Fine error bounds for approximate asymmetric saddle point problems
The theory of mixed finite element methods for solving different types of elliptic partial differential equations in saddle point formulation is well established since many decades. This topic was mostly studied for variational formulations defined upon the same product spaces of both shape- and tes...
Saved in:
Published in | Computational & applied mathematics Vol. 43; no. 4 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.06.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 2238-3603 1807-0302 |
DOI | 10.1007/s40314-024-02678-7 |
Cover
Abstract | The theory of mixed finite element methods for solving different types of elliptic partial differential equations in saddle point formulation is well established since many decades. This topic was mostly studied for variational formulations defined upon the same product spaces of both shape- and test-pairs of primal variable-multiplier. Whenever either these spaces or the two bilinear forms involving the multiplier are distinct, the saddle point problem is asymmetric. The three inf-sup conditions to be satisfied by the product spaces stipulated in work on the subject, to guarantee well-posedness, are known [(see, e.g., Exercise 2.14 of Ern and Guermond (Theory and practice of finite elements, Applied mathematical, sciences, Springer, 2004)]. However, the material encountered in the literature addressing the approximation of this class of problems left room for improvement and clarifications. After making a brief review of the existing contributions to the topic that justifies such an assertion, in this paper we set up finer global error bounds for the pair primal variable-multiplier solving an asymmetric saddle point problem. Besides well-posedness, the three constants in the aforementioned inf-sup conditions are identified as all that is needed for determining the stability constant appearing therein, whose expression is exhibited. As a complement, refined error bounds depending only on these three constants are given for both unknowns separately. |
---|---|
AbstractList | The theory of mixed finite element methods for solving different types of elliptic partial differential equations in saddle point formulation is well established since many decades. This topic was mostly studied for variational formulations defined upon the same product spaces of both shape- and test-pairs of primal variable-multiplier. Whenever either these spaces or the two bilinear forms involving the multiplier are distinct, the saddle point problem is asymmetric. The three inf-sup conditions to be satisfied by the product spaces stipulated in work on the subject, to guarantee well-posedness, are known [(see, e.g., Exercise 2.14 of Ern and Guermond (Theory and practice of finite elements, Applied mathematical, sciences, Springer, 2004)]. However, the material encountered in the literature addressing the approximation of this class of problems left room for improvement and clarifications. After making a brief review of the existing contributions to the topic that justifies such an assertion, in this paper we set up finer global error bounds for the pair primal variable-multiplier solving an asymmetric saddle point problem. Besides well-posedness, the three constants in the aforementioned inf-sup conditions are identified as all that is needed for determining the stability constant appearing therein, whose expression is exhibited. As a complement, refined error bounds depending only on these three constants are given for both unknowns separately. |
ArticleNumber | 160 |
Author | Ruas, Vitoriano |
Author_xml | – sequence: 1 givenname: Vitoriano orcidid: 0000-0001-6308-879X surname: Ruas fullname: Ruas, Vitoriano email: vitoriano.ruas@upmc.fr organization: Institut Jean Le Rond d’Alembert, CNRS UMR 7190, Sorbonne Université, Campus Pierre et Marie Curie |
BookMark | eNp9UD1PwzAQtVCRaAt_gCkSs-HsS2J3hIoCUiUWmC3HsVGqxg52KtF_j0uQ2BhOd8P7uPcWZOaDt4RcM7hlAOIulYCspMBPUwtJxRmZMwmCAgKfkTnnKCnWgBdkkdIOAAUryzl52HTeFjbGEIsmHHybCpdPPQwxfHW9Hm2h07Hv7Rg7UyTdtntbDKHzY5ERzd726ZKcO71P9up3L8n75vFt_Uy3r08v6_stNVzASFu5wta1shYN1FKb0mhhgDvNG2dE5Rosq6qy0uoVr4GxCm3-mWt0hhnRaFySm0k3G38ebBrVLhyiz5YKAVHmtBXPKD6hTAwpRevUEHOOeFQM1KkrNXWlclfqpyslMgknUspg_2Hjn_Q_rG9WyG58 |
Cites_doi | 10.1137/0719021 10.1007/BF01436561 10.1007/BF02165003 10.1016/0022-247X(80)90226-7 10.1007/s40314-014-0163-6 10.1007/978-3-642-53393-8 10.1137/0725070 10.1137/S0895479802410827 10.1007/978-1-4612-3172-1 10.1007/978-1-4757-4355-5 |
ContentType | Journal Article |
Copyright | The Author(s) under exclusive licence to Sociedade Brasileira de Matemática Aplicada e Computacional 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s) under exclusive licence to Sociedade Brasileira de Matemática Aplicada e Computacional 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION JQ2 |
DOI | 10.1007/s40314-024-02678-7 |
DatabaseName | CrossRef ProQuest Computer Science Collection |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | ProQuest Computer Science Collection |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics |
EISSN | 1807-0302 |
ExternalDocumentID | 10_1007_s40314_024_02678_7 |
GroupedDBID | -EM .4S .DC 06D 0R~ 203 29F 2WC 30V 4.4 406 5GY 69Q 96X AAAVM AACDK AAHNG AAIAL AAJBT AAJKR AAKPC AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAZMS ABAKF ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTHY ABTKH ABTMW ABXHO ABXPI ACAOD ACCUX ACDTI ACGFO ACGFS ACHSB ACIPV ACIWK ACKNC ACMLO ACOKC ACPIV ACREN ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGNC AEGXH AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AIAGR AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AMXSW AMYLF AMYQR ANMIH APOWU ARCSS ASPBG AUKKA AVWKF AXYYD AYJHY AZFZN BAPOH BGNMA C1A CS3 CSCUP DNIVK DPUIP DU5 E3Z EBLON EBS EDO EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ7 HMJXF HRMNR HZ~ I0C IKXTQ IWAJR IXD J-C JBSCW JZLTJ KOV KQ8 KWQ LLZTM M4Y M~E NPVJJ NQJWS NU0 O9- O93 O9G O9J OK1 P2P PT4 RLLFE RNS ROL RSC RSV SCD SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TR2 TSG UG4 UOJIU UTJUX UZXMN VFIZW W48 XSB Z7R Z83 ZMTXR AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION OVT JQ2 |
ID | FETCH-LOGICAL-c270t-d893dfd867b068ac4ca7c02fa2bfc75fb34555e8ea92601153e2382a3fc1c7ba3 |
IEDL.DBID | AGYKE |
ISSN | 2238-3603 |
IngestDate | Thu Sep 25 00:55:57 EDT 2025 Wed Oct 01 01:21:54 EDT 2025 Fri Feb 21 02:41:29 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | 70G75 74A15 Error bounds 78M30 Inf-sup conditions Stability constants 76M30 Asymmetric saddle-point problem 65N30 80M30 Mixed finite elements |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c270t-d893dfd867b068ac4ca7c02fa2bfc75fb34555e8ea92601153e2382a3fc1c7ba3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6308-879X |
PQID | 3033880752 |
PQPubID | 2044245 |
ParticipantIDs | proquest_journals_3033880752 crossref_primary_10_1007_s40314_024_02678_7 springer_journals_10_1007_s40314_024_02678_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-01 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Heidelberg |
PublicationTitle | Computational & applied mathematics |
PublicationTitleAbbrev | Comp. Appl. Math |
PublicationYear | 2024 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | Bernardi, Canuto, Maday (CR3) 1988; 25–6 Kato (CR13) 1966 CR4 Babuška (CR2) 1973; 20 Cuminato, Ruas (CR9) 2015; 34 Yosida (CR16) 1980 Babuška (CR1) 1971; 16 Brezzi, Fortin (CR6) 1991 CR11 CR10 Conway (CR8) 1990 Ciarlet, Huang, Zou (CR7) 2003; 25–1 Brezzi (CR5) 1974; 8–2 MacCamy (CR14) 1980; 78 Ern, Guermond (CR12) 2004 Nicolaides (CR15) 1982; 2–19 I Babuška (2678_CR2) 1973; 20 F Brezzi (2678_CR5) 1974; 8–2 A Ern (2678_CR12) 2004 T Kato (2678_CR13) 1966 2678_CR4 RA Nicolaides (2678_CR15) 1982; 2–19 JB Conway (2678_CR8) 1990 P Ciarlet Jr (2678_CR7) 2003; 25–1 2678_CR11 2678_CR10 F Brezzi (2678_CR6) 1991 C Bernardi (2678_CR3) 1988; 25–6 K Yosida (2678_CR16) 1980 I Babuška (2678_CR1) 1971; 16 RC MacCamy (2678_CR14) 1980; 78 JA Cuminato (2678_CR9) 2015; 34 |
References_xml | – volume: 2–19 start-page: 349 year: 1982 end-page: 357 ident: CR15 article-title: Existence, uniqueness and approximation for generalized saddle point problems publication-title: SIAM J Numer Anal doi: 10.1137/0719021 – volume: 20 start-page: 179 year: 1973 end-page: 192 ident: CR2 article-title: The finite element method with Lagrangian multipliers publication-title: Numer Math doi: 10.1007/BF01436561 – year: 2004 ident: CR12 publication-title: Theory and practice of finite elements – year: 1980 ident: CR16 publication-title: Functional analysis – volume: 16 start-page: 322 year: 1971 end-page: 333 ident: CR1 article-title: Error bound for the finite element method publication-title: Numer Math doi: 10.1007/BF02165003 – ident: CR4 – volume: 78 start-page: 248 year: 1980 end-page: 266 ident: CR14 article-title: Variational procedures for a class of exterior interface problems publication-title: J Math Anal Appl doi: 10.1016/0022-247X(80)90226-7 – volume: 34 start-page: 1009 year: 2015 end-page: 1033 ident: CR9 article-title: Unification of distance inequalities for linear variational problems publication-title: Comput Appl Math doi: 10.1007/s40314-014-0163-6 – year: 1966 ident: CR13 publication-title: Perturbation theory for linear operators doi: 10.1007/978-3-642-53393-8 – volume: 8–2 start-page: 129 year: 1974 end-page: 151 ident: CR5 article-title: On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers publication-title: RAIRO Anal Numér – ident: CR10 – ident: CR11 – volume: 25–6 start-page: 1237 year: 1988 end-page: 1271 ident: CR3 article-title: Generalized inf-sup condition for Chebyshev spectral approximation of the Stokes problem publication-title: SIAM J Numer Anal doi: 10.1137/0725070 – volume: 25–1 start-page: 224 year: 2003 end-page: 236 ident: CR7 article-title: Some observations on generalized saddle-point problems publication-title: SIAM J Matrix Anal Appl doi: 10.1137/S0895479802410827 – year: 1990 ident: CR8 publication-title: A course in functional analysis – year: 1991 ident: CR6 publication-title: Mixed and hybrid finite element methods doi: 10.1007/978-1-4612-3172-1 – volume: 25–6 start-page: 1237 year: 1988 ident: 2678_CR3 publication-title: SIAM J Numer Anal doi: 10.1137/0725070 – volume-title: Functional analysis year: 1980 ident: 2678_CR16 – volume: 78 start-page: 248 year: 1980 ident: 2678_CR14 publication-title: J Math Anal Appl doi: 10.1016/0022-247X(80)90226-7 – volume: 16 start-page: 322 year: 1971 ident: 2678_CR1 publication-title: Numer Math doi: 10.1007/BF02165003 – volume: 34 start-page: 1009 year: 2015 ident: 2678_CR9 publication-title: Comput Appl Math doi: 10.1007/s40314-014-0163-6 – volume-title: Theory and practice of finite elements year: 2004 ident: 2678_CR12 doi: 10.1007/978-1-4757-4355-5 – ident: 2678_CR4 – volume-title: Mixed and hybrid finite element methods year: 1991 ident: 2678_CR6 doi: 10.1007/978-1-4612-3172-1 – volume: 25–1 start-page: 224 year: 2003 ident: 2678_CR7 publication-title: SIAM J Matrix Anal Appl doi: 10.1137/S0895479802410827 – ident: 2678_CR11 – ident: 2678_CR10 – volume: 2–19 start-page: 349 year: 1982 ident: 2678_CR15 publication-title: SIAM J Numer Anal doi: 10.1137/0719021 – volume: 8–2 start-page: 129 year: 1974 ident: 2678_CR5 publication-title: RAIRO Anal Numér – volume-title: A course in functional analysis year: 1990 ident: 2678_CR8 – volume: 20 start-page: 179 year: 1973 ident: 2678_CR2 publication-title: Numer Math doi: 10.1007/BF01436561 – volume-title: Perturbation theory for linear operators year: 1966 ident: 2678_CR13 doi: 10.1007/978-3-642-53393-8 |
SSID | ssj0037144 |
Score | 2.268554 |
Snippet | The theory of mixed finite element methods for solving different types of elliptic partial differential equations in saddle point formulation is well... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Applications of Mathematics Asymmetry Computational Mathematics and Numerical Analysis Constants Elliptic functions Errors Finite element method Mathematical analysis Mathematical Applications in Computer Science Mathematical Applications in the Physical Sciences Mathematics Mathematics and Statistics Multipliers Partial differential equations Saddle points Well posed problems |
Title | Fine error bounds for approximate asymmetric saddle point problems |
URI | https://link.springer.com/article/10.1007/s40314-024-02678-7 https://www.proquest.com/docview/3033880752 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1807-0302 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0037144 issn: 2238-3603 databaseCode: AFBBN dateStart: 20130401 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1807-0302 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0037144 issn: 2238-3603 databaseCode: AGYKE dateStart: 20130101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgXODAY4AYjCkHbpCpS5umOzK0MYHYiUnjVCVpKk1oD62dBPx6nC4dYoLDzomi1nbsL3H8GeBGMN8wXyuqJcI3ROCGypbn0zaiOZ4aI0XB0_0yCPvD4GnER64oLCtfu5cpycJTr4vdAsu0TjGmUNs1KaJiF_a4PaBUYO_-8e25W3pgS0Jns8kY-SLqh57vimX-XuV3QPpBmRuJ0SLe9I5gWH7p6pnJe3OZq6b-2iBx3PZXjuHQAVByv7KYE9gx0yocOTBK3FbPqnDwsiZ0zU6h00M0SsxiMVsQZTsxZQTRLikYyT_GOMsQmX1OJrY_lyaZtLceZD4bT3PiWtZkZzDsdV8f-tS1X6CaCS-nCUKZJE2iUCgvjKQOtBTaY6lkKtWCp8oPOOcmMrJtecnQdaLWIyb9VLe0UNI_h8p0NjUXQFgSoj0w1L9SAXoVxZVgSZS2EP-0WdKuwW2pg3i-YtmI13zKhbBiFFZcCCsWNaiXaordjstiDMWW10ZwVoO7Uuo_w_-vdrnd9CvYZ4Xi7EVMHSr5YmmuEZfkqoFm2Ot0Bg1njt_u5tkK |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07TwMxDLagDMDAG1GeGdgg1TX3SDoCain0MVEJplOSy0kV6kO9QwJ-Pc41VwSCoXOiKLEd-1Mcfwa45Mw3zNeKaonwDRG4obLu-bSBaC5MjZG84Onu9aP2IHh8Dp9dUVhW_nYvU5KFp14UuwWWaZ1iTKG2a5KgfBXWgroQQQXWbu5fOs3SA1sSOptNxsgnqB95viuW-XuVnwHpG2X-SowW8aa1DYNyp_NvJq-1t1zV9OcvEsdlj7IDWw6Akpu5xezCihnvwbYDo8Rd9WwPNnsLQtdsH25biEaJmc0mM6JsJ6aMINolBSP5-xBnGSKzj9HI9ufSJJP21YNMJ8NxTlzLmuwABq3m012buvYLVDPu5TRBKJOkiYi48iIhdaAl1x5LJVOp5mGq_CAMQyOMbFheMnSdqHXBpJ_quuZK-odQGU_G5ggISyK0B4b6VypAr6JCxVki0jrinwZLGlW4KnUQT-csG_GCT7kQVozCigthxbwKp6WaYnfjshhDseW14SGrwnUp9e_h_1c7Xm76Bay3n3rduPvQ75zABiuUaB9lTqGSz97MGWKUXJ07k_wCevnafw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgkxAceAwQ45kDNwh0adN0x_EY47GJA0hwqpI0lRCim9ZOAn49TtdugOCAODeKWtv19ymOPwPsC-Ya5mpFtUT6hgzcUNlwXNpENsdjY6TIdbq7Pb9z71098IdPXfz5bfeyJDnuabAqTUl2PIji40njm2dV1yniC7UTlAIqZqHqIbrxClRbF4_X52U2toJ0trKMKBhQ13fconHm512-gtOUcX4rkubY014CWb71-MrJ89EoU0f6_Zug438-axkWC2JKWuNIWoEZk9RgqSCppEgBaQ0WuhOh13QVTtrIUokZDvtDouyEppQgCya5UvnrE64yRKZvLy92bpcmqbSnIWTQf0oyUoyySdfgvn1-d9qhxVgGqplwMhohxYniKPCFcvxAak9LoR0WS6ZiLXisXI9zbgIjm1avDFMqRkPApBvrhhZKuutQSfqJ2QDCIh_jhGFcKOVhtlFcCRYFcQN5UZNFzToclP4IB2P1jXCis5wbK0RjhbmxQlGH7dJlYfEnpiFCtNW7EZzV4bD0wPTx77tt_m35HszdnrXDm8ve9RbMs9yH9qxmGyrZcGR2kLpkareIzg8gWeNa |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fine+error+bounds+for+approximate+asymmetric+saddle+point+problems&rft.jtitle=Computational+%26+applied+mathematics&rft.au=Ruas+Vitoriano&rft.date=2024-06-01&rft.pub=Springer+Nature+B.V&rft.issn=2238-3603&rft.eissn=1807-0302&rft.volume=43&rft.issue=4&rft_id=info:doi/10.1007%2Fs40314-024-02678-7&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2238-3603&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2238-3603&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2238-3603&client=summon |