SymDR: Symbol Computer Algebra Library for Generation of Classical and Approximate Dispersion Relations for Systems of Partial Differential Equations
Mathematical models of numerous processes in continuum mechanics (CM), plasma physics (PP) and astrophysics (AP) are partial differential equations (PDEs). When developing computer models, these equations are replaced by discrete equations that are solved numerically. In order to investigate mathema...
Saved in:
Published in | Lobachevskii journal of mathematics Vol. 46; no. 1; pp. 1 - 12 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Moscow
Pleiades Publishing
01.01.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1995-0802 1818-9962 |
DOI | 10.1134/S1995080224608579 |
Cover
Abstract | Mathematical models of numerous processes in continuum mechanics (CM), plasma physics (PP) and astrophysics (AP) are partial differential equations (PDEs). When developing computer models, these equations are replaced by discrete equations that are solved numerically. In order to investigate mathematical and numerical models of CM, PP and AP, the technique of constructing dispersion relations has been developed. Using dispersion relations allows one to derive particular solutions to systems of PDEs, to investigate the stability of solutions for continuous and discrete models, to estimate the order of approximation and the rate of convergence for discrete models, and to establish of the optimal numerical parameters of a discrete model. Dispersion relations describe wave processes (i.e., processes of perturbation transfer with a velocity different from the velocity of matter) in media. The classical dispersion relation is a nonlinear algebraic equation (relating the wave parameters, namely the wave number
and the wave frequency,
), which corresponds to a continuous system of PDEs. There is a technique that allows one to derive a dispersion relation (classical or approximate, respectively) for a continuous or discrete CM, PP, and AP model. This paper presents a symbolic computer algebra library, developed by the authors, which automates this technique. The current version supports the use of nonstationary models with a single spatial variable both for continuum and finite-difference notation. The library is written in Python using the SymPy symbolic computing package and is available at
https://pypi.org/project/symdr/
. |
---|---|
AbstractList | Mathematical models of numerous processes in continuum mechanics (CM), plasma physics (PP) and astrophysics (AP) are partial differential equations (PDEs). When developing computer models, these equations are replaced by discrete equations that are solved numerically. In order to investigate mathematical and numerical models of CM, PP and AP, the technique of constructing dispersion relations has been developed. Using dispersion relations allows one to derive particular solutions to systems of PDEs, to investigate the stability of solutions for continuous and discrete models, to estimate the order of approximation and the rate of convergence for discrete models, and to establish of the optimal numerical parameters of a discrete model. Dispersion relations describe wave processes (i.e., processes of perturbation transfer with a velocity different from the velocity of matter) in media. The classical dispersion relation is a nonlinear algebraic equation (relating the wave parameters, namely the wave number
and the wave frequency,
), which corresponds to a continuous system of PDEs. There is a technique that allows one to derive a dispersion relation (classical or approximate, respectively) for a continuous or discrete CM, PP, and AP model. This paper presents a symbolic computer algebra library, developed by the authors, which automates this technique. The current version supports the use of nonstationary models with a single spatial variable both for continuum and finite-difference notation. The library is written in Python using the SymPy symbolic computing package and is available at
https://pypi.org/project/symdr/
. Mathematical models of numerous processes in continuum mechanics (CM), plasma physics (PP) and astrophysics (AP) are partial differential equations (PDEs). When developing computer models, these equations are replaced by discrete equations that are solved numerically. In order to investigate mathematical and numerical models of CM, PP and AP, the technique of constructing dispersion relations has been developed. Using dispersion relations allows one to derive particular solutions to systems of PDEs, to investigate the stability of solutions for continuous and discrete models, to estimate the order of approximation and the rate of convergence for discrete models, and to establish of the optimal numerical parameters of a discrete model. Dispersion relations describe wave processes (i.e., processes of perturbation transfer with a velocity different from the velocity of matter) in media. The classical dispersion relation is a nonlinear algebraic equation (relating the wave parameters, namely the wave number and the wave frequency, ), which corresponds to a continuous system of PDEs. There is a technique that allows one to derive a dispersion relation (classical or approximate, respectively) for a continuous or discrete CM, PP, and AP model. This paper presents a symbolic computer algebra library, developed by the authors, which automates this technique. The current version supports the use of nonstationary models with a single spatial variable both for continuum and finite-difference notation. The library is written in Python using the SymPy symbolic computing package and is available at https://pypi.org/project/symdr/. |
Author | Samoylov, M. V. Arendarenko, M. S. Malyutin, M. S. Kotov, S. V. Stoyanovskaya, O. P. Utyupina, V. Y. Dzhanbekova, A. R. Savvateeva, T. A. |
Author_xml | – sequence: 1 givenname: M. S. surname: Arendarenko fullname: Arendarenko, M. S. email: m.arendarenko@inbox.ru organization: Novosibirsk State University – sequence: 2 givenname: A. R. surname: Dzhanbekova fullname: Dzhanbekova, A. R. email: dzhanbekovalina@gmail.com organization: National Research University Higher School of Economics – sequence: 3 givenname: S. V. surname: Kotov fullname: Kotov, S. V. email: s.kotov@g.nsu.ru organization: Novosibirsk State University – sequence: 4 givenname: M. S. surname: Malyutin fullname: Malyutin, M. S. email: msmalyutin@gmail.com organization: Mikheev Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences, Federal State Autonomous Educational Institution of Higher Education ‘‘Ural Federal University named after the first President of Russia B.N. Yeltsin’’ – sequence: 5 givenname: T. A. surname: Savvateeva fullname: Savvateeva, T. A. email: ta-savvateeva@ya.ru organization: Novosibirsk State University – sequence: 6 givenname: M. V. surname: Samoylov fullname: Samoylov, M. V. email: m.samoilov@g.nsu.ru organization: Novosibirsk State University – sequence: 7 givenname: V. Y. surname: Utyupina fullname: Utyupina, V. Y. email: v.utyupina@g.nsu.ru organization: Novosibirsk State University – sequence: 8 givenname: O. P. surname: Stoyanovskaya fullname: Stoyanovskaya, O. P. email: o.p.sklyar@gmail.com organization: Lavrentyev Institute of Hydrodynamics, Siberian Branch of the Russian Academy of Sciences |
BookMark | eNp1kNFKwzAUhoNMcJs-gHcBr6s5adI13o1tTmGgbHpd0vV0dLRNl3RgH8T3NVsFL8SbnBPO9_8n-UdkUJsaCbkFdg8QiocNKCVZzDgXEYvlRF2QIcQQB0pFfOB7Pw5O8ysycm7PPBhF0ZB8bbpqvn6kvqSmpDNTNccWLZ2WO0ytpqvCn7ajubF0iTVa3Rampians1I7V2x1SXWd0WnTWPNZVLpFOi9cg9aduDWWZ4E7G2w612LlTuo3bdvCa-dFnqPF-nxZHI49fU0uc106vPmpY_LxtHifPQer1-XLbLoKtnzC2iDVPOPAGAgFwFIRg1YasghRxLgN4ywPuRIilZGYSJn7JpUhSBErmYWZlOGY3PW-_vGHI7o22Zujrf3KJOQgwEerIk9BT22tcc5injTW_9R2CbDklH7yJ32v4b3Gebbeof11_l_0DaYpiZI |
Cites_doi | 10.1111/j.1365-2966.2011.19291.x 10.1134/S1995080224010505 10.1016/j.compfluid.2023.105915 10.1093/mnras/stt1475 10.1086/147861 10.1016/j.jcp.2020.109310 10.1002/cpa.3160090206 10.1016/j.ijmultiphaseflow.2021.103935 10.1002/cpa.3160030302 10.1016/j.softx.2020.100541 10.3847/1538-4357/aca155 10.1134/S0021894421040167 10.1016/0021-9991(74)90011-4 10.3847/1538-4365/ab0a0e 10.1016/j.jcp.2020.110035 10.1046/j.1365-8711.2003.06266.x 10.1016/j.cam.2023.115495 10.1016/j.cam.2024.116316 |
ContentType | Journal Article |
Copyright | Pleiades Publishing, Ltd. 2025 Copyright Springer Nature B.V. 2025 |
Copyright_xml | – notice: Pleiades Publishing, Ltd. 2025 – notice: Copyright Springer Nature B.V. 2025 |
DBID | AAYXX CITATION |
DOI | 10.1134/S1995080224608579 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1818-9962 |
EndPage | 12 |
ExternalDocumentID | 10_1134_S1995080224608579 |
GroupedDBID | -Y2 -~9 .VR 06D 0R~ 0VY 1N0 29L 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2WC 2~H 30V 4.4 408 40D 40E 5GY 5IG 5VS 642 6NX 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDBE ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFO ACGFS ACHSB ACHXU ACIPV ACIWK ACKNC ACMDZ ACMFV ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AETLH AEVLU AEXYK AFBBN AFDZB AFGCZ AFLOW AFOHR AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AZFZN B-. BA0 BAPOH BDATZ BGNMA C1A CAG COF CS3 CSCUP DDRTE DNIVK DPUIP E4X EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 H13 HF~ HG6 HLICF HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXC IXD I~X I~Z J-C J9A JBSCW JZLTJ KOV LLZTM LO0 M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J OK1 P2P P9R PF0 PT4 QOS R89 R9I REM RIG ROL RSV S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TR2 TSG TUC UG4 UOJIU UTJUX UZXMN VFIZW W48 WK8 XSB YLTOR ZMTXR ~A9 AAYXX ABFSG ABRTQ ACSTC AEZWR AFHIU AHWEU AIXLP CITATION OVT |
ID | FETCH-LOGICAL-c270t-ba2d2100149110b481a9a1d6ee48ec38df32944b564755f4b5b53154895d3d553 |
IEDL.DBID | AGYKE |
ISSN | 1995-0802 |
IngestDate | Wed Sep 17 23:59:26 EDT 2025 Wed Sep 10 06:03:27 EDT 2025 Sat May 31 01:18:42 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | 2010 Mathematics Subject Classification: 34A45, 34K07 SymPy partial differential equation dispersion relation approximate dispersion relation symbolic calculations |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c270t-ba2d2100149110b481a9a1d6ee48ec38df32944b564755f4b5b53154895d3d553 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3214111396 |
PQPubID | 2044393 |
PageCount | 12 |
ParticipantIDs | proquest_journals_3214111396 crossref_primary_10_1134_S1995080224608579 springer_journals_10_1134_S1995080224608579 |
PublicationCentury | 2000 |
PublicationDate | 20250100 2025-01-00 20250101 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 1 year: 2025 text: 20250100 |
PublicationDecade | 2020 |
PublicationPlace | Moscow |
PublicationPlace_xml | – name: Moscow – name: Heidelberg |
PublicationTitle | Lobachevskii journal of mathematics |
PublicationTitleAbbrev | Lobachevskii J Math |
PublicationYear | 2025 |
Publisher | Pleiades Publishing Springer Nature B.V |
Publisher_xml | – name: Pleiades Publishing – name: Springer Nature B.V |
References | 8131_CR2 O. P. Stoyanovskaya (8131_CR10) 2024; 45 S.-H. Cha (8131_CR15) 2003; 340 8131_CR6 E. Hopf (8131_CR19) 1950; 3 8131_CR11 R. P. Nelson (8131_CR3) 2013; 435 A. Toomre (8131_CR4) 1964; 139 G. Laibe (8131_CR5) 2011; 418 P. D. Lax (8131_CR1) 1956; 9 8131_CR7 8131_CR18 T. V. Markelova (8131_CR8) 2021; 62 8131_CR9 A. G. Neelan (8131_CR16) 2024; 9 8131_CR14 R. F. Warming (8131_CR17) 1974; 14 8131_CR13 8131_CR12 |
References_xml | – volume: 418 start-page: 1491 year: 2011 ident: 8131_CR5 publication-title: Mon. Not. R. Astron. Soc. doi: 10.1111/j.1365-2966.2011.19291.x – volume: 45 start-page: 108 year: 2024 ident: 8131_CR10 publication-title: Lobachevskii J. Math. doi: 10.1134/S1995080224010505 – ident: 8131_CR14 doi: 10.1016/j.compfluid.2023.105915 – volume: 435 start-page: 2610 year: 2013 ident: 8131_CR3 publication-title: Mon. Not. R. Astron. Soc. doi: 10.1093/mnras/stt1475 – volume: 139 start-page: 1217 year: 1964 ident: 8131_CR4 publication-title: Astrophys. J. doi: 10.1086/147861 – ident: 8131_CR11 doi: 10.1016/j.jcp.2020.109310 – volume: 9 start-page: 267 year: 1956 ident: 8131_CR1 publication-title: Comm. Pure Appl. Math. doi: 10.1002/cpa.3160090206 – ident: 8131_CR7 doi: 10.1016/j.ijmultiphaseflow.2021.103935 – volume: 3 start-page: 201 year: 1950 ident: 8131_CR19 publication-title: Comm. Pure Appl. Math. doi: 10.1002/cpa.3160030302 – volume: 9 start-page: 155 year: 2024 ident: 8131_CR16 publication-title: Int. J. Comput. Math.: Comput. Syst. Theory – ident: 8131_CR18 doi: 10.1016/j.softx.2020.100541 – ident: 8131_CR2 doi: 10.3847/1538-4357/aca155 – volume: 62 start-page: 663 year: 2021 ident: 8131_CR8 publication-title: J. Appl. Mech. Tech. Phys. doi: 10.1134/S0021894421040167 – volume: 14 start-page: 159 year: 1974 ident: 8131_CR17 publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(74)90011-4 – ident: 8131_CR6 doi: 10.3847/1538-4365/ab0a0e – ident: 8131_CR9 doi: 10.1016/j.jcp.2020.110035 – volume: 340 start-page: 73 year: 2003 ident: 8131_CR15 publication-title: Mon. Not. R. Astron. Soc. doi: 10.1046/j.1365-8711.2003.06266.x – ident: 8131_CR12 doi: 10.1016/j.cam.2023.115495 – ident: 8131_CR13 doi: 10.1016/j.cam.2024.116316 |
SSID | ssj0022666 |
Score | 2.314013 |
Snippet | Mathematical models of numerous processes in continuum mechanics (CM), plasma physics (PP) and astrophysics (AP) are partial differential equations (PDEs).... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1 |
SubjectTerms | Algebra Analysis Computer algebra Continuum mechanics Geometry Libraries Mathematical analysis Mathematical Logic and Foundations Mathematical models Mathematics Mathematics and Statistics Numerical models Parameters Partial differential equations Plasma physics Probability Theory and Stochastic Processes Wave dispersion |
Title | SymDR: Symbol Computer Algebra Library for Generation of Classical and Approximate Dispersion Relations for Systems of Partial Differential Equations |
URI | https://link.springer.com/article/10.1134/S1995080224608579 https://www.proquest.com/docview/3214111396 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1818-9962 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0022666 issn: 1995-0802 databaseCode: AFBBN dateStart: 20080101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1818-9962 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0022666 issn: 1995-0802 databaseCode: AGYKE dateStart: 20080101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4oXPTg24gi2YMnTbG0u0vXGwhoNBijkOip6WNriAgqkKj_w__rznYLEfXgqW3aTtrOdHZmZ79vAA6U242Uy_MsT0bCogHnlmCSWRUeSCxcSdtGvHP7ip936cUduzM47lG22j0rSWpPnfYdoce3CCbWyFDKkZZdLEKeYX6Sg3zt7P6yOc2z1JijQUUafOzZjilm_irk-3A0izHnyqJ6tGmtQid7znSRyWN5Mg7L0cccheM_X2QNVkz0SWqpuazDghxswHJ7St062oTP2_enxs0JUZtw2CdZ1wdS6z9gjZkYoANRwS5JOatRtWSYEN1fE3VOgkFMakhW_tZTYiVp9JCPHOflyHTxnRZg-NLx7mu0YXVvw3Rs0QfNl5SJfLQF3Vazc3pumd4NVuRU7bEVBk7sVHQCpgKMkHqVQASVmEtJlVW4Xpy4jqA0ZJxWGUvUTqi8gUqfBIvdmDF3G3KD4UDuAHFoJJBFjduRjRhs4QZRkiQhrYpIcrtagMNMhf5zStHh69TGpf6Pb12AYqZk3_ytIx-bNSmf7wpegKNMZ7PTfwrb_dfVe7DkYPNgPX9ThNz4dSL3VUQzDkvKglv1-lXJWPIXen_s5w |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LU8IwEN5ROKgH344oag6edIqlTULjjREQ5TGOwAyeOn2kDiOCCsyo_8P_a5KmMKIeOLWdNtvHbjebbL5vAU6F2w2Ey3MMhwfMwB6lBiOcGHnqcZm44qYp8c6NJq128G2XdDWOe5Ssdk9SkspTx3VH8EVLgokVMhRTScvOliGNxV1wCtLF64daeTrOEn2OAhUp8LFjWjqZ-aeQn93RLMacS4uq3qayAe3kOeNFJk-5ydjPBZ9zFI4LvsgmrOvoExVjc9mCJT7YhrXGlLp1tANfrY_n0v0lEht_2EdJ1QdU7D_KHDPSQAckgl0Uc1ZL1aJhhFR9Talz5A1CVJRk5e89IZajUk_ykct5OTRdfKcEaL502fpO2rBoW9IVW9RB-TVmIh_tQqdSbl9VDV27wQisgjk2fM8KrbwagIkAw8dO3mNePqScY2EVthNGtsUw9gnFBUIiseMLbyCGT4yEdkiIvQepwXDA9wFZOGCSRY2agSkx2Mz2giiKfFxgAadmIQNniQrdl5iiw1VDGxu7v751BrKJkl39t45cWaxJ-Hyb0QycJzqbnf5X2MFCV5_ASrXdqLv1m2btEFYtWUhYzeVkITV-m_AjEd2M_WNtzd9X0-5c |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgSAgOvBHjmQMnUKFrk6zhNrGNxwAhxiQ4lT5ShIAOWJGA_8H_JU7TTbwOiFNbtbXa2o3tON9ngHU17EZqyPMsT0bCogHnlmCSWRUeSCxcSdtGvPPxCd_v0MMLdmH6nPaK1e5FSTLHNCBLU5ptP8SJ6UFCt9sILNYoUcqRol0MwwhVzo2VYKS2d9lq9HMu5X80wEgDkT3bMYXNH4V8dk2DePNLiVR7nuYkXBXPnC84ud16zsKt6O0LneM_XmoKJkxUSmq5GU3DkExnYPy4T-nam4X39ut9_WyHqE3YvSNFNwhSu7vG2jMxAAiigmCSc1mjykk3IbrvJtoCCdKY1JDE_OVGiZWkfoM85ThfR_qL8rQAw6OOd5-ibat766aTiz5oPOYM5b056DQb57v7lunpYEVO1c6sMHBip6ITMxV4hNSrBCKoxFxKqqzF9eLEdQSlIeO0yliidkI1Sqi0SrDYjRlz56GUdlO5AMShkUB2NW5HNmKzhRtESZKEtCoiye1qGTYKdfoPOXWHr1Mel_rfvnUZlguF--Yv7vnYxEn5AlfwMmwW-huc_lXY4p-uXoPR03rTPzo4aS3BmIP9hfUUzzKUsqdnuaKCnixcNYb9AQo99zc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SymDR%3A+Symbol+Computer+Algebra+Library+for+Generation+of+Classical+and+Approximate+Dispersion+Relations+for+Systems+of+Partial+Differential+Equations&rft.jtitle=Lobachevskii+journal+of+mathematics&rft.au=Arendarenko%2C+M.+S.&rft.au=Dzhanbekova%2C+A.+R.&rft.au=Kotov%2C+S.+V.&rft.au=Malyutin%2C+M.+S.&rft.date=2025-01-01&rft.pub=Pleiades+Publishing&rft.issn=1995-0802&rft.eissn=1818-9962&rft.volume=46&rft.issue=1&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1134%2FS1995080224608579&rft.externalDocID=10_1134_S1995080224608579 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1995-0802&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1995-0802&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1995-0802&client=summon |