Treating maize plants with benzohydrazide increases saccharification of lignocellulose: A non-transgenic approach to improve cellulosic ethanol production

Cellulosic ethanol production will decrease our dependence on fossil fuels, positively impacting global warming, energy security, and urban pollution. In the last few years, our group has screened a few enzyme inhibitors of the phenylpropanoid pathway. We have shown that when some enzyme inhibitors...

Full description

Saved in:
Bibliographic Details
Published inBiomass conversion and biorefinery Vol. 13; no. 11; pp. 9943 - 9954
Main Authors Martarello, Danielly Caroline Inacio, Tonete-Diniz, Débora Carvalho, Gonzaga, Diego Eduardo Romero, Almeida, Aline Marengoni, Constantin, Renato Polimeni, da Silva, Karla Gabriela, Constantin, Rodrigo Polimeni, Marchiosi, Rogério, Alves-Olher, Vanessa Guimarães, Rios, Fabiano Aparecido, Ferrarese-Filho, Osvaldo, dos Santos, Wanderley Dantas
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2190-6815
2190-6823
DOI10.1007/s13399-021-01842-x

Cover

Abstract Cellulosic ethanol production will decrease our dependence on fossil fuels, positively impacting global warming, energy security, and urban pollution. In the last few years, our group has screened a few enzyme inhibitors of the phenylpropanoid pathway. We have shown that when some enzyme inhibitors are sprayed in young plants, they increase the lignocellulose saccharification in the long term at the workbench scale. Here, we screened five aromatic compounds for their ability to improve the saccharification of maize plants. Benzohydrazide increased saccharification in a broad range of concentrations in growth-room experiments, and it was selected for field-scale assays. At 20 g ha −1 (500 μM, 300 L ha −1 ), benzohydrazide increased by 33 and 46%, respectively, the saccharification of lignocellulose from maize leaves and stems. When the lignocellulose biomass of maize plants, sprayed with benzohydrazide or not, was submitted to hydrogen peroxide–acetic acid delignification pretreatment, benzohydrazide increased the saccharification by up to 76%. Benzohydrazide did not significantly affect any other biometric (length or fresh and dry weights) or biochemical (lignin, monolignols, structural hydroxycinnamates) parameters assessed. In brief, benzohydrazide could be used to improve saccharification in agroenergy crops. Graphical abstract
AbstractList Cellulosic ethanol production will decrease our dependence on fossil fuels, positively impacting global warming, energy security, and urban pollution. In the last few years, our group has screened a few enzyme inhibitors of the phenylpropanoid pathway. We have shown that when some enzyme inhibitors are sprayed in young plants, they increase the lignocellulose saccharification in the long term at the workbench scale. Here, we screened five aromatic compounds for their ability to improve the saccharification of maize plants. Benzohydrazide increased saccharification in a broad range of concentrations in growth-room experiments, and it was selected for field-scale assays. At 20 g ha−1 (500 μM, 300 L ha−1), benzohydrazide increased by 33 and 46%, respectively, the saccharification of lignocellulose from maize leaves and stems. When the lignocellulose biomass of maize plants, sprayed with benzohydrazide or not, was submitted to hydrogen peroxide–acetic acid delignification pretreatment, benzohydrazide increased the saccharification by up to 76%. Benzohydrazide did not significantly affect any other biometric (length or fresh and dry weights) or biochemical (lignin, monolignols, structural hydroxycinnamates) parameters assessed. In brief, benzohydrazide could be used to improve saccharification in agroenergy crops.
Cellulosic ethanol production will decrease our dependence on fossil fuels, positively impacting global warming, energy security, and urban pollution. In the last few years, our group has screened a few enzyme inhibitors of the phenylpropanoid pathway. We have shown that when some enzyme inhibitors are sprayed in young plants, they increase the lignocellulose saccharification in the long term at the workbench scale. Here, we screened five aromatic compounds for their ability to improve the saccharification of maize plants. Benzohydrazide increased saccharification in a broad range of concentrations in growth-room experiments, and it was selected for field-scale assays. At 20 g ha −1 (500 μM, 300 L ha −1 ), benzohydrazide increased by 33 and 46%, respectively, the saccharification of lignocellulose from maize leaves and stems. When the lignocellulose biomass of maize plants, sprayed with benzohydrazide or not, was submitted to hydrogen peroxide–acetic acid delignification pretreatment, benzohydrazide increased the saccharification by up to 76%. Benzohydrazide did not significantly affect any other biometric (length or fresh and dry weights) or biochemical (lignin, monolignols, structural hydroxycinnamates) parameters assessed. In brief, benzohydrazide could be used to improve saccharification in agroenergy crops. Graphical abstract
Author da Silva, Karla Gabriela
Alves-Olher, Vanessa Guimarães
Ferrarese-Filho, Osvaldo
Constantin, Rodrigo Polimeni
dos Santos, Wanderley Dantas
Gonzaga, Diego Eduardo Romero
Marchiosi, Rogério
Rios, Fabiano Aparecido
Tonete-Diniz, Débora Carvalho
Constantin, Renato Polimeni
Martarello, Danielly Caroline Inacio
Almeida, Aline Marengoni
Author_xml – sequence: 1
  givenname: Danielly Caroline Inacio
  orcidid: 0000-0001-9299-2489
  surname: Martarello
  fullname: Martarello, Danielly Caroline Inacio
  organization: Laboratory of Plant Biochemistry, Department of Biochemistry - CCB, State University of Maringá
– sequence: 2
  givenname: Débora Carvalho
  orcidid: 0000-0001-8483-4931
  surname: Tonete-Diniz
  fullname: Tonete-Diniz, Débora Carvalho
  organization: Laboratory of Plant Biochemistry, Department of Biochemistry - CCB, State University of Maringá
– sequence: 3
  givenname: Diego Eduardo Romero
  orcidid: 0000-0002-1918-4378
  surname: Gonzaga
  fullname: Gonzaga, Diego Eduardo Romero
  organization: Laboratory of Plant Biochemistry, Department of Biochemistry - CCB, State University of Maringá
– sequence: 4
  givenname: Aline Marengoni
  orcidid: 0000-0002-2233-9879
  surname: Almeida
  fullname: Almeida, Aline Marengoni
  organization: Laboratory of Plant Biochemistry, Department of Biochemistry - CCB, State University of Maringá
– sequence: 5
  givenname: Renato Polimeni
  orcidid: 0000-0001-5760-1366
  surname: Constantin
  fullname: Constantin, Renato Polimeni
  organization: Laboratory of Plant Biochemistry, Department of Biochemistry - CCB, State University of Maringá
– sequence: 6
  givenname: Karla Gabriela
  orcidid: 0000-0003-1479-3438
  surname: da Silva
  fullname: da Silva, Karla Gabriela
  organization: Laboratory of Plant Biochemistry, Department of Biochemistry - CCB, State University of Maringá
– sequence: 7
  givenname: Rodrigo Polimeni
  orcidid: 0000-0002-5117-5682
  surname: Constantin
  fullname: Constantin, Rodrigo Polimeni
  organization: Laboratory of Plant Biochemistry, Department of Biochemistry - CCB, State University of Maringá
– sequence: 8
  givenname: Rogério
  orcidid: 0000-0002-8386-2524
  surname: Marchiosi
  fullname: Marchiosi, Rogério
  organization: Laboratory of Plant Biochemistry, Department of Biochemistry - CCB, State University of Maringá
– sequence: 9
  givenname: Vanessa Guimarães
  orcidid: 0000-0001-5342-4753
  surname: Alves-Olher
  fullname: Alves-Olher, Vanessa Guimarães
  organization: Department of Chemistry, Federal Institute of Paraná
– sequence: 10
  givenname: Fabiano Aparecido
  orcidid: 0000-0003-1431-074X
  surname: Rios
  fullname: Rios, Fabiano Aparecido
  organization: Sumitomo Chemical, Av. Pioneiro João Pereira
– sequence: 11
  givenname: Osvaldo
  orcidid: 0000-0002-3477-4544
  surname: Ferrarese-Filho
  fullname: Ferrarese-Filho, Osvaldo
  email: osferrarese@gmail.com
  organization: Laboratory of Plant Biochemistry, Department of Biochemistry - CCB, State University of Maringá
– sequence: 12
  givenname: Wanderley Dantas
  orcidid: 0000-0002-6072-2860
  surname: dos Santos
  fullname: dos Santos, Wanderley Dantas
  email: wdsantos@uem.br
  organization: Laboratory of Plant Biochemistry, Department of Biochemistry - CCB, State University of Maringá
BookMark eNp9kctOwzAQRS0EEqX0B1hZYh3wI60TdlXFS0JiU9bWxJk0rlK72CmUfgpfi6E8dqxmpDn3zmjuCTl03iEhZ5xdcMbUZeRSlmXGBM8YL3KRbQ_IQPCSZZNCyMPfno-PySjGJWNMSCULyQbkfR4QeusWdAV2h3TdgesjfbV9Syt0O9--1QF2tkZqnUlsxEgjGNNCsI01Sesd9Q3t7MJ5g1236XzEKzql6cqsD-DiAp01FNbr4MG0tPfUrlL_gvSHT2PsW3C-o2lQb8yn6yk5aqCLOPquQ_J0cz2f3WUPj7f3s-lDZoRifVbVaGQF4xpzqBkHYSpRFQIVR2RlUU9AMNXkzThXoKpmMjGJaSojJaiSGyWH5Hzvm1Y_bzD2euk3waWVWhSylOmjY54osadM8DEGbPQ62BWEN82Z_oxB72PQKQb9FYPeJpHci2KC3QLDn_U_qg9zYpLS
Cites_doi 10.1007/s13399-019-00445-x
10.1038/nbt1316
10.1111/nph.13684
10.1016/j.renene.2019.10.020
10.1016/j.biortech.2009.11.093
10.1016/j.saa.2011.08.033
10.1007/s11105-020-01242-x
10.3934/bioeng.2018.1.63
10.1186/s13068-015-0419-4
10.1186/1754-6834-6-46
10.1007/s11367-015-0985-5
10.3389/fpls.2016.02056
10.1016/j.indcrop.2019.111657
10.1104/pp.17.00834
10.2217/fmb-2019-0040
10.1111/pbi.12292
10.1111/nph.14970
10.1021/ie901529q
10.1021/ac60147a030
10.1016/j.plantsci.2015.04.007
10.1007/s13399-021-01291-6
10.1016/j.copbio.2019.02.019
10.2135/cropsci2019.01.0023
10.1016/j.pbi.2010.03.001
10.1016/j.plaphy.2020.03.053
10.1007/s13562-020-00561-0
10.1016/j.plaphy.2019.07.015
10.1021/ac60111a017
10.1007/s11101-020-09689-2
10.1016/j.biotechadv.2016.06.001
10.1111/gcb.14883
10.1111/tpj.13988
10.1016/j.joei.2019.03.005
10.1007/s11103-016-0527-y
10.1371/journal.pone.0110000
10.1186/s13065-017-0279-z
10.1186/s13068-015-0316-x
10.1002/9781118682784
10.1021/cr400131u
10.1371/journal.pone.0240369
10.1590/S0100-40422011000100015
10.1111/tpj.15046
10.1111/pbi.12439
10.1016/S0031-9422(03)00286-3
10.1016/j.procbio.2019.11.024
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.
DBID AAYXX
CITATION
DOI 10.1007/s13399-021-01842-x
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2190-6823
EndPage 9954
ExternalDocumentID 10_1007_s13399_021_01842_x
GrantInformation_xml – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico
  grantid: 305.286/2017-0; 305.101/2020-0; 314.676/2018-0
  funderid: http://dx.doi.org/10.13039/501100003593
– fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
  funderid: http://dx.doi.org/10.13039/501100002322
GroupedDBID -EM
0R~
0VY
203
29~
2VQ
30V
4.4
406
408
409
96X
AAAVM
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AUKKA
AXYYD
AYJHY
BGNMA
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ8
HF~
HG6
HMJXF
HQYDN
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
IZIGR
J-C
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O93
O9J
PT4
RLLFE
ROL
RSV
S1Z
S27
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z5O
Z7V
Z81
ZMTXR
~A9
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c270t-bdec3ba5de4ad01a2cb2b82e71ee098d6a207f4f547a7bf66c1a2fbc33a791c73
IEDL.DBID U2A
ISSN 2190-6815
IngestDate Wed Sep 17 23:58:39 EDT 2025
Tue Jul 01 00:41:26 EDT 2025
Fri Feb 21 02:41:57 EST 2025
IsPeerReviewed false
IsScholarly true
Issue 11
Keywords Agrochemical
Lignification
Phenylpropanoid pathway
Recalcitrance
Hydrazones
Biofuel
Biomass
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-bdec3ba5de4ad01a2cb2b82e71ee098d6a207f4f547a7bf66c1a2fbc33a791c73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8483-4931
0000-0003-1479-3438
0000-0001-9299-2489
0000-0002-6072-2860
0000-0002-2233-9879
0000-0001-5760-1366
0000-0002-5117-5682
0000-0001-5342-4753
0000-0002-1918-4378
0000-0003-1431-074X
0000-0002-8386-2524
0000-0002-3477-4544
PQID 2839384251
PQPubID 2043954
PageCount 12
ParticipantIDs proquest_journals_2839384251
crossref_primary_10_1007_s13399_021_01842_x
springer_journals_10_1007_s13399_021_01842_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle Processing of Biogenic Material for Energy and Chemistry
PublicationTitle Biomass conversion and biorefinery
PublicationTitleAbbrev Biomass Conv. Bioref
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Oliveira, Mota, Grandis, de Morais, de Lucas, Polizeli, Marchiosi, Buckeridge, Ferrarese-Filho, dos Santos (CR44) 2020; 147
Machineni (CR3) 2020; 10
de Souza, Martins, Freeman, Pellny, Michaelson, Sampaio, Vinecky, Ribeiro, da Cunha, Kobayashi, de Oliveira, Campanha, Pacheco, Martarello, Marchiosi, Ferrarese-Filho, dos Santos, Tramontina, Squina, Centeno, Gaspar, Braga, Tiné, Ralph, Mitchell, Molinari (CR11) 2018; 218
CR39
Marchiosi, dos Santos, Constantin, de Lima, Soares, Finger-Teixeira, Mota, Oliveira, Foletto-Felipe, Abrahão, Ferrarese-Filho (CR4) 2020; 19
Chen, Dixon (CR43) 2007; 25
CR35
Simmons, Loqué, Ralph (CR10) 2010; 13
CR34
CR32
CR31
Ralph, Lapierre, Boerjan (CR12) 2019; 56
Dubois, Gilles, Hamilton, Rebers, Smith (CR28) 1956; 28
Takeda, Tobimatsu, Karlen, Koshiba, Suzuki, Yamamura, Murakami, Mukai, Hattori, Osakabe, Ralph, Sakamoto, Umezawa (CR37) 2018; 95
Alvira, Tomás-Pejó, Ballesteros, Negro (CR7) 2010; 101
Oliveira, Finger-Teixeira, Rodrigues Mota, Salvador, Moreira-Vilar, Correa Molinari, Craig Mitchell, Marchiosi, Ferrarese-Filho, Dantas dos Santos (CR46) 2015; 13
Mota, Oliveira, Marchiosi, Ferrarese-Filho, dos Santos (CR8) 2018; 5
Parizotto, Ferro, Marchiosi, Moreira-Vilar, Bevilaqua, dos Santos, Seixas, Ferrarese-Filho (CR17) 2020; 151
Jung, Kannan, Dermawan, Moxley, Altpeter (CR36) 2016; 92
Hussain, Ali (CR23) 2017; 1
CR49
CR48
Kumar, Anushree, Kumar (CR9) 2020; 93
CR45
Tan, Yang, Sun, Wang (CR41) 2010; 49
Martarello, Almeida, Sinzker, Oliveira, Marchiosi, dos Santos, Ferrarese-Filho (CR5) 2021
Wi, Cho, Lee, Lee, Lee, Bae (CR42) 2015; 8
CR19
CR13
Reid, Ali, Field (CR2) 2020; 26
Ferro, Parizotto, dos Santos, Marchiosi, Seixas, Ferrarese-Filho (CR20) 2020; 29
Prasad, Sotenko, Blenkinsopp, Coles (CR14) 2016; 21
Hatfield, Rancour, Marita (CR47) 2017; 7
Arnold, Cassida, Albrecht, Hall, Min, Xu, Orloff, Undersander, Van Santengan (CR38) 2019; 59
Manikandan, Viswanathamurthi, Muthukumar (CR22) 2011; 83
Van Acker, Vanholme, Storme, Mortimer, Dupree, Boerjan (CR33) 2013; 6
Parizotto, Ferro, Marchiosi, Finger-Teixeira, Bevilaqua, dos Santos, Seixas, Ferrarese-Filho (CR18) 2021; 39
Fornalé, Rencoret, Garcia-Calvo, Capellades, Encina, Santiago, Rigau, Gutiérrez, del Río, Caparros-Ruiz (CR40) 2015; 236
Van Acker, Déjardin, Desmet, Hoengenaert, Vanholme, Morreel, Laurans, Kim, Santoro, Foster, Goeminne, Légée, Lapierre, Pilate, Ralph, Boerjan (CR6) 2017; 175
Sampiron, Costacurta, Baldin, Almeida, Ieque, Santos, Alves-Olher, Vandresen, Gimenes, Siqueira, Caleffi-Ferracioli, Cardoso, Scodro (CR24) 2019; 14
CR27
CR26
CR25
CR21
Bevilaqua, Finger-Teixeira, Marchiosi, de Oliveira, Joia, Ferro, Parizotto, dos Santos, Ferrarese-Filho (CR16) 2019; 142
Marriott, Gómez, McQueen-Mason (CR1) 2016; 209
Miller (CR29) 1959; 31
Wang, Fan, Hu, Li, Sun, Wang, Peng (CR15) 2016; 34
Mota, Oliveira, Morais, Marchiosi, Buckeridge, Ferrarese-Filho, dos Santos (CR30) 2019; 140
1842_CR45
J Ralph (1842_CR12) 2019; 56
1842_CR49
L Machineni (1842_CR3) 2020; 10
1842_CR48
GL Miller (1842_CR29) 1959; 31
Y Takeda (1842_CR37) 2018; 95
DCI Martarello (1842_CR5) 2021
R Manikandan (1842_CR22) 2011; 83
EG Sampiron (1842_CR24) 2019; 14
A Kumar (1842_CR9) 2020; 93
1842_CR13
JH Jung (1842_CR36) 2016; 92
R Marchiosi (1842_CR4) 2020; 19
A Prasad (1842_CR14) 2016; 21
AV Parizotto (1842_CR18) 2021; 39
SG Wi (1842_CR42) 2015; 8
1842_CR19
I Hussain (1842_CR23) 2017; 1
JM Bevilaqua (1842_CR16) 2019; 142
AM Arnold (1842_CR38) 2019; 59
1842_CR21
S Fornalé (1842_CR40) 2015; 236
DM Oliveira (1842_CR46) 2015; 13
1842_CR27
1842_CR26
BA Simmons (1842_CR10) 2010; 13
1842_CR25
AP Ferro (1842_CR20) 2020; 29
H Tan (1842_CR41) 2010; 49
TR Mota (1842_CR30) 2019; 140
TR Mota (1842_CR8) 2018; 5
AV Parizotto (1842_CR17) 2020; 151
R Van Acker (1842_CR6) 2017; 175
M Dubois (1842_CR28) 1956; 28
WR de Souza (1842_CR11) 2018; 218
WV Reid (1842_CR2) 2020; 26
P Alvira (1842_CR7) 2010; 101
PE Marriott (1842_CR1) 2016; 209
1842_CR35
1842_CR34
1842_CR32
1842_CR39
Y Wang (1842_CR15) 2016; 34
1842_CR31
R Van Acker (1842_CR33) 2013; 6
RD Hatfield (1842_CR47) 2017; 7
DM Oliveira (1842_CR44) 2020; 147
F Chen (1842_CR43) 2007; 25
References_xml – ident: CR45
– ident: CR49
– volume: 10
  start-page: 779
  year: 2020
  end-page: 879
  ident: CR3
  article-title: Lignocellulosic biofuel production: review of alternatives
  publication-title: Biomass Convers Biorefi
  doi: 10.1007/s13399-019-00445-x
– ident: CR39
– volume: 25
  start-page: 759
  year: 2007
  end-page: 761
  ident: CR43
  article-title: Lignin modification improves fermentable sugar yields for biofuel production
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt1316
– ident: CR35
– volume: 209
  start-page: 1366
  year: 2016
  end-page: 1381
  ident: CR1
  article-title: Unlocking the potential of lignocellulosic biomass through plant science
  publication-title: New Phytol
  doi: 10.1111/nph.13684
– volume: 147
  start-page: 2206
  year: 2020
  end-page: 2217
  ident: CR44
  article-title: Lignin plays a key role in determining biomass recalcitrance in forage grasses
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2019.10.020
– volume: 101
  start-page: 4851
  year: 2010
  end-page: 4861
  ident: CR7
  article-title: Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2009.11.093
– volume: 83
  start-page: 297
  year: 2011
  end-page: 303
  ident: CR22
  article-title: Ruthenium(II) hydrazone Schiff base complexes: synthesis, spectral study and catalytic applications, Spectrochim
  publication-title: Acta - Part A Mol Biomol Spectrosc
  doi: 10.1016/j.saa.2011.08.033
– ident: CR25
– volume: 39
  start-page: 179
  year: 2021
  end-page: 191
  ident: CR18
  article-title: Inhibition of maize caffeate 3-O-methyltransferase by nitecapone as a possible approach to reduce lignocellulosic biomass recalcitrance
  publication-title: Plant Mol Biol Report
  doi: 10.1007/s11105-020-01242-x
– volume: 5
  start-page: 63
  year: 2018
  end-page: 77
  ident: CR8
  article-title: Plant cell wall composition and enzymatic deconstruction
  publication-title: AIMS Bioeng
  doi: 10.3934/bioeng.2018.1.63
– volume: 1
  start-page: 104
  year: 2017
  ident: CR23
  article-title: Exploring the pharmacological activities of hydrazone derivatives : a review phytochemistry & biochemistry
  publication-title: J Phytochem Biochem
– ident: CR21
– ident: CR19
– volume: 8
  start-page: 288
  year: 2015
  ident: CR42
  article-title: Lignocellulose conversion for biofuel: a new pretreatment greatly improves downstream biocatalytic hydrolysis of various lignocellulosic materials
  publication-title: Biotechnol Biofuels
  doi: 10.1186/s13068-015-0419-4
– volume: 6
  start-page: 46
  year: 2013
  ident: CR33
  article-title: Lignin biosynthesis perturbations affect secondary cell wall composition and saccharification yield in
  publication-title: Biotechnol Biofuels
  doi: 10.1186/1754-6834-6-46
– volume: 21
  start-page: 44
  year: 2016
  end-page: 50
  ident: CR14
  article-title: Life cycle assessment of lignocellulosic biomass pretreatment methods in biofuel production
  publication-title: Int J Life Cycle Assess
  doi: 10.1007/s11367-015-0985-5
– volume: 7
  start-page: 2056
  year: 2017
  ident: CR47
  article-title: Grass cell walls: a story of cross-linking
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2016.02056
– volume: 140
  year: 2019
  ident: CR30
  article-title: Hydrogen peroxide-acetic acid pretreatment increases the saccharification and enzyme adsorption on lignocellulose
  publication-title: Ind Crops Prod
  doi: 10.1016/j.indcrop.2019.111657
– ident: CR32
– volume: 175
  start-page: 1018
  year: 2017
  end-page: 1039
  ident: CR6
  article-title: Different routes for conifer- and sinapaldehyde and higher saccharification upon deficiency in the dehydrogenase CAD1
  publication-title: Plant Physiol
  doi: 10.1104/pp.17.00834
– ident: CR26
– volume: 14
  start-page: 981
  year: 2019
  end-page: 994
  ident: CR24
  article-title: Hydrazone, benzohydrazones and isoniazid-acylhydrazones as potential antituberculosis agents
  publication-title: Future Microbiol
  doi: 10.2217/fmb-2019-0040
– volume: 13
  start-page: 1224
  year: 2015
  end-page: 1232
  ident: CR46
  article-title: Ferulic acid: a key component in grass lignocellulose recalcitrance to hydrolysis
  publication-title: Plant Biotechnol J.
  doi: 10.1111/pbi.12292
– volume: 218
  start-page: 81
  year: 2018
  end-page: 93
  ident: CR11
  article-title: Suppression of a single BAHD gene in causes large, stable decreases in cell wall feruloylation and increases biomass digestibility
  publication-title: New Phytol
  doi: 10.1111/nph.14970
– volume: 49
  start-page: 1473
  year: 2010
  end-page: 1479
  ident: CR41
  article-title: Peroxide-acetic acid pretreatment to remove bagasse lignin prior to enzymatic hydrolysis
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie901529q
– volume: 31
  start-page: 426
  year: 1959
  end-page: 428
  ident: CR29
  article-title: Use of dinitrosalicylic acid reagent for determination of reducing sugar
  publication-title: Anal Chem
  doi: 10.1021/ac60147a030
– volume: 236
  start-page: 272
  year: 2015
  end-page: 282
  ident: CR40
  article-title: Cell wall modifications triggered by the down-regulation of coumarate 3-hydroxylase-1 in maize
  publication-title: Plant Sci
  doi: 10.1016/j.plantsci.2015.04.007
– year: 2021
  ident: CR5
  article-title: The known unknowns in lignin biosynthesis and its engineering to improve lignocellulosic saccharification efficiency
  publication-title: Biomass Convers Biorefi
  doi: 10.1007/s13399-021-01291-6
– volume: 56
  start-page: 240
  year: 2019
  end-page: 249
  ident: CR12
  article-title: Lignin structure and its engineering
  publication-title: Curr Opin Biotechnol
  doi: 10.1016/j.copbio.2019.02.019
– volume: 59
  start-page: 1799
  year: 2019
  end-page: 1807
  ident: CR38
  article-title: Multistate evaluation of reduced-lignin alfalfa harvested at different intervals
  publication-title: Crop Sci
  doi: 10.2135/cropsci2019.01.0023
– volume: 13
  start-page: 312
  year: 2010
  end-page: 319
  ident: CR10
  article-title: Advances in modifying lignin for enhanced biofuel production
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/j.pbi.2010.03.001
– ident: CR27
– volume: 151
  start-page: 421
  year: 2020
  end-page: 428
  ident: CR17
  article-title: Entacapone improves saccharification without affecting lignin and maize growth: an , , and approach
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2020.03.053
– volume: 29
  start-page: 484
  year: 2020
  end-page: 493
  ident: CR20
  article-title: Naringin inhibits the Zea mays coniferyl aldehyde dehydrogenase: an and approach
  publication-title: J Plant Biochem Biotechnol
  doi: 10.1007/s13562-020-00561-0
– volume: 142
  start-page: 275
  year: 2019
  end-page: 282
  ident: CR16
  article-title: Exogenous application of rosmarinic acid improves saccharification without affecting growth and lignification of maize
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2019.07.015
– volume: 28
  start-page: 350
  year: 1956
  end-page: 356
  ident: CR28
  article-title: Colorimetric method for determination of sugars and related substances
  publication-title: Anal Chem
  doi: 10.1021/ac60111a017
– ident: CR48
– volume: 19
  start-page: 865
  year: 2020
  end-page: 906
  ident: CR4
  article-title: Biosynthesis and metabolic actions of simple phenolic acids in plants
  publication-title: Phytochem Rev
  doi: 10.1007/s11101-020-09689-2
– volume: 34
  start-page: 997
  year: 2016
  end-page: 1017
  ident: CR15
  article-title: Genetic modification of plant cell walls to enhance biomass yield and biofuel production in bioenergy crops
  publication-title: Biotechnol Adv
  doi: 10.1016/j.biotechadv.2016.06.001
– ident: CR31
– ident: CR13
– volume: 26
  start-page: 274
  year: 2020
  end-page: 286
  ident: CR2
  article-title: The future of bioenergy
  publication-title: Glob Chang Biol
  doi: 10.1111/gcb.14883
– volume: 95
  start-page: 796
  year: 2018
  end-page: 811
  ident: CR37
  article-title: Downregulation of p-COUMAROYL ESTER 3-HYDROXYLASE in rice leads to altered cell wall structures and improves biomass saccharification
  publication-title: Plant J
  doi: 10.1111/tpj.13988
– ident: CR34
– volume: 93
  start-page: 235
  year: 2020
  end-page: 271
  ident: CR9
  article-title: Bhaskar, Utilization of lignin: a sustainable and eco-friendly approach
  publication-title: J Energy Inst
  doi: 10.1016/j.joei.2019.03.005
– volume: 92
  start-page: 505
  year: 2016
  end-page: 517
  ident: CR36
  article-title: Precision breeding for RNAi suppression of a major 4-coumarate:coenzyme A ligase gene improves cell wall saccharification from field grown sugarcane
  publication-title: Plant Mol Biol
  doi: 10.1007/s11103-016-0527-y
– volume: 7
  start-page: 2056
  year: 2017
  ident: 1842_CR47
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2016.02056
– ident: 1842_CR31
  doi: 10.1371/journal.pone.0110000
– ident: 1842_CR25
– volume: 95
  start-page: 796
  year: 2018
  ident: 1842_CR37
  publication-title: Plant J
  doi: 10.1111/tpj.13988
– ident: 1842_CR21
– volume: 28
  start-page: 350
  year: 1956
  ident: 1842_CR28
  publication-title: Anal Chem
  doi: 10.1021/ac60111a017
– volume: 175
  start-page: 1018
  year: 2017
  ident: 1842_CR6
  publication-title: Plant Physiol
  doi: 10.1104/pp.17.00834
– volume: 236
  start-page: 272
  year: 2015
  ident: 1842_CR40
  publication-title: Plant Sci
  doi: 10.1016/j.plantsci.2015.04.007
– ident: 1842_CR48
  doi: 10.1186/s13065-017-0279-z
– ident: 1842_CR34
  doi: 10.1186/s13068-015-0316-x
– ident: 1842_CR45
  doi: 10.1002/9781118682784
– volume: 29
  start-page: 484
  year: 2020
  ident: 1842_CR20
  publication-title: J Plant Biochem Biotechnol
  doi: 10.1007/s13562-020-00561-0
– volume: 83
  start-page: 297
  year: 2011
  ident: 1842_CR22
  publication-title: Acta - Part A Mol Biomol Spectrosc
  doi: 10.1016/j.saa.2011.08.033
– volume: 1
  start-page: 104
  year: 2017
  ident: 1842_CR23
  publication-title: J Phytochem Biochem
– volume: 31
  start-page: 426
  year: 1959
  ident: 1842_CR29
  publication-title: Anal Chem
  doi: 10.1021/ac60147a030
– volume: 209
  start-page: 1366
  year: 2016
  ident: 1842_CR1
  publication-title: New Phytol
  doi: 10.1111/nph.13684
– volume: 92
  start-page: 505
  year: 2016
  ident: 1842_CR36
  publication-title: Plant Mol Biol
  doi: 10.1007/s11103-016-0527-y
– volume: 25
  start-page: 759
  year: 2007
  ident: 1842_CR43
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt1316
– volume: 14
  start-page: 981
  year: 2019
  ident: 1842_CR24
  publication-title: Future Microbiol
  doi: 10.2217/fmb-2019-0040
– volume: 5
  start-page: 63
  year: 2018
  ident: 1842_CR8
  publication-title: AIMS Bioeng
  doi: 10.3934/bioeng.2018.1.63
– ident: 1842_CR49
  doi: 10.1021/cr400131u
– volume: 8
  start-page: 288
  year: 2015
  ident: 1842_CR42
  publication-title: Biotechnol Biofuels
  doi: 10.1186/s13068-015-0419-4
– volume: 140
  year: 2019
  ident: 1842_CR30
  publication-title: Ind Crops Prod
  doi: 10.1016/j.indcrop.2019.111657
– volume: 49
  start-page: 1473
  year: 2010
  ident: 1842_CR41
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie901529q
– volume: 21
  start-page: 44
  year: 2016
  ident: 1842_CR14
  publication-title: Int J Life Cycle Assess
  doi: 10.1007/s11367-015-0985-5
– ident: 1842_CR39
  doi: 10.1371/journal.pone.0240369
– ident: 1842_CR26
  doi: 10.1590/S0100-40422011000100015
– volume: 13
  start-page: 1224
  year: 2015
  ident: 1842_CR46
  publication-title: Plant Biotechnol J.
  doi: 10.1111/pbi.12292
– volume: 93
  start-page: 235
  year: 2020
  ident: 1842_CR9
  publication-title: J Energy Inst
  doi: 10.1016/j.joei.2019.03.005
– ident: 1842_CR27
– volume: 10
  start-page: 779
  year: 2020
  ident: 1842_CR3
  publication-title: Biomass Convers Biorefi
  doi: 10.1007/s13399-019-00445-x
– ident: 1842_CR13
  doi: 10.1111/tpj.15046
– volume: 151
  start-page: 421
  year: 2020
  ident: 1842_CR17
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2020.03.053
– volume: 56
  start-page: 240
  year: 2019
  ident: 1842_CR12
  publication-title: Curr Opin Biotechnol
  doi: 10.1016/j.copbio.2019.02.019
– volume: 6
  start-page: 46
  year: 2013
  ident: 1842_CR33
  publication-title: Biotechnol Biofuels
  doi: 10.1186/1754-6834-6-46
– year: 2021
  ident: 1842_CR5
  publication-title: Biomass Convers Biorefi
  doi: 10.1007/s13399-021-01291-6
– volume: 218
  start-page: 81
  year: 2018
  ident: 1842_CR11
  publication-title: New Phytol
  doi: 10.1111/nph.14970
– volume: 59
  start-page: 1799
  year: 2019
  ident: 1842_CR38
  publication-title: Crop Sci
  doi: 10.2135/cropsci2019.01.0023
– volume: 39
  start-page: 179
  year: 2021
  ident: 1842_CR18
  publication-title: Plant Mol Biol Report
  doi: 10.1007/s11105-020-01242-x
– ident: 1842_CR35
  doi: 10.1111/pbi.12439
– ident: 1842_CR32
  doi: 10.1016/S0031-9422(03)00286-3
– volume: 13
  start-page: 312
  year: 2010
  ident: 1842_CR10
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/j.pbi.2010.03.001
– volume: 19
  start-page: 865
  year: 2020
  ident: 1842_CR4
  publication-title: Phytochem Rev
  doi: 10.1007/s11101-020-09689-2
– volume: 101
  start-page: 4851
  year: 2010
  ident: 1842_CR7
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2009.11.093
– volume: 142
  start-page: 275
  year: 2019
  ident: 1842_CR16
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2019.07.015
– ident: 1842_CR19
  doi: 10.1016/j.procbio.2019.11.024
– volume: 34
  start-page: 997
  year: 2016
  ident: 1842_CR15
  publication-title: Biotechnol Adv
  doi: 10.1016/j.biotechadv.2016.06.001
– volume: 26
  start-page: 274
  year: 2020
  ident: 1842_CR2
  publication-title: Glob Chang Biol
  doi: 10.1111/gcb.14883
– volume: 147
  start-page: 2206
  year: 2020
  ident: 1842_CR44
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2019.10.020
SSID ssj0002373830
Score 2.2661078
Snippet Cellulosic ethanol production will decrease our dependence on fossil fuels, positively impacting global warming, energy security, and urban pollution. In the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 9943
SubjectTerms Acetic acid
Aromatic compounds
Biotechnology
Corn
Energy
Enzymes
Ethanol
Fossil fuels
Hydrogen peroxide
Hydroxycinnamic acid
Lignocellulose
Original Article
Plants (botany)
Renewable and Green Energy
Saccharification
Title Treating maize plants with benzohydrazide increases saccharification of lignocellulose: A non-transgenic approach to improve cellulosic ethanol production
URI https://link.springer.com/article/10.1007/s13399-021-01842-x
https://www.proquest.com/docview/2839384251
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELXQ9gIH1PIhFtrVHLiBpcR2vnpbVW1XIDh1pXKK_DFeIi3Jqkkl2J_SX1tPNukWBAfOtqwoz_Y8j-c9M_beFsLYKDe8QOu5CgSB5y4yXOYqkF1hlUpIO_zla7pYqk_XyfUgCmvHavfxSrLfqfdiNylJMS_o-JsrwQNzPEjITyrM4qWYP2RWBJn19I-MCNJJp3mcDGqZvw_ze0Ta08w_bkb7gHNxyJ4PTBHmO2iP2BOsX7Bnj_wDX7K7q57y1Sv4oastwmZNVS1AuVUwWG-b77_cjd5WDqGqiR622EKrLUmtqESoRwUaD-tqVTeUw79dNy2ewhzqpuYdxbEwwSoLo_U4dA1UfR4CYewfmpES8M0aNjv_2DDqK7a8OL86W_DhsQVuRRZ13Di00ujEodIuirWwRphcYBYjRkXuUi2izCufqExnxqepDX28sVLqrIhtJl-zSfg0fMOg8A4D8wlnqRD7fY469jrsDd6bRLokllP2Yfzh5WbnqVHu3ZMJnjLAU_bwlD-n7HjEpBzWV1sGUlRIukGMp-zjiNO--d-jvf2_7u_YU3pfflefe8wm3c0tngQW0pkZO5hffvt8Pusn3z0F8Nsm
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELbQcmh7aOlLLAXqQ2-tUWI7idPbCgFbXqddiZ4iP8YQsU1WJCvR_Sn9tbXzUCgqB862LMczsT_PzPcZoS86pUoHQpEUtCXcAQQiTKAIE9yBXao5jzx3-OIyns756VV01ZHCqr7avU9JNjv1QHZjzDPmqb_-Ck6JQ46bPBQiGqHNycnPsyG2Qr1cT_PMCPVM6ViEUceX-f9A_55JA9B8lBttjpzjN2jeT7atNLk9WNXqQK8f6Tg-92u20OsOg-JJ6zRv0QYU79CrB8qE79GfWQMmi2v8S-ZrwMuFr5fBPmqLFRTr8ua3uZPr3ADOCw88K6hwJbUncfnio8beuLR4kV8Xpc8OrBZlBd_xBBdlQWp_QjrXzTXuRc1xXeK8iXAA7vu7ZvCh_XKBl60yrRv1A5ofH80Op6R7xoFomgQ1UQY0UzIywKUJQkm1okpQSEKAIBUmljRILLcRT2SibBxr18cqzZhM0lAn7CMauanBNsKpNeAwlbulOVRhBcjQSrfrWKsiZqKQjdHX3pDZslXryAZdZr_imVvxrFnx7H6MdntbZ92fW2UObqXM5ybDMfrWm25ofnq0ned1_4xeTGcX59n5j8uzT-ilf8W-rQLeRaP6bgV7DuvUar9z7b9zaPm5
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVQkRAcEFAQ2xaYA7fWamI7X9xWwKotUPXQlXqL_DFuI22TVZNKdH8KvxZPsmELggNnW1aU52Sex_PeMPbeFsLYKDe8QOu5CgSB5y4yXOYqkF1hlUpIO_ztND2aq5OL5OKeir-vdh-vJAdNA7k01d3h0vnDjfBNSlLPCzoK50rwwCIfqhCrqahrLqa_siyCjHv6hiOCNNNpHidr5czfl_k9Om0o5x-3pH3wmT1jT9esEaYDzM_ZA6xfsCf3vAS32Y_znv7Vl3CtqxXCckEVLkB5VjBYr5qrO3ejV5VDqGqiii220GpLsisqF-oRgsbDorqsG8rn3y6aFj_AFOqm5h3FtLDZKgujDTl0DVR9TgJhnB-GkZLxzQKWg5dsWPUlm88-n3884uvGC9yKLOq4cWil0YlDpV0Ua2GNMLnALEaMitylWkSZVz5Rmc6MT1Mb5nhjpdRZEdtMvmJb4dHwNYPCOwwsKJyrAg_wOerY6_Cf8N4k0iWxnLD98YWXy8Ffo9w4KRM8ZYCn7OEpv0_Y3ohJuf7W2jIQpELSbWI8YQcjTpvhf6-283_T37FHZ59m5dfj0y-77DG1nR_KdvfYVndzi28COenM237__QQKROC6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Treating+maize+plants+with+benzohydrazide+increases+saccharification+of+lignocellulose%3A+A+non-transgenic+approach+to+improve+cellulosic+ethanol+production&rft.jtitle=Biomass+conversion+and+biorefinery&rft.au=Martarello+Danielly+Caroline+Inacio&rft.au=Tonete-Diniz%2C+D%C3%A9bora+Carvalho&rft.au=Gonzaga+Diego+Eduardo+Romero&rft.au=Almeida%2C+Aline+Marengoni&rft.date=2023-07-01&rft.pub=Springer+Nature+B.V&rft.issn=2190-6815&rft.eissn=2190-6823&rft.volume=13&rft.issue=11&rft.spage=9943&rft.epage=9954&rft_id=info:doi/10.1007%2Fs13399-021-01842-x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2190-6815&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2190-6815&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2190-6815&client=summon