Treating maize plants with benzohydrazide increases saccharification of lignocellulose: A non-transgenic approach to improve cellulosic ethanol production
Cellulosic ethanol production will decrease our dependence on fossil fuels, positively impacting global warming, energy security, and urban pollution. In the last few years, our group has screened a few enzyme inhibitors of the phenylpropanoid pathway. We have shown that when some enzyme inhibitors...
Saved in:
Published in | Biomass conversion and biorefinery Vol. 13; no. 11; pp. 9943 - 9954 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.07.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 2190-6815 2190-6823 |
DOI | 10.1007/s13399-021-01842-x |
Cover
Abstract | Cellulosic ethanol production will decrease our dependence on fossil fuels, positively impacting global warming, energy security, and urban pollution. In the last few years, our group has screened a few enzyme inhibitors of the phenylpropanoid pathway. We have shown that when some enzyme inhibitors are sprayed in young plants, they increase the lignocellulose saccharification in the long term at the workbench scale. Here, we screened five aromatic compounds for their ability to improve the saccharification of maize plants. Benzohydrazide increased saccharification in a broad range of concentrations in growth-room experiments, and it was selected for field-scale assays. At 20 g ha
−1
(500 μM, 300 L ha
−1
), benzohydrazide increased by 33 and 46%, respectively, the saccharification of lignocellulose from maize leaves and stems. When the lignocellulose biomass of maize plants, sprayed with benzohydrazide or not, was submitted to hydrogen peroxide–acetic acid delignification pretreatment, benzohydrazide increased the saccharification by up to 76%. Benzohydrazide did not significantly affect any other biometric (length or fresh and dry weights) or biochemical (lignin, monolignols, structural hydroxycinnamates) parameters assessed. In brief, benzohydrazide could be used to improve saccharification in agroenergy crops.
Graphical abstract |
---|---|
AbstractList | Cellulosic ethanol production will decrease our dependence on fossil fuels, positively impacting global warming, energy security, and urban pollution. In the last few years, our group has screened a few enzyme inhibitors of the phenylpropanoid pathway. We have shown that when some enzyme inhibitors are sprayed in young plants, they increase the lignocellulose saccharification in the long term at the workbench scale. Here, we screened five aromatic compounds for their ability to improve the saccharification of maize plants. Benzohydrazide increased saccharification in a broad range of concentrations in growth-room experiments, and it was selected for field-scale assays. At 20 g ha−1 (500 μM, 300 L ha−1), benzohydrazide increased by 33 and 46%, respectively, the saccharification of lignocellulose from maize leaves and stems. When the lignocellulose biomass of maize plants, sprayed with benzohydrazide or not, was submitted to hydrogen peroxide–acetic acid delignification pretreatment, benzohydrazide increased the saccharification by up to 76%. Benzohydrazide did not significantly affect any other biometric (length or fresh and dry weights) or biochemical (lignin, monolignols, structural hydroxycinnamates) parameters assessed. In brief, benzohydrazide could be used to improve saccharification in agroenergy crops. Cellulosic ethanol production will decrease our dependence on fossil fuels, positively impacting global warming, energy security, and urban pollution. In the last few years, our group has screened a few enzyme inhibitors of the phenylpropanoid pathway. We have shown that when some enzyme inhibitors are sprayed in young plants, they increase the lignocellulose saccharification in the long term at the workbench scale. Here, we screened five aromatic compounds for their ability to improve the saccharification of maize plants. Benzohydrazide increased saccharification in a broad range of concentrations in growth-room experiments, and it was selected for field-scale assays. At 20 g ha −1 (500 μM, 300 L ha −1 ), benzohydrazide increased by 33 and 46%, respectively, the saccharification of lignocellulose from maize leaves and stems. When the lignocellulose biomass of maize plants, sprayed with benzohydrazide or not, was submitted to hydrogen peroxide–acetic acid delignification pretreatment, benzohydrazide increased the saccharification by up to 76%. Benzohydrazide did not significantly affect any other biometric (length or fresh and dry weights) or biochemical (lignin, monolignols, structural hydroxycinnamates) parameters assessed. In brief, benzohydrazide could be used to improve saccharification in agroenergy crops. Graphical abstract |
Author | da Silva, Karla Gabriela Alves-Olher, Vanessa Guimarães Ferrarese-Filho, Osvaldo Constantin, Rodrigo Polimeni dos Santos, Wanderley Dantas Gonzaga, Diego Eduardo Romero Marchiosi, Rogério Rios, Fabiano Aparecido Tonete-Diniz, Débora Carvalho Constantin, Renato Polimeni Martarello, Danielly Caroline Inacio Almeida, Aline Marengoni |
Author_xml | – sequence: 1 givenname: Danielly Caroline Inacio orcidid: 0000-0001-9299-2489 surname: Martarello fullname: Martarello, Danielly Caroline Inacio organization: Laboratory of Plant Biochemistry, Department of Biochemistry - CCB, State University of Maringá – sequence: 2 givenname: Débora Carvalho orcidid: 0000-0001-8483-4931 surname: Tonete-Diniz fullname: Tonete-Diniz, Débora Carvalho organization: Laboratory of Plant Biochemistry, Department of Biochemistry - CCB, State University of Maringá – sequence: 3 givenname: Diego Eduardo Romero orcidid: 0000-0002-1918-4378 surname: Gonzaga fullname: Gonzaga, Diego Eduardo Romero organization: Laboratory of Plant Biochemistry, Department of Biochemistry - CCB, State University of Maringá – sequence: 4 givenname: Aline Marengoni orcidid: 0000-0002-2233-9879 surname: Almeida fullname: Almeida, Aline Marengoni organization: Laboratory of Plant Biochemistry, Department of Biochemistry - CCB, State University of Maringá – sequence: 5 givenname: Renato Polimeni orcidid: 0000-0001-5760-1366 surname: Constantin fullname: Constantin, Renato Polimeni organization: Laboratory of Plant Biochemistry, Department of Biochemistry - CCB, State University of Maringá – sequence: 6 givenname: Karla Gabriela orcidid: 0000-0003-1479-3438 surname: da Silva fullname: da Silva, Karla Gabriela organization: Laboratory of Plant Biochemistry, Department of Biochemistry - CCB, State University of Maringá – sequence: 7 givenname: Rodrigo Polimeni orcidid: 0000-0002-5117-5682 surname: Constantin fullname: Constantin, Rodrigo Polimeni organization: Laboratory of Plant Biochemistry, Department of Biochemistry - CCB, State University of Maringá – sequence: 8 givenname: Rogério orcidid: 0000-0002-8386-2524 surname: Marchiosi fullname: Marchiosi, Rogério organization: Laboratory of Plant Biochemistry, Department of Biochemistry - CCB, State University of Maringá – sequence: 9 givenname: Vanessa Guimarães orcidid: 0000-0001-5342-4753 surname: Alves-Olher fullname: Alves-Olher, Vanessa Guimarães organization: Department of Chemistry, Federal Institute of Paraná – sequence: 10 givenname: Fabiano Aparecido orcidid: 0000-0003-1431-074X surname: Rios fullname: Rios, Fabiano Aparecido organization: Sumitomo Chemical, Av. Pioneiro João Pereira – sequence: 11 givenname: Osvaldo orcidid: 0000-0002-3477-4544 surname: Ferrarese-Filho fullname: Ferrarese-Filho, Osvaldo email: osferrarese@gmail.com organization: Laboratory of Plant Biochemistry, Department of Biochemistry - CCB, State University of Maringá – sequence: 12 givenname: Wanderley Dantas orcidid: 0000-0002-6072-2860 surname: dos Santos fullname: dos Santos, Wanderley Dantas email: wdsantos@uem.br organization: Laboratory of Plant Biochemistry, Department of Biochemistry - CCB, State University of Maringá |
BookMark | eNp9kctOwzAQRS0EEqX0B1hZYh3wI60TdlXFS0JiU9bWxJk0rlK72CmUfgpfi6E8dqxmpDn3zmjuCTl03iEhZ5xdcMbUZeRSlmXGBM8YL3KRbQ_IQPCSZZNCyMPfno-PySjGJWNMSCULyQbkfR4QeusWdAV2h3TdgesjfbV9Syt0O9--1QF2tkZqnUlsxEgjGNNCsI01Sesd9Q3t7MJ5g1236XzEKzql6cqsD-DiAp01FNbr4MG0tPfUrlL_gvSHT2PsW3C-o2lQb8yn6yk5aqCLOPquQ_J0cz2f3WUPj7f3s-lDZoRifVbVaGQF4xpzqBkHYSpRFQIVR2RlUU9AMNXkzThXoKpmMjGJaSojJaiSGyWH5Hzvm1Y_bzD2euk3waWVWhSylOmjY54osadM8DEGbPQ62BWEN82Z_oxB72PQKQb9FYPeJpHci2KC3QLDn_U_qg9zYpLS |
Cites_doi | 10.1007/s13399-019-00445-x 10.1038/nbt1316 10.1111/nph.13684 10.1016/j.renene.2019.10.020 10.1016/j.biortech.2009.11.093 10.1016/j.saa.2011.08.033 10.1007/s11105-020-01242-x 10.3934/bioeng.2018.1.63 10.1186/s13068-015-0419-4 10.1186/1754-6834-6-46 10.1007/s11367-015-0985-5 10.3389/fpls.2016.02056 10.1016/j.indcrop.2019.111657 10.1104/pp.17.00834 10.2217/fmb-2019-0040 10.1111/pbi.12292 10.1111/nph.14970 10.1021/ie901529q 10.1021/ac60147a030 10.1016/j.plantsci.2015.04.007 10.1007/s13399-021-01291-6 10.1016/j.copbio.2019.02.019 10.2135/cropsci2019.01.0023 10.1016/j.pbi.2010.03.001 10.1016/j.plaphy.2020.03.053 10.1007/s13562-020-00561-0 10.1016/j.plaphy.2019.07.015 10.1021/ac60111a017 10.1007/s11101-020-09689-2 10.1016/j.biotechadv.2016.06.001 10.1111/gcb.14883 10.1111/tpj.13988 10.1016/j.joei.2019.03.005 10.1007/s11103-016-0527-y 10.1371/journal.pone.0110000 10.1186/s13065-017-0279-z 10.1186/s13068-015-0316-x 10.1002/9781118682784 10.1021/cr400131u 10.1371/journal.pone.0240369 10.1590/S0100-40422011000100015 10.1111/tpj.15046 10.1111/pbi.12439 10.1016/S0031-9422(03)00286-3 10.1016/j.procbio.2019.11.024 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021. |
DBID | AAYXX CITATION |
DOI | 10.1007/s13399-021-01842-x |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2190-6823 |
EndPage | 9954 |
ExternalDocumentID | 10_1007_s13399_021_01842_x |
GrantInformation_xml | – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico grantid: 305.286/2017-0; 305.101/2020-0; 314.676/2018-0 funderid: http://dx.doi.org/10.13039/501100003593 – fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior funderid: http://dx.doi.org/10.13039/501100002322 |
GroupedDBID | -EM 0R~ 0VY 203 29~ 2VQ 30V 4.4 406 408 409 96X AAAVM AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABBXA ABDZT ABECU ABFTD ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABXPI ACAOD ACDTI ACGFS ACHSB ACIWK ACKNC ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AUKKA AXYYD AYJHY BGNMA CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ8 HF~ HG6 HMJXF HQYDN HRMNR HZ~ I0C IKXTQ IWAJR IXD IZIGR J-C JBSCW JCJTX JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9- O93 O9J PT4 RLLFE ROL RSV S1Z S27 SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z5O Z7V Z81 ZMTXR ~A9 AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c270t-bdec3ba5de4ad01a2cb2b82e71ee098d6a207f4f547a7bf66c1a2fbc33a791c73 |
IEDL.DBID | U2A |
ISSN | 2190-6815 |
IngestDate | Wed Sep 17 23:58:39 EDT 2025 Tue Jul 01 00:41:26 EDT 2025 Fri Feb 21 02:41:57 EST 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 11 |
Keywords | Agrochemical Lignification Phenylpropanoid pathway Recalcitrance Hydrazones Biofuel Biomass |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c270t-bdec3ba5de4ad01a2cb2b82e71ee098d6a207f4f547a7bf66c1a2fbc33a791c73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8483-4931 0000-0003-1479-3438 0000-0001-9299-2489 0000-0002-6072-2860 0000-0002-2233-9879 0000-0001-5760-1366 0000-0002-5117-5682 0000-0001-5342-4753 0000-0002-1918-4378 0000-0003-1431-074X 0000-0002-8386-2524 0000-0002-3477-4544 |
PQID | 2839384251 |
PQPubID | 2043954 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2839384251 crossref_primary_10_1007_s13399_021_01842_x springer_journals_10_1007_s13399_021_01842_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-01 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | Processing of Biogenic Material for Energy and Chemistry |
PublicationTitle | Biomass conversion and biorefinery |
PublicationTitleAbbrev | Biomass Conv. Bioref |
PublicationYear | 2023 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Oliveira, Mota, Grandis, de Morais, de Lucas, Polizeli, Marchiosi, Buckeridge, Ferrarese-Filho, dos Santos (CR44) 2020; 147 Machineni (CR3) 2020; 10 de Souza, Martins, Freeman, Pellny, Michaelson, Sampaio, Vinecky, Ribeiro, da Cunha, Kobayashi, de Oliveira, Campanha, Pacheco, Martarello, Marchiosi, Ferrarese-Filho, dos Santos, Tramontina, Squina, Centeno, Gaspar, Braga, Tiné, Ralph, Mitchell, Molinari (CR11) 2018; 218 CR39 Marchiosi, dos Santos, Constantin, de Lima, Soares, Finger-Teixeira, Mota, Oliveira, Foletto-Felipe, Abrahão, Ferrarese-Filho (CR4) 2020; 19 Chen, Dixon (CR43) 2007; 25 CR35 Simmons, Loqué, Ralph (CR10) 2010; 13 CR34 CR32 CR31 Ralph, Lapierre, Boerjan (CR12) 2019; 56 Dubois, Gilles, Hamilton, Rebers, Smith (CR28) 1956; 28 Takeda, Tobimatsu, Karlen, Koshiba, Suzuki, Yamamura, Murakami, Mukai, Hattori, Osakabe, Ralph, Sakamoto, Umezawa (CR37) 2018; 95 Alvira, Tomás-Pejó, Ballesteros, Negro (CR7) 2010; 101 Oliveira, Finger-Teixeira, Rodrigues Mota, Salvador, Moreira-Vilar, Correa Molinari, Craig Mitchell, Marchiosi, Ferrarese-Filho, Dantas dos Santos (CR46) 2015; 13 Mota, Oliveira, Marchiosi, Ferrarese-Filho, dos Santos (CR8) 2018; 5 Parizotto, Ferro, Marchiosi, Moreira-Vilar, Bevilaqua, dos Santos, Seixas, Ferrarese-Filho (CR17) 2020; 151 Jung, Kannan, Dermawan, Moxley, Altpeter (CR36) 2016; 92 Hussain, Ali (CR23) 2017; 1 CR49 CR48 Kumar, Anushree, Kumar (CR9) 2020; 93 CR45 Tan, Yang, Sun, Wang (CR41) 2010; 49 Martarello, Almeida, Sinzker, Oliveira, Marchiosi, dos Santos, Ferrarese-Filho (CR5) 2021 Wi, Cho, Lee, Lee, Lee, Bae (CR42) 2015; 8 CR19 CR13 Reid, Ali, Field (CR2) 2020; 26 Ferro, Parizotto, dos Santos, Marchiosi, Seixas, Ferrarese-Filho (CR20) 2020; 29 Prasad, Sotenko, Blenkinsopp, Coles (CR14) 2016; 21 Hatfield, Rancour, Marita (CR47) 2017; 7 Arnold, Cassida, Albrecht, Hall, Min, Xu, Orloff, Undersander, Van Santengan (CR38) 2019; 59 Manikandan, Viswanathamurthi, Muthukumar (CR22) 2011; 83 Van Acker, Vanholme, Storme, Mortimer, Dupree, Boerjan (CR33) 2013; 6 Parizotto, Ferro, Marchiosi, Finger-Teixeira, Bevilaqua, dos Santos, Seixas, Ferrarese-Filho (CR18) 2021; 39 Fornalé, Rencoret, Garcia-Calvo, Capellades, Encina, Santiago, Rigau, Gutiérrez, del Río, Caparros-Ruiz (CR40) 2015; 236 Van Acker, Déjardin, Desmet, Hoengenaert, Vanholme, Morreel, Laurans, Kim, Santoro, Foster, Goeminne, Légée, Lapierre, Pilate, Ralph, Boerjan (CR6) 2017; 175 Sampiron, Costacurta, Baldin, Almeida, Ieque, Santos, Alves-Olher, Vandresen, Gimenes, Siqueira, Caleffi-Ferracioli, Cardoso, Scodro (CR24) 2019; 14 CR27 CR26 CR25 CR21 Bevilaqua, Finger-Teixeira, Marchiosi, de Oliveira, Joia, Ferro, Parizotto, dos Santos, Ferrarese-Filho (CR16) 2019; 142 Marriott, Gómez, McQueen-Mason (CR1) 2016; 209 Miller (CR29) 1959; 31 Wang, Fan, Hu, Li, Sun, Wang, Peng (CR15) 2016; 34 Mota, Oliveira, Morais, Marchiosi, Buckeridge, Ferrarese-Filho, dos Santos (CR30) 2019; 140 1842_CR45 J Ralph (1842_CR12) 2019; 56 1842_CR49 L Machineni (1842_CR3) 2020; 10 1842_CR48 GL Miller (1842_CR29) 1959; 31 Y Takeda (1842_CR37) 2018; 95 DCI Martarello (1842_CR5) 2021 R Manikandan (1842_CR22) 2011; 83 EG Sampiron (1842_CR24) 2019; 14 A Kumar (1842_CR9) 2020; 93 1842_CR13 JH Jung (1842_CR36) 2016; 92 R Marchiosi (1842_CR4) 2020; 19 A Prasad (1842_CR14) 2016; 21 AV Parizotto (1842_CR18) 2021; 39 SG Wi (1842_CR42) 2015; 8 1842_CR19 I Hussain (1842_CR23) 2017; 1 JM Bevilaqua (1842_CR16) 2019; 142 AM Arnold (1842_CR38) 2019; 59 1842_CR21 S Fornalé (1842_CR40) 2015; 236 DM Oliveira (1842_CR46) 2015; 13 1842_CR27 1842_CR26 BA Simmons (1842_CR10) 2010; 13 1842_CR25 AP Ferro (1842_CR20) 2020; 29 H Tan (1842_CR41) 2010; 49 TR Mota (1842_CR30) 2019; 140 TR Mota (1842_CR8) 2018; 5 AV Parizotto (1842_CR17) 2020; 151 R Van Acker (1842_CR6) 2017; 175 M Dubois (1842_CR28) 1956; 28 WR de Souza (1842_CR11) 2018; 218 WV Reid (1842_CR2) 2020; 26 P Alvira (1842_CR7) 2010; 101 PE Marriott (1842_CR1) 2016; 209 1842_CR35 1842_CR34 1842_CR32 1842_CR39 Y Wang (1842_CR15) 2016; 34 1842_CR31 R Van Acker (1842_CR33) 2013; 6 RD Hatfield (1842_CR47) 2017; 7 DM Oliveira (1842_CR44) 2020; 147 F Chen (1842_CR43) 2007; 25 |
References_xml | – ident: CR45 – ident: CR49 – volume: 10 start-page: 779 year: 2020 end-page: 879 ident: CR3 article-title: Lignocellulosic biofuel production: review of alternatives publication-title: Biomass Convers Biorefi doi: 10.1007/s13399-019-00445-x – ident: CR39 – volume: 25 start-page: 759 year: 2007 end-page: 761 ident: CR43 article-title: Lignin modification improves fermentable sugar yields for biofuel production publication-title: Nat Biotechnol doi: 10.1038/nbt1316 – ident: CR35 – volume: 209 start-page: 1366 year: 2016 end-page: 1381 ident: CR1 article-title: Unlocking the potential of lignocellulosic biomass through plant science publication-title: New Phytol doi: 10.1111/nph.13684 – volume: 147 start-page: 2206 year: 2020 end-page: 2217 ident: CR44 article-title: Lignin plays a key role in determining biomass recalcitrance in forage grasses publication-title: Renew Energy doi: 10.1016/j.renene.2019.10.020 – volume: 101 start-page: 4851 year: 2010 end-page: 4861 ident: CR7 article-title: Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review publication-title: Bioresour Technol doi: 10.1016/j.biortech.2009.11.093 – volume: 83 start-page: 297 year: 2011 end-page: 303 ident: CR22 article-title: Ruthenium(II) hydrazone Schiff base complexes: synthesis, spectral study and catalytic applications, Spectrochim publication-title: Acta - Part A Mol Biomol Spectrosc doi: 10.1016/j.saa.2011.08.033 – ident: CR25 – volume: 39 start-page: 179 year: 2021 end-page: 191 ident: CR18 article-title: Inhibition of maize caffeate 3-O-methyltransferase by nitecapone as a possible approach to reduce lignocellulosic biomass recalcitrance publication-title: Plant Mol Biol Report doi: 10.1007/s11105-020-01242-x – volume: 5 start-page: 63 year: 2018 end-page: 77 ident: CR8 article-title: Plant cell wall composition and enzymatic deconstruction publication-title: AIMS Bioeng doi: 10.3934/bioeng.2018.1.63 – volume: 1 start-page: 104 year: 2017 ident: CR23 article-title: Exploring the pharmacological activities of hydrazone derivatives : a review phytochemistry & biochemistry publication-title: J Phytochem Biochem – ident: CR21 – ident: CR19 – volume: 8 start-page: 288 year: 2015 ident: CR42 article-title: Lignocellulose conversion for biofuel: a new pretreatment greatly improves downstream biocatalytic hydrolysis of various lignocellulosic materials publication-title: Biotechnol Biofuels doi: 10.1186/s13068-015-0419-4 – volume: 6 start-page: 46 year: 2013 ident: CR33 article-title: Lignin biosynthesis perturbations affect secondary cell wall composition and saccharification yield in publication-title: Biotechnol Biofuels doi: 10.1186/1754-6834-6-46 – volume: 21 start-page: 44 year: 2016 end-page: 50 ident: CR14 article-title: Life cycle assessment of lignocellulosic biomass pretreatment methods in biofuel production publication-title: Int J Life Cycle Assess doi: 10.1007/s11367-015-0985-5 – volume: 7 start-page: 2056 year: 2017 ident: CR47 article-title: Grass cell walls: a story of cross-linking publication-title: Front Plant Sci doi: 10.3389/fpls.2016.02056 – volume: 140 year: 2019 ident: CR30 article-title: Hydrogen peroxide-acetic acid pretreatment increases the saccharification and enzyme adsorption on lignocellulose publication-title: Ind Crops Prod doi: 10.1016/j.indcrop.2019.111657 – ident: CR32 – volume: 175 start-page: 1018 year: 2017 end-page: 1039 ident: CR6 article-title: Different routes for conifer- and sinapaldehyde and higher saccharification upon deficiency in the dehydrogenase CAD1 publication-title: Plant Physiol doi: 10.1104/pp.17.00834 – ident: CR26 – volume: 14 start-page: 981 year: 2019 end-page: 994 ident: CR24 article-title: Hydrazone, benzohydrazones and isoniazid-acylhydrazones as potential antituberculosis agents publication-title: Future Microbiol doi: 10.2217/fmb-2019-0040 – volume: 13 start-page: 1224 year: 2015 end-page: 1232 ident: CR46 article-title: Ferulic acid: a key component in grass lignocellulose recalcitrance to hydrolysis publication-title: Plant Biotechnol J. doi: 10.1111/pbi.12292 – volume: 218 start-page: 81 year: 2018 end-page: 93 ident: CR11 article-title: Suppression of a single BAHD gene in causes large, stable decreases in cell wall feruloylation and increases biomass digestibility publication-title: New Phytol doi: 10.1111/nph.14970 – volume: 49 start-page: 1473 year: 2010 end-page: 1479 ident: CR41 article-title: Peroxide-acetic acid pretreatment to remove bagasse lignin prior to enzymatic hydrolysis publication-title: Ind Eng Chem Res doi: 10.1021/ie901529q – volume: 31 start-page: 426 year: 1959 end-page: 428 ident: CR29 article-title: Use of dinitrosalicylic acid reagent for determination of reducing sugar publication-title: Anal Chem doi: 10.1021/ac60147a030 – volume: 236 start-page: 272 year: 2015 end-page: 282 ident: CR40 article-title: Cell wall modifications triggered by the down-regulation of coumarate 3-hydroxylase-1 in maize publication-title: Plant Sci doi: 10.1016/j.plantsci.2015.04.007 – year: 2021 ident: CR5 article-title: The known unknowns in lignin biosynthesis and its engineering to improve lignocellulosic saccharification efficiency publication-title: Biomass Convers Biorefi doi: 10.1007/s13399-021-01291-6 – volume: 56 start-page: 240 year: 2019 end-page: 249 ident: CR12 article-title: Lignin structure and its engineering publication-title: Curr Opin Biotechnol doi: 10.1016/j.copbio.2019.02.019 – volume: 59 start-page: 1799 year: 2019 end-page: 1807 ident: CR38 article-title: Multistate evaluation of reduced-lignin alfalfa harvested at different intervals publication-title: Crop Sci doi: 10.2135/cropsci2019.01.0023 – volume: 13 start-page: 312 year: 2010 end-page: 319 ident: CR10 article-title: Advances in modifying lignin for enhanced biofuel production publication-title: Curr Opin Plant Biol doi: 10.1016/j.pbi.2010.03.001 – ident: CR27 – volume: 151 start-page: 421 year: 2020 end-page: 428 ident: CR17 article-title: Entacapone improves saccharification without affecting lignin and maize growth: an , , and approach publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2020.03.053 – volume: 29 start-page: 484 year: 2020 end-page: 493 ident: CR20 article-title: Naringin inhibits the Zea mays coniferyl aldehyde dehydrogenase: an and approach publication-title: J Plant Biochem Biotechnol doi: 10.1007/s13562-020-00561-0 – volume: 142 start-page: 275 year: 2019 end-page: 282 ident: CR16 article-title: Exogenous application of rosmarinic acid improves saccharification without affecting growth and lignification of maize publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2019.07.015 – volume: 28 start-page: 350 year: 1956 end-page: 356 ident: CR28 article-title: Colorimetric method for determination of sugars and related substances publication-title: Anal Chem doi: 10.1021/ac60111a017 – ident: CR48 – volume: 19 start-page: 865 year: 2020 end-page: 906 ident: CR4 article-title: Biosynthesis and metabolic actions of simple phenolic acids in plants publication-title: Phytochem Rev doi: 10.1007/s11101-020-09689-2 – volume: 34 start-page: 997 year: 2016 end-page: 1017 ident: CR15 article-title: Genetic modification of plant cell walls to enhance biomass yield and biofuel production in bioenergy crops publication-title: Biotechnol Adv doi: 10.1016/j.biotechadv.2016.06.001 – ident: CR31 – ident: CR13 – volume: 26 start-page: 274 year: 2020 end-page: 286 ident: CR2 article-title: The future of bioenergy publication-title: Glob Chang Biol doi: 10.1111/gcb.14883 – volume: 95 start-page: 796 year: 2018 end-page: 811 ident: CR37 article-title: Downregulation of p-COUMAROYL ESTER 3-HYDROXYLASE in rice leads to altered cell wall structures and improves biomass saccharification publication-title: Plant J doi: 10.1111/tpj.13988 – ident: CR34 – volume: 93 start-page: 235 year: 2020 end-page: 271 ident: CR9 article-title: Bhaskar, Utilization of lignin: a sustainable and eco-friendly approach publication-title: J Energy Inst doi: 10.1016/j.joei.2019.03.005 – volume: 92 start-page: 505 year: 2016 end-page: 517 ident: CR36 article-title: Precision breeding for RNAi suppression of a major 4-coumarate:coenzyme A ligase gene improves cell wall saccharification from field grown sugarcane publication-title: Plant Mol Biol doi: 10.1007/s11103-016-0527-y – volume: 7 start-page: 2056 year: 2017 ident: 1842_CR47 publication-title: Front Plant Sci doi: 10.3389/fpls.2016.02056 – ident: 1842_CR31 doi: 10.1371/journal.pone.0110000 – ident: 1842_CR25 – volume: 95 start-page: 796 year: 2018 ident: 1842_CR37 publication-title: Plant J doi: 10.1111/tpj.13988 – ident: 1842_CR21 – volume: 28 start-page: 350 year: 1956 ident: 1842_CR28 publication-title: Anal Chem doi: 10.1021/ac60111a017 – volume: 175 start-page: 1018 year: 2017 ident: 1842_CR6 publication-title: Plant Physiol doi: 10.1104/pp.17.00834 – volume: 236 start-page: 272 year: 2015 ident: 1842_CR40 publication-title: Plant Sci doi: 10.1016/j.plantsci.2015.04.007 – ident: 1842_CR48 doi: 10.1186/s13065-017-0279-z – ident: 1842_CR34 doi: 10.1186/s13068-015-0316-x – ident: 1842_CR45 doi: 10.1002/9781118682784 – volume: 29 start-page: 484 year: 2020 ident: 1842_CR20 publication-title: J Plant Biochem Biotechnol doi: 10.1007/s13562-020-00561-0 – volume: 83 start-page: 297 year: 2011 ident: 1842_CR22 publication-title: Acta - Part A Mol Biomol Spectrosc doi: 10.1016/j.saa.2011.08.033 – volume: 1 start-page: 104 year: 2017 ident: 1842_CR23 publication-title: J Phytochem Biochem – volume: 31 start-page: 426 year: 1959 ident: 1842_CR29 publication-title: Anal Chem doi: 10.1021/ac60147a030 – volume: 209 start-page: 1366 year: 2016 ident: 1842_CR1 publication-title: New Phytol doi: 10.1111/nph.13684 – volume: 92 start-page: 505 year: 2016 ident: 1842_CR36 publication-title: Plant Mol Biol doi: 10.1007/s11103-016-0527-y – volume: 25 start-page: 759 year: 2007 ident: 1842_CR43 publication-title: Nat Biotechnol doi: 10.1038/nbt1316 – volume: 14 start-page: 981 year: 2019 ident: 1842_CR24 publication-title: Future Microbiol doi: 10.2217/fmb-2019-0040 – volume: 5 start-page: 63 year: 2018 ident: 1842_CR8 publication-title: AIMS Bioeng doi: 10.3934/bioeng.2018.1.63 – ident: 1842_CR49 doi: 10.1021/cr400131u – volume: 8 start-page: 288 year: 2015 ident: 1842_CR42 publication-title: Biotechnol Biofuels doi: 10.1186/s13068-015-0419-4 – volume: 140 year: 2019 ident: 1842_CR30 publication-title: Ind Crops Prod doi: 10.1016/j.indcrop.2019.111657 – volume: 49 start-page: 1473 year: 2010 ident: 1842_CR41 publication-title: Ind Eng Chem Res doi: 10.1021/ie901529q – volume: 21 start-page: 44 year: 2016 ident: 1842_CR14 publication-title: Int J Life Cycle Assess doi: 10.1007/s11367-015-0985-5 – ident: 1842_CR39 doi: 10.1371/journal.pone.0240369 – ident: 1842_CR26 doi: 10.1590/S0100-40422011000100015 – volume: 13 start-page: 1224 year: 2015 ident: 1842_CR46 publication-title: Plant Biotechnol J. doi: 10.1111/pbi.12292 – volume: 93 start-page: 235 year: 2020 ident: 1842_CR9 publication-title: J Energy Inst doi: 10.1016/j.joei.2019.03.005 – ident: 1842_CR27 – volume: 10 start-page: 779 year: 2020 ident: 1842_CR3 publication-title: Biomass Convers Biorefi doi: 10.1007/s13399-019-00445-x – ident: 1842_CR13 doi: 10.1111/tpj.15046 – volume: 151 start-page: 421 year: 2020 ident: 1842_CR17 publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2020.03.053 – volume: 56 start-page: 240 year: 2019 ident: 1842_CR12 publication-title: Curr Opin Biotechnol doi: 10.1016/j.copbio.2019.02.019 – volume: 6 start-page: 46 year: 2013 ident: 1842_CR33 publication-title: Biotechnol Biofuels doi: 10.1186/1754-6834-6-46 – year: 2021 ident: 1842_CR5 publication-title: Biomass Convers Biorefi doi: 10.1007/s13399-021-01291-6 – volume: 218 start-page: 81 year: 2018 ident: 1842_CR11 publication-title: New Phytol doi: 10.1111/nph.14970 – volume: 59 start-page: 1799 year: 2019 ident: 1842_CR38 publication-title: Crop Sci doi: 10.2135/cropsci2019.01.0023 – volume: 39 start-page: 179 year: 2021 ident: 1842_CR18 publication-title: Plant Mol Biol Report doi: 10.1007/s11105-020-01242-x – ident: 1842_CR35 doi: 10.1111/pbi.12439 – ident: 1842_CR32 doi: 10.1016/S0031-9422(03)00286-3 – volume: 13 start-page: 312 year: 2010 ident: 1842_CR10 publication-title: Curr Opin Plant Biol doi: 10.1016/j.pbi.2010.03.001 – volume: 19 start-page: 865 year: 2020 ident: 1842_CR4 publication-title: Phytochem Rev doi: 10.1007/s11101-020-09689-2 – volume: 101 start-page: 4851 year: 2010 ident: 1842_CR7 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2009.11.093 – volume: 142 start-page: 275 year: 2019 ident: 1842_CR16 publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2019.07.015 – ident: 1842_CR19 doi: 10.1016/j.procbio.2019.11.024 – volume: 34 start-page: 997 year: 2016 ident: 1842_CR15 publication-title: Biotechnol Adv doi: 10.1016/j.biotechadv.2016.06.001 – volume: 26 start-page: 274 year: 2020 ident: 1842_CR2 publication-title: Glob Chang Biol doi: 10.1111/gcb.14883 – volume: 147 start-page: 2206 year: 2020 ident: 1842_CR44 publication-title: Renew Energy doi: 10.1016/j.renene.2019.10.020 |
SSID | ssj0002373830 |
Score | 2.2661078 |
Snippet | Cellulosic ethanol production will decrease our dependence on fossil fuels, positively impacting global warming, energy security, and urban pollution. In the... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 9943 |
SubjectTerms | Acetic acid Aromatic compounds Biotechnology Corn Energy Enzymes Ethanol Fossil fuels Hydrogen peroxide Hydroxycinnamic acid Lignocellulose Original Article Plants (botany) Renewable and Green Energy Saccharification |
Title | Treating maize plants with benzohydrazide increases saccharification of lignocellulose: A non-transgenic approach to improve cellulosic ethanol production |
URI | https://link.springer.com/article/10.1007/s13399-021-01842-x https://www.proquest.com/docview/2839384251 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELXQ9gIH1PIhFtrVHLiBpcR2vnpbVW1XIDh1pXKK_DFeIi3Jqkkl2J_SX1tPNukWBAfOtqwoz_Y8j-c9M_beFsLYKDe8QOu5CgSB5y4yXOYqkF1hlUpIO_zla7pYqk_XyfUgCmvHavfxSrLfqfdiNylJMS_o-JsrwQNzPEjITyrM4qWYP2RWBJn19I-MCNJJp3mcDGqZvw_ze0Ta08w_bkb7gHNxyJ4PTBHmO2iP2BOsX7Bnj_wDX7K7q57y1Sv4oastwmZNVS1AuVUwWG-b77_cjd5WDqGqiR622EKrLUmtqESoRwUaD-tqVTeUw79dNy2ewhzqpuYdxbEwwSoLo_U4dA1UfR4CYewfmpES8M0aNjv_2DDqK7a8OL86W_DhsQVuRRZ13Di00ujEodIuirWwRphcYBYjRkXuUi2izCufqExnxqepDX28sVLqrIhtJl-zSfg0fMOg8A4D8wlnqRD7fY469jrsDd6bRLokllP2Yfzh5WbnqVHu3ZMJnjLAU_bwlD-n7HjEpBzWV1sGUlRIukGMp-zjiNO--d-jvf2_7u_YU3pfflefe8wm3c0tngQW0pkZO5hffvt8Pusn3z0F8Nsm |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELbQcmh7aOlLLAXqQ2-tUWI7idPbCgFbXqddiZ4iP8YQsU1WJCvR_Sn9tbXzUCgqB862LMczsT_PzPcZoS86pUoHQpEUtCXcAQQiTKAIE9yBXao5jzx3-OIyns756VV01ZHCqr7avU9JNjv1QHZjzDPmqb_-Ck6JQ46bPBQiGqHNycnPsyG2Qr1cT_PMCPVM6ViEUceX-f9A_55JA9B8lBttjpzjN2jeT7atNLk9WNXqQK8f6Tg-92u20OsOg-JJ6zRv0QYU79CrB8qE79GfWQMmi2v8S-ZrwMuFr5fBPmqLFRTr8ua3uZPr3ADOCw88K6hwJbUncfnio8beuLR4kV8Xpc8OrBZlBd_xBBdlQWp_QjrXzTXuRc1xXeK8iXAA7vu7ZvCh_XKBl60yrRv1A5ofH80Op6R7xoFomgQ1UQY0UzIywKUJQkm1okpQSEKAIBUmljRILLcRT2SibBxr18cqzZhM0lAn7CMauanBNsKpNeAwlbulOVRhBcjQSrfrWKsiZqKQjdHX3pDZslXryAZdZr_imVvxrFnx7H6MdntbZ92fW2UObqXM5ybDMfrWm25ofnq0ned1_4xeTGcX59n5j8uzT-ilf8W-rQLeRaP6bgV7DuvUar9z7b9zaPm5 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVQkRAcEFAQ2xaYA7fWamI7X9xWwKotUPXQlXqL_DFuI22TVZNKdH8KvxZPsmELggNnW1aU52Sex_PeMPbeFsLYKDe8QOu5CgSB5y4yXOYqkF1hlUpIO_ztND2aq5OL5OKeir-vdh-vJAdNA7k01d3h0vnDjfBNSlLPCzoK50rwwCIfqhCrqahrLqa_siyCjHv6hiOCNNNpHidr5czfl_k9Om0o5x-3pH3wmT1jT9esEaYDzM_ZA6xfsCf3vAS32Y_znv7Vl3CtqxXCckEVLkB5VjBYr5qrO3ejV5VDqGqiii220GpLsisqF-oRgsbDorqsG8rn3y6aFj_AFOqm5h3FtLDZKgujDTl0DVR9TgJhnB-GkZLxzQKWg5dsWPUlm88-n3884uvGC9yKLOq4cWil0YlDpV0Ua2GNMLnALEaMitylWkSZVz5Rmc6MT1Mb5nhjpdRZEdtMvmJb4dHwNYPCOwwsKJyrAg_wOerY6_Cf8N4k0iWxnLD98YWXy8Ffo9w4KRM8ZYCn7OEpv0_Y3ohJuf7W2jIQpELSbWI8YQcjTpvhf6-283_T37FHZ59m5dfj0y-77DG1nR_KdvfYVndzi28COenM237__QQKROC6 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Treating+maize+plants+with+benzohydrazide+increases+saccharification+of+lignocellulose%3A+A+non-transgenic+approach+to+improve+cellulosic+ethanol+production&rft.jtitle=Biomass+conversion+and+biorefinery&rft.au=Martarello+Danielly+Caroline+Inacio&rft.au=Tonete-Diniz%2C+D%C3%A9bora+Carvalho&rft.au=Gonzaga+Diego+Eduardo+Romero&rft.au=Almeida%2C+Aline+Marengoni&rft.date=2023-07-01&rft.pub=Springer+Nature+B.V&rft.issn=2190-6815&rft.eissn=2190-6823&rft.volume=13&rft.issue=11&rft.spage=9943&rft.epage=9954&rft_id=info:doi/10.1007%2Fs13399-021-01842-x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2190-6815&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2190-6815&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2190-6815&client=summon |