
– volume: 25
  start-page: 213
  issue: 1
  year: 2023
  ident: 9222_CR9
  publication-title: Asian J Control
  doi: 10.1002/asjc.2762
– volume: 10
  start-page: 1399
  issue: 10
  year: 2022
  ident: 9222_CR42
  publication-title: J Mar Sci Eng
  doi: 10.3390/jmse10101399
– volume: 33
  start-page: 3607
  issue: 11
  year: 2021
  ident: 9222_CR23
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2020.2970044
– volume: 206
  year: 2022
  ident: 9222_CR21
  publication-title: Comput Netw
  doi: 10.1016/j.comnet.2022.108795
– volume: 17
  start-page: 1496
  issue: 2
  year: 2020
  ident: 9222_CR17
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2020.2994747
– volume: 69
  start-page: 13428
  issue: 12
  year: 2022
  ident: 9222_CR25
  publication-title: IEEE Trans Industr Electron
  doi: 10.1109/TIE.2022.3142428
– volume: 14
  start-page: 2429
  issue: 16
  year: 2020
  ident: 9222_CR29
  publication-title: IET Control Theory Appl
  doi: 10.1049/iet-cta.2018.5469
– volume: 90
  year: 2023
  ident: 9222_CR6
  publication-title: J vis Commun Image Represent
  doi: 10.1016/j.jvcir.2022.103731
– volume: 11
  start-page: 57037
  year: 2023
  ident: 9222_CR7
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3283218
– volume: 27
  start-page: 4029
  issue: 7
  year: 2023
  ident: 9222_CR8
  publication-title: Soft Comput
  doi: 10.1007/s00500-023-07923-5
– volume: 71
  start-page: 6609
  issue: 6
  year: 2022
  ident: 9222_CR40
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2022.3159681
– volume: 18
  start-page: e283932
  issue: 4
  year: 2023
  ident: 9222_CR43
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0283932
– volume: 14
  start-page: 4175
  issue: 17
  year: 2022
  ident: 9222_CR46
  publication-title: Remote Sens
  doi: 10.3390/rs14174175
– ident: 9222_CR33
  doi: 10.1117/12.2540362
– volume: 146
  year: 2023
  ident: 9222_CR20
  publication-title: Transp Res C Emerg Technol
  doi: 10.1016/j.trc.2022.103961
– volume: 32
  start-page: 8037
  issue: 11
  year: 2022
  ident: 9222_CR36
  publication-title: IEEE Trans Circuits Syst Video Technol
  doi: 10.1109/TCSVT.2022.3182426
– volume: 16
  start-page: 2359
  issue: 7
  year: 2022
  ident: 9222_CR47
  publication-title: KSII Trans Internet Inf Syst
  doi: 10.3837/tiis.2022.07.013
– volume: 40
  start-page: 1
  issue: 4
  year: 2021
  ident: 9222_CR41
  publication-title: ACM Trans Graphics
  doi: 10.1145/3450626.3459676
– volume: 11
  start-page: 820
  issue: 7
  year: 2019
  ident: 9222_CR27
  publication-title: Remote Sens (basel, Switzerland)
  doi: 10.3390/rs11070820
– volume: 35
  start-page: 81
  issue: 1
  year: 2022
  ident: 9222_CR32
  publication-title: J Syst Sci Complex
  doi: 10.1007/s11424-022-1030-y
– year: 2022
  ident: 9222_CR34
  publication-title: IEEE Trans Mob Comput
  doi: 10.1109/TMC.2022.3199876
– volume: 106
  year: 2022
  ident: 9222_CR31
  publication-title: Signal Process Image Commun
  doi: 10.1016/j.image.2022.116742
– volume: 32
  start-page: 3685
  issue: 6
  year: 2022
  ident: 9222_CR15
  publication-title: IEEE Trans Circuits Syst Video Technol
  doi: 10.1109/TCSVT.2021.3107035
– year: 2023
  ident: 9222_CR35
  publication-title: Soft Comput
  doi: 10.1007/s00500-023-09037-4
– year: 2022
  ident: 9222_CR16
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2022.3233364
– ident: 9222_CR39
  doi: 10.23919/ChiCC.2019.8866334
– volume: 32
  start-page: 4417
  issue: 7
  year: 2022
  ident: 9222_CR30
  publication-title: IEEE Trans Circuits Syst Video Technol
  doi: 10.1109/TCSVT.2021.3121062
– volume: 52
  start-page: 12556
  issue: 11
  year: 2022
  ident: 9222_CR45
  publication-title: Appl Intell
  doi: 10.1007/s10489-021-03121-8
– volume: 5
  start-page: 210021
  issue: 5
  year: 2022
  ident: 9222_CR13
  publication-title: Opto-Electron Adv
  doi: 10.29026/oea.2022.210021
– volume: 30
  start-page: 1622
  issue: 4
  year: 2020
  ident: 9222_CR2
  publication-title: Int J Robust Nonlinear Control
  doi: 10.1002/rnc.4839
– volume: 99
  start-page: 101862
  year: 2023
  ident: 9222_CR14
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2023.101862
– volume: 12
  start-page: 3539
  issue: 3539
  year: 2020
  ident: 9222_CR28
  publication-title: Remote Sens (basel, Switzerland)
  doi: 10.3390/rs12213539
– volume: 33
  start-page: 1594
  issue: 4
  year: 2022
  ident: 9222_CR26
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2020.3042975
– volume: 61
  start-page: 152
  issue: 3
  year: 2019
  ident: 9222_CR10
  publication-title: Int J Comput Appl Technol
  doi: 10.1504/IJCAT.2019.102852
– volume: 11
  start-page: 2950
  issue: 18
  year: 2022
  ident: 9222_CR18
  publication-title: Electronics
  doi: 10.3390/electronics11182950
– volume: 110
  start-page: 395
  year: 2022
  ident: 9222_CR19
  publication-title: Analog Integr Circ Signal Process
  doi: 10.1007/s10470-021-01965-1
– year: 2022
  ident: 9222_CR44
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2022.3223911
SSID ssj0021753
Score 2.352361
Snippet This study aims to use the theory of iterative control algorithm to learn and extract the semantic structural features of large-scale network data by analyzing...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 18113
SubjectTerms Algorithms
Application of Soft Computing
Artificial Intelligence
Clustering
Computational Intelligence
Computer networks
Control
Control algorithms
Control systems
Control theory
Controllers
Data analysis
Efficiency
Engineering
Graph representations
Graphical representations
Iterative methods
Lagrange multiplier
Linear control
Machine learning
Mathematical Logic and Foundations
Mechatronics
Modularity
Multiple objective analysis
Optimization
Performance indices
Perturbation
Process controls
Robotics
Robust control
Scientific visualization
Semantics
Systems design
Tracking control
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5Bu8BAeYrykgc2cOU8nMdYIQoCwUQlmCI_AUFTVMIAvx47sVuoYOhsx3LuznffyXefAY6FMSOLtLHMtMZxnOaYy1xjGqdE5UKmLLTdyDe3yeUwvrqn964p7N1Xu_srydpTT5vdLFUJwSbGYJKHNoVahja1CUoL2v2Lh-vzaaLl2CcNFDDo0YRc1yzz9yq_A9IMZc5djNbxZtCBod9pU2by0vuoeE98zZE4Lvor67DmACjqNxazAUuq3ISOf9wBubO-Cas_mAq3gHnyEsRKiZ5HvurcqhWNNRL--7IpK0c1ETayMVIiM6UhbzaeFbnaeMReH8eT5-pphOpeys9tGA7O784usXudAYswJRVWIdVMKcUMxMmI5jKhqTZDWqUGIkqpmdAqSYgUJNLaaF5RSkOeRYqFIqU02oFWOS7VLqCYG1ASCGJ740w-y7nBVCSRjAsZBZHMu3DiVVS8NSQcxZRuuZZlYWRZ1LIsaBcOvBYLdyDfizC3nigI8qwLp14ps-H_V9tbbPo-rNgH6ZuClwNoVZMPdWhgS8WPnJV-A3Wc5CY
  priority: 102
  providerName: Springer Nature
Title Analysis and implementation of computer network graph based on iterative control algorithm theory
URI https://link.springer.com/article/10.1007/s00500-023-09222-5
https://www.proquest.com/docview/2917931198
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1433-7479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: AFBBN
  dateStart: 19970401
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1433-7479
  dateEnd: 20241001
  omitProxy: true
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: U2A
  dateStart: 19970404
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagXVh4Iwql8sAGFo4TJ82EWtRQgagQolKZIscPQKJpoWHg33NOnFYgweThEg-fz77v7HsgdCpBjSzTJqprDAmCKCaZig3hQUR1LFUkmM1GvhuFw3FwM-ETd-G2cGGV9ZlYHtRqJu0d-QWLrSp54CNfzt-J7RplX1ddC4111PQYaJLNFE-ulw6Xq0IJlABYJJhelzRTps7ZwieUgMUiNGbWIftpmFZs89cDaWl3km206Qgj7lUrvIPWdL6LtupmDNjtzT0k6vIiWOQKv07ruHALPJ4ZLOs_8irwG5elqrG1YgrDJ1V5ZTj7sItex-LtGQAoXqa4zHb82kfjZPB4NSSufwKRLKIF0YwbobUWQEK61GQq5JEBkdERkDiljJBGhyFVkvrGwNpozjnLur4WTEac-weokc9yfYhwkAFt8CS12WvgcWYZsB4aKpFJ5Xu-ilvorAYvnVdlMtJlQeQS6hSgTkuoU95C7Rrf1G2ZRbpa4BY6rzFfif-e7ej_2Y7Rhm0RX4WgtFGj-PjUJ0AkiqxTaksHNXtJvz-y4_XT7QDG_mB0_wDSMet9A1ACy4g
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB1VcIALO6KsPsAJLFwnTpoDQggoZeuplbgFxwsgQcpShPpTfCPjJG4FEtw4J7Gi58nMm3jmDcC2QjNyTJvqprU0DOOEZjqxVIQxM4nSseSuG_m6E7V74cWNuKnBp--FcWWV3icWjlr3lftHvs8TZ0oNzJEPn1-omxrlTlf9CI3SLC7N8ANTtreD8xPc3x3OW6fd4zatpgpQxWM2oIYLK40xEkNzk9lMRyK2eMmaGKmN1lYqa6KIacUCa_GNjRCCZ83ASK5i4aZEoMufDIMgcFr9zdbZKMGrVC-RgiBrxVBfNekUrXpOaIVRjJCUJdwlgN8D4Zjd_jiQLeJcaw5mKoJKjkqLmoeayRdg1g9_IJUvWATp5UyIzDV5ePJ16G6jSd8S5Z_Iy0JzUkhjExc1NcFbSjln9LWkqpYn8vEOAR_cP5Giu3K4BL1_QXYZJvJ-blaAhBnSlIZirlsOM9wsQ5bFIi0zpYNGoJM67Hrw0udSliMdCTAXUKcIdVpAnYo6rHt80-oTfUvHBlWHPY_5-PLvq63-vdoWTLW711fp1Xnncg2m3Xj6svxlHSYGr-9mA0nMINssLIfA7X-b6hcvmQV0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV25TgMxEB1BkBAUHAFEIIALOrDiPbybLSMgCldEQaR0K68PiEQ2UVgK_p7xHklAUFD7KGZszxt53huAc4nHyCJtqtrGUN8PI5qoyFDuh0xHUoXCtWzkx37QG_h3Qz5cYvHn1e7Vl2TBabAqTWnWmirTmhPfrGwJoxhvKItcm06twpqPsdqmXwO3M0-5Sh1KBAWIIzH4lrSZ3_f4HpoWePPHF2keebo7sFVCRtIpfLwLKzqtw3bVjoGUt7MOm0vagnsgKrkRIlJFRuOqTtw6gkwMkdX6tCgEJ7l0NbFRTRGcUsgt41tIymp2It5eJrNR9jomOfvxcx8G3Zvnqx4t-ylQ6YYso9rlRmitBYKSNjOJCnhocMjoEEGdUkZIo4OAKck8Y9BXmnPuJm1PC1eGnHsHUEsnqT4E4icIIxzJLJsNM9AkQRTEAiUSqTzHU1EDLipTxtNCNiOeCyTnho_R8HFu-Jg3oFlZOy6v0HvsRvbtcJyo3YDLygOL4b93O_rf9DNYf7ruxg-3_ftj2LDd5ItqlSbUstmHPkHMkSWn-bH6ArYXzm0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+and+implementation+of+computer+network+graph+based+on+iterative+control+algorithm+theory&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Zhang%2C+Jinfang&rft.au=Rong%2C+Jingyi&rft.au=Zhang%2C+Chunqian&rft.au=Li%2C+Yajuan&rft.date=2023-12-01&rft.pub=Springer+Nature+B.V&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=27&rft.issue=23&rft.spage=18113&rft.epage=18128&rft_id=info:doi/10.1007%2Fs00500-023-09222-5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon