SymDR: Symbol Computer Algebra Library for Generation of Classical and Approximate Dispersion Relations for Systems of Partial Differential Equations

Mathematical models of numerous processes in continuum mechanics (CM), plasma physics (PP) and astrophysics (AP) are partial differential equations (PDEs). When developing computer models, these equations are replaced by discrete equations that are solved numerically. In order to investigate mathema...

Full description

Saved in:
Bibliographic Details
Published inLobachevskii journal of mathematics Vol. 46; no. 1; pp. 1 - 12
Main Authors Arendarenko, M. S., Dzhanbekova, A. R., Kotov, S. V., Malyutin, M. S., Savvateeva, T. A., Samoylov, M. V., Utyupina, V. Y., Stoyanovskaya, O. P.
Format Journal Article
LanguageEnglish
Published Moscow Pleiades Publishing 01.01.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1995-0802
1818-9962
DOI10.1134/S1995080224608579

Cover

Abstract Mathematical models of numerous processes in continuum mechanics (CM), plasma physics (PP) and astrophysics (AP) are partial differential equations (PDEs). When developing computer models, these equations are replaced by discrete equations that are solved numerically. In order to investigate mathematical and numerical models of CM, PP and AP, the technique of constructing dispersion relations has been developed. Using dispersion relations allows one to derive particular solutions to systems of PDEs, to investigate the stability of solutions for continuous and discrete models, to estimate the order of approximation and the rate of convergence for discrete models, and to establish of the optimal numerical parameters of a discrete model. Dispersion relations describe wave processes (i.e., processes of perturbation transfer with a velocity different from the velocity of matter) in media. The classical dispersion relation is a nonlinear algebraic equation (relating the wave parameters, namely the wave number and the wave frequency, ), which corresponds to a continuous system of PDEs. There is a technique that allows one to derive a dispersion relation (classical or approximate, respectively) for a continuous or discrete CM, PP, and AP model. This paper presents a symbolic computer algebra library, developed by the authors, which automates this technique. The current version supports the use of nonstationary models with a single spatial variable both for continuum and finite-difference notation. The library is written in Python using the SymPy symbolic computing package and is available at https://pypi.org/project/symdr/ .
AbstractList Mathematical models of numerous processes in continuum mechanics (CM), plasma physics (PP) and astrophysics (AP) are partial differential equations (PDEs). When developing computer models, these equations are replaced by discrete equations that are solved numerically. In order to investigate mathematical and numerical models of CM, PP and AP, the technique of constructing dispersion relations has been developed. Using dispersion relations allows one to derive particular solutions to systems of PDEs, to investigate the stability of solutions for continuous and discrete models, to estimate the order of approximation and the rate of convergence for discrete models, and to establish of the optimal numerical parameters of a discrete model. Dispersion relations describe wave processes (i.e., processes of perturbation transfer with a velocity different from the velocity of matter) in media. The classical dispersion relation is a nonlinear algebraic equation (relating the wave parameters, namely the wave number and the wave frequency, ), which corresponds to a continuous system of PDEs. There is a technique that allows one to derive a dispersion relation (classical or approximate, respectively) for a continuous or discrete CM, PP, and AP model. This paper presents a symbolic computer algebra library, developed by the authors, which automates this technique. The current version supports the use of nonstationary models with a single spatial variable both for continuum and finite-difference notation. The library is written in Python using the SymPy symbolic computing package and is available at https://pypi.org/project/symdr/ .
Mathematical models of numerous processes in continuum mechanics (CM), plasma physics (PP) and astrophysics (AP) are partial differential equations (PDEs). When developing computer models, these equations are replaced by discrete equations that are solved numerically. In order to investigate mathematical and numerical models of CM, PP and AP, the technique of constructing dispersion relations has been developed. Using dispersion relations allows one to derive particular solutions to systems of PDEs, to investigate the stability of solutions for continuous and discrete models, to estimate the order of approximation and the rate of convergence for discrete models, and to establish of the optimal numerical parameters of a discrete model. Dispersion relations describe wave processes (i.e., processes of perturbation transfer with a velocity different from the velocity of matter) in media. The classical dispersion relation is a nonlinear algebraic equation (relating the wave parameters, namely the wave number and the wave frequency, ), which corresponds to a continuous system of PDEs. There is a technique that allows one to derive a dispersion relation (classical or approximate, respectively) for a continuous or discrete CM, PP, and AP model. This paper presents a symbolic computer algebra library, developed by the authors, which automates this technique. The current version supports the use of nonstationary models with a single spatial variable both for continuum and finite-difference notation. The library is written in Python using the SymPy symbolic computing package and is available at https://pypi.org/project/symdr/.
Author Samoylov, M. V.
Arendarenko, M. S.
Malyutin, M. S.
Kotov, S. V.
Stoyanovskaya, O. P.
Utyupina, V. Y.
Dzhanbekova, A. R.
Savvateeva, T. A.
Author_xml – sequence: 1
  givenname: M. S.
  surname: Arendarenko
  fullname: Arendarenko, M. S.
  email: m.arendarenko@inbox.ru
  organization: Novosibirsk State University
– sequence: 2
  givenname: A. R.
  surname: Dzhanbekova
  fullname: Dzhanbekova, A. R.
  email: dzhanbekovalina@gmail.com
  organization: National Research University Higher School of Economics
– sequence: 3
  givenname: S. V.
  surname: Kotov
  fullname: Kotov, S. V.
  email: s.kotov@g.nsu.ru
  organization: Novosibirsk State University
– sequence: 4
  givenname: M. S.
  surname: Malyutin
  fullname: Malyutin, M. S.
  email: msmalyutin@gmail.com
  organization: Mikheev Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences, Federal State Autonomous Educational Institution of Higher Education ‘‘Ural Federal University named after the first President of Russia B.N. Yeltsin’’
– sequence: 5
  givenname: T. A.
  surname: Savvateeva
  fullname: Savvateeva, T. A.
  email: ta-savvateeva@ya.ru
  organization: Novosibirsk State University
– sequence: 6
  givenname: M. V.
  surname: Samoylov
  fullname: Samoylov, M. V.
  email: m.samoilov@g.nsu.ru
  organization: Novosibirsk State University
– sequence: 7
  givenname: V. Y.
  surname: Utyupina
  fullname: Utyupina, V. Y.
  email: v.utyupina@g.nsu.ru
  organization: Novosibirsk State University
– sequence: 8
  givenname: O. P.
  surname: Stoyanovskaya
  fullname: Stoyanovskaya, O. P.
  email: o.p.sklyar@gmail.com
  organization: Lavrentyev Institute of Hydrodynamics, Siberian Branch of the Russian Academy of Sciences
BookMark eNp1kNFKwzAUhoNMcJs-gHcBr6s5adI13o1tTmGgbHpd0vV0dLRNl3RgH8T3NVsFL8SbnBPO9_8n-UdkUJsaCbkFdg8QiocNKCVZzDgXEYvlRF2QIcQQB0pFfOB7Pw5O8ysycm7PPBhF0ZB8bbpqvn6kvqSmpDNTNccWLZ2WO0ytpqvCn7ajubF0iTVa3Rampians1I7V2x1SXWd0WnTWPNZVLpFOi9cg9aduDWWZ4E7G2w612LlTuo3bdvCa-dFnqPF-nxZHI49fU0uc106vPmpY_LxtHifPQer1-XLbLoKtnzC2iDVPOPAGAgFwFIRg1YasghRxLgN4ywPuRIilZGYSJn7JpUhSBErmYWZlOGY3PW-_vGHI7o22Zujrf3KJOQgwEerIk9BT22tcc5injTW_9R2CbDklH7yJ32v4b3Gebbeof11_l_0DaYpiZI
Cites_doi 10.1111/j.1365-2966.2011.19291.x
10.1134/S1995080224010505
10.1016/j.compfluid.2023.105915
10.1093/mnras/stt1475
10.1086/147861
10.1016/j.jcp.2020.109310
10.1002/cpa.3160090206
10.1016/j.ijmultiphaseflow.2021.103935
10.1002/cpa.3160030302
10.1016/j.softx.2020.100541
10.3847/1538-4357/aca155
10.1134/S0021894421040167
10.1016/0021-9991(74)90011-4
10.3847/1538-4365/ab0a0e
10.1016/j.jcp.2020.110035
10.1046/j.1365-8711.2003.06266.x
10.1016/j.cam.2023.115495
10.1016/j.cam.2024.116316
ContentType Journal Article
Copyright Pleiades Publishing, Ltd. 2025
Copyright Springer Nature B.V. 2025
Copyright_xml – notice: Pleiades Publishing, Ltd. 2025
– notice: Copyright Springer Nature B.V. 2025
DBID AAYXX
CITATION
DOI 10.1134/S1995080224608579
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1818-9962
EndPage 12
ExternalDocumentID 10_1134_S1995080224608579
GroupedDBID -Y2
-~9
.VR
06D
0R~
0VY
1N0
29L
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2WC
2~H
30V
4.4
408
40D
40E
5GY
5IG
5VS
642
6NX
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDBE
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIPV
ACIWK
ACKNC
ACMDZ
ACMFV
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AFBBN
AFDZB
AFGCZ
AFLOW
AFOHR
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
C1A
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
E4X
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
H13
HF~
HG6
HLICF
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
I~X
I~Z
J-C
J9A
JBSCW
JZLTJ
KOV
LLZTM
LO0
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OK1
P2P
P9R
PF0
PT4
QOS
R89
R9I
REM
RIG
ROL
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TR2
TSG
TUC
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
WK8
XSB
YLTOR
ZMTXR
~A9
AAYXX
ABFSG
ABRTQ
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
CITATION
OVT
ID FETCH-LOGICAL-c270t-ba2d2100149110b481a9a1d6ee48ec38df32944b564755f4b5b53154895d3d553
IEDL.DBID AGYKE
ISSN 1995-0802
IngestDate Wed Sep 17 23:59:26 EDT 2025
Wed Sep 10 06:03:27 EDT 2025
Sat May 31 01:18:42 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 2010 Mathematics Subject Classification: 34A45, 34K07
SymPy
partial differential equation
dispersion relation
approximate dispersion relation
symbolic calculations
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-ba2d2100149110b481a9a1d6ee48ec38df32944b564755f4b5b53154895d3d553
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3214111396
PQPubID 2044393
PageCount 12
ParticipantIDs proquest_journals_3214111396
crossref_primary_10_1134_S1995080224608579
springer_journals_10_1134_S1995080224608579
PublicationCentury 2000
PublicationDate 20250100
2025-01-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 1
  year: 2025
  text: 20250100
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
– name: Heidelberg
PublicationTitle Lobachevskii journal of mathematics
PublicationTitleAbbrev Lobachevskii J Math
PublicationYear 2025
Publisher Pleiades Publishing
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer Nature B.V
References 8131_CR2
O. P. Stoyanovskaya (8131_CR10) 2024; 45
S.-H. Cha (8131_CR15) 2003; 340
8131_CR6
E. Hopf (8131_CR19) 1950; 3
8131_CR11
R. P. Nelson (8131_CR3) 2013; 435
A. Toomre (8131_CR4) 1964; 139
G. Laibe (8131_CR5) 2011; 418
P. D. Lax (8131_CR1) 1956; 9
8131_CR7
8131_CR18
T. V. Markelova (8131_CR8) 2021; 62
8131_CR9
A. G. Neelan (8131_CR16) 2024; 9
8131_CR14
R. F. Warming (8131_CR17) 1974; 14
8131_CR13
8131_CR12
References_xml – volume: 418
  start-page: 1491
  year: 2011
  ident: 8131_CR5
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1111/j.1365-2966.2011.19291.x
– volume: 45
  start-page: 108
  year: 2024
  ident: 8131_CR10
  publication-title: Lobachevskii J. Math.
  doi: 10.1134/S1995080224010505
– ident: 8131_CR14
  doi: 10.1016/j.compfluid.2023.105915
– volume: 435
  start-page: 2610
  year: 2013
  ident: 8131_CR3
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1093/mnras/stt1475
– volume: 139
  start-page: 1217
  year: 1964
  ident: 8131_CR4
  publication-title: Astrophys. J.
  doi: 10.1086/147861
– ident: 8131_CR11
  doi: 10.1016/j.jcp.2020.109310
– volume: 9
  start-page: 267
  year: 1956
  ident: 8131_CR1
  publication-title: Comm. Pure Appl. Math.
  doi: 10.1002/cpa.3160090206
– ident: 8131_CR7
  doi: 10.1016/j.ijmultiphaseflow.2021.103935
– volume: 3
  start-page: 201
  year: 1950
  ident: 8131_CR19
  publication-title: Comm. Pure Appl. Math.
  doi: 10.1002/cpa.3160030302
– volume: 9
  start-page: 155
  year: 2024
  ident: 8131_CR16
  publication-title: Int. J. Comput. Math.: Comput. Syst. Theory
– ident: 8131_CR18
  doi: 10.1016/j.softx.2020.100541
– ident: 8131_CR2
  doi: 10.3847/1538-4357/aca155
– volume: 62
  start-page: 663
  year: 2021
  ident: 8131_CR8
  publication-title: J. Appl. Mech. Tech. Phys.
  doi: 10.1134/S0021894421040167
– volume: 14
  start-page: 159
  year: 1974
  ident: 8131_CR17
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(74)90011-4
– ident: 8131_CR6
  doi: 10.3847/1538-4365/ab0a0e
– ident: 8131_CR9
  doi: 10.1016/j.jcp.2020.110035
– volume: 340
  start-page: 73
  year: 2003
  ident: 8131_CR15
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1046/j.1365-8711.2003.06266.x
– ident: 8131_CR12
  doi: 10.1016/j.cam.2023.115495
– ident: 8131_CR13
  doi: 10.1016/j.cam.2024.116316
SSID ssj0022666
Score 2.314013
Snippet Mathematical models of numerous processes in continuum mechanics (CM), plasma physics (PP) and astrophysics (AP) are partial differential equations (PDEs)....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Algebra
Analysis
Computer algebra
Continuum mechanics
Geometry
Libraries
Mathematical analysis
Mathematical Logic and Foundations
Mathematical models
Mathematics
Mathematics and Statistics
Numerical models
Parameters
Partial differential equations
Plasma physics
Probability Theory and Stochastic Processes
Wave dispersion
Title SymDR: Symbol Computer Algebra Library for Generation of Classical and Approximate Dispersion Relations for Systems of Partial Differential Equations
URI https://link.springer.com/article/10.1134/S1995080224608579
https://www.proquest.com/docview/3214111396
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1818-9962
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0022666
  issn: 1995-0802
  databaseCode: AFBBN
  dateStart: 20080101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1818-9962
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0022666
  issn: 1995-0802
  databaseCode: AGYKE
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4oXPTg24gi2YMnTbG0u0vXGwhoNBijkOip6WNriAgqkKj_w__rznYLEfXgqW3aTtrOdHZmZ79vAA6U242Uy_MsT0bCogHnlmCSWRUeSCxcSdtGvHP7ip936cUduzM47lG22j0rSWpPnfYdoce3CCbWyFDKkZZdLEKeYX6Sg3zt7P6yOc2z1JijQUUafOzZjilm_irk-3A0izHnyqJ6tGmtQid7znSRyWN5Mg7L0cccheM_X2QNVkz0SWqpuazDghxswHJ7St062oTP2_enxs0JUZtw2CdZ1wdS6z9gjZkYoANRwS5JOatRtWSYEN1fE3VOgkFMakhW_tZTYiVp9JCPHOflyHTxnRZg-NLx7mu0YXVvw3Rs0QfNl5SJfLQF3Vazc3pumd4NVuRU7bEVBk7sVHQCpgKMkHqVQASVmEtJlVW4Xpy4jqA0ZJxWGUvUTqi8gUqfBIvdmDF3G3KD4UDuAHFoJJBFjduRjRhs4QZRkiQhrYpIcrtagMNMhf5zStHh69TGpf6Pb12AYqZk3_ytIx-bNSmf7wpegKNMZ7PTfwrb_dfVe7DkYPNgPX9ThNz4dSL3VUQzDkvKglv1-lXJWPIXen_s5w
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LU8IwEN5ROKgH344oag6edIqlTULjjREQ5TGOwAyeOn2kDiOCCsyo_8P_a5KmMKIeOLWdNtvHbjebbL5vAU6F2w2Ey3MMhwfMwB6lBiOcGHnqcZm44qYp8c6NJq128G2XdDWOe5Ssdk9SkspTx3VH8EVLgokVMhRTScvOliGNxV1wCtLF64daeTrOEn2OAhUp8LFjWjqZ-aeQn93RLMacS4uq3qayAe3kOeNFJk-5ydjPBZ9zFI4LvsgmrOvoExVjc9mCJT7YhrXGlLp1tANfrY_n0v0lEht_2EdJ1QdU7D_KHDPSQAckgl0Uc1ZL1aJhhFR9Talz5A1CVJRk5e89IZajUk_ykct5OTRdfKcEaL502fpO2rBoW9IVW9RB-TVmIh_tQqdSbl9VDV27wQisgjk2fM8KrbwagIkAw8dO3mNePqScY2EVthNGtsUw9gnFBUIiseMLbyCGT4yEdkiIvQepwXDA9wFZOGCSRY2agSkx2Mz2giiKfFxgAadmIQNniQrdl5iiw1VDGxu7v751BrKJkl39t45cWaxJ-Hyb0QycJzqbnf5X2MFCV5_ASrXdqLv1m2btEFYtWUhYzeVkITV-m_AjEd2M_WNtzd9X0-5c
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgSAgOvBHjmQMnUKFrk6zhNrGNxwAhxiQ4lT5ShIAOWJGA_8H_JU7TTbwOiFNbtbXa2o3tON9ngHU17EZqyPMsT0bCogHnlmCSWRUeSCxcSdtGvPPxCd_v0MMLdmH6nPaK1e5FSTLHNCBLU5ptP8SJ6UFCt9sILNYoUcqRol0MwwhVzo2VYKS2d9lq9HMu5X80wEgDkT3bMYXNH4V8dk2DePNLiVR7nuYkXBXPnC84ud16zsKt6O0LneM_XmoKJkxUSmq5GU3DkExnYPy4T-nam4X39ut9_WyHqE3YvSNFNwhSu7vG2jMxAAiigmCSc1mjykk3IbrvJtoCCdKY1JDE_OVGiZWkfoM85ThfR_qL8rQAw6OOd5-ibat766aTiz5oPOYM5b056DQb57v7lunpYEVO1c6sMHBip6ITMxV4hNSrBCKoxFxKqqzF9eLEdQSlIeO0yliidkI1Sqi0SrDYjRlz56GUdlO5AMShkUB2NW5HNmKzhRtESZKEtCoiye1qGTYKdfoPOXWHr1Mel_rfvnUZlguF--Yv7vnYxEn5AlfwMmwW-huc_lXY4p-uXoPR03rTPzo4aS3BmIP9hfUUzzKUsqdnuaKCnixcNYb9AQo99zc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SymDR%3A+Symbol+Computer+Algebra+Library+for+Generation+of+Classical+and+Approximate+Dispersion+Relations+for+Systems+of+Partial+Differential+Equations&rft.jtitle=Lobachevskii+journal+of+mathematics&rft.au=Arendarenko%2C+M.+S.&rft.au=Dzhanbekova%2C+A.+R.&rft.au=Kotov%2C+S.+V.&rft.au=Malyutin%2C+M.+S.&rft.date=2025-01-01&rft.pub=Pleiades+Publishing&rft.issn=1995-0802&rft.eissn=1818-9962&rft.volume=46&rft.issue=1&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1134%2FS1995080224608579&rft.externalDocID=10_1134_S1995080224608579
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1995-0802&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1995-0802&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1995-0802&client=summon