Fine error bounds for approximate asymmetric saddle point problems

The theory of mixed finite element methods for solving different types of elliptic partial differential equations in saddle point formulation is well established since many decades. This topic was mostly studied for variational formulations defined upon the same product spaces of both shape- and tes...

Full description

Saved in:
Bibliographic Details
Published inComputational & applied mathematics Vol. 43; no. 4
Main Author Ruas, Vitoriano
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.06.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2238-3603
1807-0302
DOI10.1007/s40314-024-02678-7

Cover

Abstract The theory of mixed finite element methods for solving different types of elliptic partial differential equations in saddle point formulation is well established since many decades. This topic was mostly studied for variational formulations defined upon the same product spaces of both shape- and test-pairs of primal variable-multiplier. Whenever either these spaces or the two bilinear forms involving the multiplier are distinct, the saddle point problem is asymmetric. The three inf-sup conditions to be satisfied by the product spaces stipulated in work on the subject, to guarantee well-posedness, are known [(see, e.g., Exercise 2.14 of Ern and Guermond (Theory and practice of finite elements, Applied mathematical, sciences, Springer, 2004)]. However, the material encountered in the literature addressing the approximation of this class of problems left room for improvement and clarifications. After making a brief review of the existing contributions to the topic that justifies such an assertion, in this paper we set up finer global error bounds for the pair primal variable-multiplier solving an asymmetric saddle point problem. Besides well-posedness, the three constants in the aforementioned inf-sup conditions are identified as all that is needed for determining the stability constant appearing therein, whose expression is exhibited. As a complement, refined error bounds depending only on these three constants are given for both unknowns separately.
AbstractList The theory of mixed finite element methods for solving different types of elliptic partial differential equations in saddle point formulation is well established since many decades. This topic was mostly studied for variational formulations defined upon the same product spaces of both shape- and test-pairs of primal variable-multiplier. Whenever either these spaces or the two bilinear forms involving the multiplier are distinct, the saddle point problem is asymmetric. The three inf-sup conditions to be satisfied by the product spaces stipulated in work on the subject, to guarantee well-posedness, are known [(see, e.g., Exercise 2.14 of Ern and Guermond (Theory and practice of finite elements, Applied mathematical, sciences, Springer, 2004)]. However, the material encountered in the literature addressing the approximation of this class of problems left room for improvement and clarifications. After making a brief review of the existing contributions to the topic that justifies such an assertion, in this paper we set up finer global error bounds for the pair primal variable-multiplier solving an asymmetric saddle point problem. Besides well-posedness, the three constants in the aforementioned inf-sup conditions are identified as all that is needed for determining the stability constant appearing therein, whose expression is exhibited. As a complement, refined error bounds depending only on these three constants are given for both unknowns separately.
ArticleNumber 160
Author Ruas, Vitoriano
Author_xml – sequence: 1
  givenname: Vitoriano
  orcidid: 0000-0001-6308-879X
  surname: Ruas
  fullname: Ruas, Vitoriano
  email: vitoriano.ruas@upmc.fr
  organization: Institut Jean Le Rond d’Alembert, CNRS UMR 7190, Sorbonne Université, Campus Pierre et Marie Curie
BookMark eNp9UD1PwzAQtVCRaAt_gCkSs-HsS2J3hIoCUiUWmC3HsVGqxg52KtF_j0uQ2BhOd8P7uPcWZOaDt4RcM7hlAOIulYCspMBPUwtJxRmZMwmCAgKfkTnnKCnWgBdkkdIOAAUryzl52HTeFjbGEIsmHHybCpdPPQwxfHW9Hm2h07Hv7Rg7UyTdtntbDKHzY5ERzd726ZKcO71P9up3L8n75vFt_Uy3r08v6_stNVzASFu5wta1shYN1FKb0mhhgDvNG2dE5Rosq6qy0uoVr4GxCm3-mWt0hhnRaFySm0k3G38ebBrVLhyiz5YKAVHmtBXPKD6hTAwpRevUEHOOeFQM1KkrNXWlclfqpyslMgknUspg_2Hjn_Q_rG9WyG58
Cites_doi 10.1137/0719021
10.1007/BF01436561
10.1007/BF02165003
10.1016/0022-247X(80)90226-7
10.1007/s40314-014-0163-6
10.1007/978-3-642-53393-8
10.1137/0725070
10.1137/S0895479802410827
10.1007/978-1-4612-3172-1
10.1007/978-1-4757-4355-5
ContentType Journal Article
Copyright The Author(s) under exclusive licence to Sociedade Brasileira de Matemática Aplicada e Computacional 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s) under exclusive licence to Sociedade Brasileira de Matemática Aplicada e Computacional 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s40314-024-02678-7
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1807-0302
ExternalDocumentID 10_1007_s40314_024_02678_7
GroupedDBID -EM
.4S
.DC
06D
0R~
203
29F
2WC
30V
4.4
406
5GY
69Q
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AAKPC
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTHY
ABTKH
ABTMW
ABXHO
ABXPI
ACAOD
ACCUX
ACDTI
ACGFO
ACGFS
ACHSB
ACIPV
ACIWK
ACKNC
ACMLO
ACOKC
ACPIV
ACREN
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGNC
AEGXH
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AIAGR
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
ANMIH
APOWU
ARCSS
ASPBG
AUKKA
AVWKF
AXYYD
AYJHY
AZFZN
BAPOH
BGNMA
C1A
CS3
CSCUP
DNIVK
DPUIP
DU5
E3Z
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ7
HMJXF
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
J-C
JBSCW
JZLTJ
KOV
KQ8
KWQ
LLZTM
M4Y
M~E
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9J
OK1
P2P
PT4
RLLFE
RNS
ROL
RSC
RSV
SCD
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TR2
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
XSB
Z7R
Z83
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
OVT
JQ2
ID FETCH-LOGICAL-c270t-d893dfd867b068ac4ca7c02fa2bfc75fb34555e8ea92601153e2382a3fc1c7ba3
IEDL.DBID AGYKE
ISSN 2238-3603
IngestDate Thu Sep 25 00:55:57 EDT 2025
Wed Oct 01 01:21:54 EDT 2025
Fri Feb 21 02:41:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords 70G75
74A15
Error bounds
78M30
Inf-sup conditions
Stability constants
76M30
Asymmetric saddle-point problem
65N30
80M30
Mixed finite elements
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-d893dfd867b068ac4ca7c02fa2bfc75fb34555e8ea92601153e2382a3fc1c7ba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6308-879X
PQID 3033880752
PQPubID 2044245
ParticipantIDs proquest_journals_3033880752
crossref_primary_10_1007_s40314_024_02678_7
springer_journals_10_1007_s40314_024_02678_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Computational & applied mathematics
PublicationTitleAbbrev Comp. Appl. Math
PublicationYear 2024
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Bernardi, Canuto, Maday (CR3) 1988; 25–6
Kato (CR13) 1966
CR4
Babuška (CR2) 1973; 20
Cuminato, Ruas (CR9) 2015; 34
Yosida (CR16) 1980
Babuška (CR1) 1971; 16
Brezzi, Fortin (CR6) 1991
CR11
CR10
Conway (CR8) 1990
Ciarlet, Huang, Zou (CR7) 2003; 25–1
Brezzi (CR5) 1974; 8–2
MacCamy (CR14) 1980; 78
Ern, Guermond (CR12) 2004
Nicolaides (CR15) 1982; 2–19
I Babuška (2678_CR2) 1973; 20
F Brezzi (2678_CR5) 1974; 8–2
A Ern (2678_CR12) 2004
T Kato (2678_CR13) 1966
2678_CR4
RA Nicolaides (2678_CR15) 1982; 2–19
JB Conway (2678_CR8) 1990
P Ciarlet Jr (2678_CR7) 2003; 25–1
2678_CR11
2678_CR10
F Brezzi (2678_CR6) 1991
C Bernardi (2678_CR3) 1988; 25–6
K Yosida (2678_CR16) 1980
I Babuška (2678_CR1) 1971; 16
RC MacCamy (2678_CR14) 1980; 78
JA Cuminato (2678_CR9) 2015; 34
References_xml – volume: 2–19
  start-page: 349
  year: 1982
  end-page: 357
  ident: CR15
  article-title: Existence, uniqueness and approximation for generalized saddle point problems
  publication-title: SIAM J Numer Anal
  doi: 10.1137/0719021
– volume: 20
  start-page: 179
  year: 1973
  end-page: 192
  ident: CR2
  article-title: The finite element method with Lagrangian multipliers
  publication-title: Numer Math
  doi: 10.1007/BF01436561
– year: 2004
  ident: CR12
  publication-title: Theory and practice of finite elements
– year: 1980
  ident: CR16
  publication-title: Functional analysis
– volume: 16
  start-page: 322
  year: 1971
  end-page: 333
  ident: CR1
  article-title: Error bound for the finite element method
  publication-title: Numer Math
  doi: 10.1007/BF02165003
– ident: CR4
– volume: 78
  start-page: 248
  year: 1980
  end-page: 266
  ident: CR14
  article-title: Variational procedures for a class of exterior interface problems
  publication-title: J Math Anal Appl
  doi: 10.1016/0022-247X(80)90226-7
– volume: 34
  start-page: 1009
  year: 2015
  end-page: 1033
  ident: CR9
  article-title: Unification of distance inequalities for linear variational problems
  publication-title: Comput Appl Math
  doi: 10.1007/s40314-014-0163-6
– year: 1966
  ident: CR13
  publication-title: Perturbation theory for linear operators
  doi: 10.1007/978-3-642-53393-8
– volume: 8–2
  start-page: 129
  year: 1974
  end-page: 151
  ident: CR5
  article-title: On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers
  publication-title: RAIRO Anal Numér
– ident: CR10
– ident: CR11
– volume: 25–6
  start-page: 1237
  year: 1988
  end-page: 1271
  ident: CR3
  article-title: Generalized inf-sup condition for Chebyshev spectral approximation of the Stokes problem
  publication-title: SIAM J Numer Anal
  doi: 10.1137/0725070
– volume: 25–1
  start-page: 224
  year: 2003
  end-page: 236
  ident: CR7
  article-title: Some observations on generalized saddle-point problems
  publication-title: SIAM J Matrix Anal Appl
  doi: 10.1137/S0895479802410827
– year: 1990
  ident: CR8
  publication-title: A course in functional analysis
– year: 1991
  ident: CR6
  publication-title: Mixed and hybrid finite element methods
  doi: 10.1007/978-1-4612-3172-1
– volume: 25–6
  start-page: 1237
  year: 1988
  ident: 2678_CR3
  publication-title: SIAM J Numer Anal
  doi: 10.1137/0725070
– volume-title: Functional analysis
  year: 1980
  ident: 2678_CR16
– volume: 78
  start-page: 248
  year: 1980
  ident: 2678_CR14
  publication-title: J Math Anal Appl
  doi: 10.1016/0022-247X(80)90226-7
– volume: 16
  start-page: 322
  year: 1971
  ident: 2678_CR1
  publication-title: Numer Math
  doi: 10.1007/BF02165003
– volume: 34
  start-page: 1009
  year: 2015
  ident: 2678_CR9
  publication-title: Comput Appl Math
  doi: 10.1007/s40314-014-0163-6
– volume-title: Theory and practice of finite elements
  year: 2004
  ident: 2678_CR12
  doi: 10.1007/978-1-4757-4355-5
– ident: 2678_CR4
– volume-title: Mixed and hybrid finite element methods
  year: 1991
  ident: 2678_CR6
  doi: 10.1007/978-1-4612-3172-1
– volume: 25–1
  start-page: 224
  year: 2003
  ident: 2678_CR7
  publication-title: SIAM J Matrix Anal Appl
  doi: 10.1137/S0895479802410827
– ident: 2678_CR11
– ident: 2678_CR10
– volume: 2–19
  start-page: 349
  year: 1982
  ident: 2678_CR15
  publication-title: SIAM J Numer Anal
  doi: 10.1137/0719021
– volume: 8–2
  start-page: 129
  year: 1974
  ident: 2678_CR5
  publication-title: RAIRO Anal Numér
– volume-title: A course in functional analysis
  year: 1990
  ident: 2678_CR8
– volume: 20
  start-page: 179
  year: 1973
  ident: 2678_CR2
  publication-title: Numer Math
  doi: 10.1007/BF01436561
– volume-title: Perturbation theory for linear operators
  year: 1966
  ident: 2678_CR13
  doi: 10.1007/978-3-642-53393-8
SSID ssj0037144
Score 2.268554
Snippet The theory of mixed finite element methods for solving different types of elliptic partial differential equations in saddle point formulation is well...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Applications of Mathematics
Asymmetry
Computational Mathematics and Numerical Analysis
Constants
Elliptic functions
Errors
Finite element method
Mathematical analysis
Mathematical Applications in Computer Science
Mathematical Applications in the Physical Sciences
Mathematics
Mathematics and Statistics
Multipliers
Partial differential equations
Saddle points
Well posed problems
Title Fine error bounds for approximate asymmetric saddle point problems
URI https://link.springer.com/article/10.1007/s40314-024-02678-7
https://www.proquest.com/docview/3033880752
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1807-0302
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0037144
  issn: 2238-3603
  databaseCode: AFBBN
  dateStart: 20130401
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1807-0302
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0037144
  issn: 2238-3603
  databaseCode: AGYKE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgXODAY4AYjCkHbpCpS5umOzK0MYHYiUnjVCVpKk1oD62dBPx6nC4dYoLDzomi1nbsL3H8GeBGMN8wXyuqJcI3ROCGypbn0zaiOZ4aI0XB0_0yCPvD4GnER64oLCtfu5cpycJTr4vdAsu0TjGmUNs1KaJiF_a4PaBUYO_-8e25W3pgS0Jns8kY-SLqh57vimX-XuV3QPpBmRuJ0SLe9I5gWH7p6pnJe3OZq6b-2iBx3PZXjuHQAVByv7KYE9gx0yocOTBK3FbPqnDwsiZ0zU6h00M0SsxiMVsQZTsxZQTRLikYyT_GOMsQmX1OJrY_lyaZtLceZD4bT3PiWtZkZzDsdV8f-tS1X6CaCS-nCUKZJE2iUCgvjKQOtBTaY6lkKtWCp8oPOOcmMrJtecnQdaLWIyb9VLe0UNI_h8p0NjUXQFgSoj0w1L9SAXoVxZVgSZS2EP-0WdKuwW2pg3i-YtmI13zKhbBiFFZcCCsWNaiXaordjstiDMWW10ZwVoO7Uuo_w_-vdrnd9CvYZ4Xi7EVMHSr5YmmuEZfkqoFm2Ot0Bg1njt_u5tkK
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07TwMxDLagDMDAG1GeGdgg1TX3SDoCain0MVEJplOSy0kV6kO9QwJ-Pc41VwSCoXOiKLEd-1Mcfwa45Mw3zNeKaonwDRG4obLu-bSBaC5MjZG84Onu9aP2IHh8Dp9dUVhW_nYvU5KFp14UuwWWaZ1iTKG2a5KgfBXWgroQQQXWbu5fOs3SA1sSOptNxsgnqB95viuW-XuVnwHpG2X-SowW8aa1DYNyp_NvJq-1t1zV9OcvEsdlj7IDWw6Akpu5xezCihnvwbYDo8Rd9WwPNnsLQtdsH25biEaJmc0mM6JsJ6aMINolBSP5-xBnGSKzj9HI9ufSJJP21YNMJ8NxTlzLmuwABq3m012buvYLVDPu5TRBKJOkiYi48iIhdaAl1x5LJVOp5mGq_CAMQyOMbFheMnSdqHXBpJ_quuZK-odQGU_G5ggISyK0B4b6VypAr6JCxVki0jrinwZLGlW4KnUQT-csG_GCT7kQVozCigthxbwKp6WaYnfjshhDseW14SGrwnUp9e_h_1c7Xm76Bay3n3rduPvQ75zABiuUaB9lTqGSz97MGWKUXJ07k_wCevnafw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgkxAceAwQ45kDNwh0adN0x_EY47GJA0hwqpI0lRCim9ZOAn49TtdugOCAODeKWtv19ymOPwPsC-Ya5mpFtUT6hgzcUNlwXNpENsdjY6TIdbq7Pb9z71098IdPXfz5bfeyJDnuabAqTUl2PIji40njm2dV1yniC7UTlAIqZqHqIbrxClRbF4_X52U2toJ0trKMKBhQ13fconHm512-gtOUcX4rkubY014CWb71-MrJ89EoU0f6_Zug438-axkWC2JKWuNIWoEZk9RgqSCppEgBaQ0WuhOh13QVTtrIUokZDvtDouyEppQgCya5UvnrE64yRKZvLy92bpcmqbSnIWTQf0oyUoyySdfgvn1-d9qhxVgGqplwMhohxYniKPCFcvxAak9LoR0WS6ZiLXisXI9zbgIjm1avDFMqRkPApBvrhhZKuutQSfqJ2QDCIh_jhGFcKOVhtlFcCRYFcQN5UZNFzToclP4IB2P1jXCis5wbK0RjhbmxQlGH7dJlYfEnpiFCtNW7EZzV4bD0wPTx77tt_m35HszdnrXDm8ve9RbMs9yH9qxmGyrZcGR2kLpkareIzg8gWeNa
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fine+error+bounds+for+approximate+asymmetric+saddle+point+problems&rft.jtitle=Computational+%26+applied+mathematics&rft.au=Ruas+Vitoriano&rft.date=2024-06-01&rft.pub=Springer+Nature+B.V&rft.issn=2238-3603&rft.eissn=1807-0302&rft.volume=43&rft.issue=4&rft_id=info:doi/10.1007%2Fs40314-024-02678-7&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2238-3603&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2238-3603&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2238-3603&client=summon