Product backlog optimization technique in agile software development using clustering algorithm

Context The recent research trend has highlighted that multiple stakeholders are involved during requirement gathering in agile software development. Hence, leading to an increased number of duplicate user stories in agile product backlog during requirement gathering. Objective The objective of this...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 82; no. 30; pp. 46695 - 46715
Main Authors Sharma, Sarika, Kumar, Deepak
Format Journal Article
LanguageEnglish
Published New York Springer US 01.12.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1380-7501
1573-7721
DOI10.1007/s11042-023-15406-w

Cover

Abstract Context The recent research trend has highlighted that multiple stakeholders are involved during requirement gathering in agile software development. Hence, leading to an increased number of duplicate user stories in agile product backlog during requirement gathering. Objective The objective of this paper is to evaluate the existing techniques employed in identifying and eliminating the duplicate user stories from agile product backlog and to overcome the existing gaps with the help of a newly proposed clustering algorithm. Method An agile user story is expressed as a function of input and output parameters. That said multiple user stories having similar set of input parameters are most likely to be duplicate causing a redundancy. The newly proposed algorithm is used for clustering user stories having similar set of input parameters through various iterations and then removing the identified duplicate user stories from agile product backlog. This paper also introduces the concept of mass clustering which means clustering a number of user stories in single run. Results Experimental results prove the proposed model is capable of handling small and large releases ranging between 100 to 1000 user stories with similar efficiency. The proposed clustering algorithm outperformed the clustering algorithms and resulted in 37% decrease in agile product backlog by eliminating duplicate user stories causing redundancy. The experimental results are obtained from the logs of the MATLAB tool. However, the provided algorithm is generic in nature and can be implemented using R, Python or SAS programming tools. The provided algorithms employs proven matrix operations. Conclusion The proposed clustering algorithm overcomes the limitation of existing user story management methods and clearly out performs when compared with other clustering algorithms. Finally, this paper gives recommendations about the usage of the provided clustering algorithm during agile release planning for eliminating duplicate user stories from agile product backlog.
AbstractList ContextThe recent research trend has highlighted that multiple stakeholders are involved during requirement gathering in agile software development. Hence, leading to an increased number of duplicate user stories in agile product backlog during requirement gathering.ObjectiveThe objective of this paper is to evaluate the existing techniques employed in identifying and eliminating the duplicate user stories from agile product backlog and to overcome the existing gaps with the help of a newly proposed clustering algorithm.MethodAn agile user story is expressed as a function of input and output parameters. That said multiple user stories having similar set of input parameters are most likely to be duplicate causing a redundancy. The newly proposed algorithm is used for clustering user stories having similar set of input parameters through various iterations and then removing the identified duplicate user stories from agile product backlog. This paper also introduces the concept of mass clustering which means clustering a number of user stories in single run.ResultsExperimental results prove the proposed model is capable of handling small and large releases ranging between 100 to 1000 user stories with similar efficiency. The proposed clustering algorithm outperformed the clustering algorithms and resulted in 37% decrease in agile product backlog by eliminating duplicate user stories causing redundancy. The experimental results are obtained from the logs of the MATLAB tool. However, the provided algorithm is generic in nature and can be implemented using R, Python or SAS programming tools. The provided algorithms employs proven matrix operations.ConclusionThe proposed clustering algorithm overcomes the limitation of existing user story management methods and clearly out performs when compared with other clustering algorithms. Finally, this paper gives recommendations about the usage of the provided clustering algorithm during agile release planning for eliminating duplicate user stories from agile product backlog.
Context The recent research trend has highlighted that multiple stakeholders are involved during requirement gathering in agile software development. Hence, leading to an increased number of duplicate user stories in agile product backlog during requirement gathering. Objective The objective of this paper is to evaluate the existing techniques employed in identifying and eliminating the duplicate user stories from agile product backlog and to overcome the existing gaps with the help of a newly proposed clustering algorithm. Method An agile user story is expressed as a function of input and output parameters. That said multiple user stories having similar set of input parameters are most likely to be duplicate causing a redundancy. The newly proposed algorithm is used for clustering user stories having similar set of input parameters through various iterations and then removing the identified duplicate user stories from agile product backlog. This paper also introduces the concept of mass clustering which means clustering a number of user stories in single run. Results Experimental results prove the proposed model is capable of handling small and large releases ranging between 100 to 1000 user stories with similar efficiency. The proposed clustering algorithm outperformed the clustering algorithms and resulted in 37% decrease in agile product backlog by eliminating duplicate user stories causing redundancy. The experimental results are obtained from the logs of the MATLAB tool. However, the provided algorithm is generic in nature and can be implemented using R, Python or SAS programming tools. The provided algorithms employs proven matrix operations. Conclusion The proposed clustering algorithm overcomes the limitation of existing user story management methods and clearly out performs when compared with other clustering algorithms. Finally, this paper gives recommendations about the usage of the provided clustering algorithm during agile release planning for eliminating duplicate user stories from agile product backlog.
Author Kumar, Deepak
Sharma, Sarika
Author_xml – sequence: 1
  givenname: Sarika
  orcidid: 0000-0001-8209-9312
  surname: Sharma
  fullname: Sharma, Sarika
  email: sarika.s17@gmail.com
  organization: Amity Institute of Information Technology, Amity University
– sequence: 2
  givenname: Deepak
  orcidid: 0000-0003-2409-9706
  surname: Kumar
  fullname: Kumar, Deepak
  organization: Amity Institute of Information Technology, Amity University
BookMark eNp9kM1OwzAQhC0EEm3hBThZ4hxY23GcHFHFn1QJDnC2HNdJXRI72A4VPD0pReLGaecwM7v7zdGx884gdEHgigCI60gI5DQDyjLCcyiy3RGaES5YJgQlx5NmJWSCAzlF8xi3AKTgNJ8h-Rz8etQJ10q_db7Ffki2t18qWe9wMnrj7PtosHVYtbYzOPom7VQweG0-TOeH3riEx2hdi3U3xmTCXqqu9cGmTX-GThrVRXP-Oxfo9e72ZfmQrZ7uH5c3q0xTASmrFUzHkqYytOY557WgJdSsrDWsGVWcN8owoLQCYaqCMKHz0vAm5yTXFZCSLdDloXcIfro3Jrn1Y3DTSknLikNR5JRPLnpw6eBjDKaRQ7C9Cp-SgNyDlAeQcgIpf0DK3RRih1Ac9r-Z8Ff9T-obTtB5Vw
Cites_doi 10.1016/j.patrec.2018.12.007
10.1007/978-3-319-69926-4_22
10.1016/j.jss.2017.11.045
10.1111/j.1467-9892.1987.tb00435.x
10.1155/2016/4321928
10.1007/s11334-016-0271-0
10.5120/ijca2016912443
10.14569/IJACSA.2013.040406
10.1007/978-3-540-78773-0_34
10.1109/AICAI.2019.8701252
10.1007/978-1-4899-7687-1_798
10.1109/JAS.2020.1003420
10.1109/WETSoM.2015.15
10.1109/MySEC.2015.7475219
10.1145/1137856.1137879
10.1145/3519935.3519946
10.1109/ICGSE.2012.41
10.1111/1467-9868.00338
10.1007/978-3-662-48577-4_1
10.1007/978-981-13-5934-7_20
10.1109/DSN-W.2016.27
10.1109/ICSE.2003.1201204
10.1109/TNN.2005.845141
10.1016/j.infsof.2015.02.005
10.1006/JCSS.2002.1882
10.1016/S0031-3203(02)00060-2
10.1007/s11135-020-01061-y
10.1109/ICSE.2019.00036
10.1109/4236.989006
10.1111/j.2517-6161.1983.tb01262.x
10.1111/j.1365-2575.2009.00329.x
10.1016/j.eswa.2008.01.039
10.1214/12-AOS1049
10.2307/2346830
10.1007/978-1-4302-3534-7_4
10.1109/TKDE.2016.2562627
10.1002/9780470382776
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s11042-023-15406-w
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials Local Electronic Collection Information
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library (Proquest)
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 46715
ExternalDocumentID 10_1007_s11042_023_15406_w
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c270t-ba05731f9e2b5455b7280b38bc0d32a55fae3022907e96137c48e5f4514c90183
IEDL.DBID U2A
ISSN 1380-7501
IngestDate Fri Jul 25 23:43:24 EDT 2025
Wed Oct 01 04:51:30 EDT 2025
Fri Feb 21 02:40:59 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 30
Keywords Agile methodology
Parameters
Clustering
Algorithm
Software engineering
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-ba05731f9e2b5455b7280b38bc0d32a55fae3022907e96137c48e5f4514c90183
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8209-9312
0000-0003-2409-9706
PQID 2895066425
PQPubID 54626
PageCount 21
ParticipantIDs proquest_journals_2895066425
crossref_primary_10_1007_s11042_023_15406_w
springer_journals_10_1007_s11042_023_15406_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20231200
2023-12-00
20231201
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 20231200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Kupiainen E, Mäntylä MV, Itkonen J (2015) Using metrics in Agile and Lean software development - A systematic literature review of industrial studies, Information and Software Technology.doi: https://doi.org/10.1016/j.infsof.2015.02.005
MaurerFMartelSExtreme programming. Rapid development for Web-based applicationsIEEE Internet Comput.200261869010.1109/4236.989006
Abrahamsson P, Warsta J, Siponen MT, Ronkainen J (2003) New directions on agile methods: a comparative analysis, in 25th International Conference on Software Engineering, 2003. Proceedings, pp. 244–254. doi: https://doi.org/10.1109/ICSE.2003.1201204
Duraisamy G, Atan R (2013) Requirement traceability matrix through documentation for SCRUM methodology, J Theor Appl Inf Technol
KosubSA note on the triangle inequality for the Jaccard distancePattern Recognit. Lett.2019120363810.1016/j.patrec.2018.12.007
Sharma S, Kumar D (2019) On the Development of Feature-Based Sprint in AGILE, in Ambient Communications and Computer Systems. Advances in Intelligent Systems and Computing, Volume 904., T. M. Hu YC., Tiwari S., Mishra K., Ed. Springer, Singapore, pp. 223–235. doi: https://doi.org/10.1007/978-981-13-5934-7_20
Frahling G, Sohler C (2006) A fast k-means implementation using coresets, in Proceedings of the twenty-second annual symposium on Computational geometry, pp. 135–143. doi: 10.1145/1137856.1137879
Alsalemi AM, Yeoh ET (2016) A survey on product backlog change management and requirement traceability in agile (Scrum), in 2015 9th Malaysian Software Engineering Conference, MySEC 2015. doi: https://doi.org/10.1109/MySEC.2015.7475219
HartiganJAWongMAAlgorithm AS 136: A K-Means Clustering AlgorithmAppl. Stat.197928110010.2307/23468300447.62062
HolmesCCAdamsNMA probabilistic nearest neighbour method for statistical pattern recognitionJ. R. Stat. Soc. Ser. B Statistical Methodol.2002642295306190470610.1111/1467-9868.003381059.62065
WongMALaneTA K th Nearest Neighbour Clustering ProcedureJ. R. Stat. Soc. Ser. B198345336236873764510.1111/j.2517-6161.1983.tb01262.x0535.62055
Kayes I, Sarker M, Chakareski J (2016) Product backlog rating: a case study on measuring test quality in scrum, Innov Syst Softw Eng, doi: https://doi.org/10.1007/s11334-016-0271-0
Bolloju N, Gupta A, Alter S, Gupta S, Jain S (2017) Improving scrum user stories and product backlog using work system snapshots, in AMCIS 2017 - America’s Conference on Information Systems: A Tradition of Innovation
BergerHBeynon-DaviesPThe utility of rapid application development in large-scale, complex projectsInf. Syst. J.200919654957010.1111/j.1365-2575.2009.00329.x
RawatKSSoodSKEmerging trends and global scope of big data analytics: a scientometric analysisQual. Quant.20215541371139610.1007/s11135-020-01061-y
Ghosh S, Kumar S (2013) Comparative Analysis of K-Means and Fuzzy C-Means Algorithms, Int J Adv Comput Sci Appl, vol. 4, no. 4, doi: https://doi.org/10.14569/IJACSA.2013.040406
Noll J, Razzak MA, Bass JM, Beecham S (2017) A study of the scrum master’s role, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 10611 LNCS, pp. 307–323.  10.1007/978-3-319-69926-4_22
Boerman MP, Lubsen Z, Tamburri DA, Visser J (2015) Measuring and monitoring agile development status, in International Workshop on Emerging Trends in Software Metrics, WETSoM. doi: https://doi.org/10.1109/WETSoM.2015.15
LikasAVlassisNVerbeekJJThe global k-means clustering algorithmPattern Recognit.200336245146110.1016/S0031-3203(02)00060-2
XuRWunschIIDSurvey of Clustering AlgorithmsIEEE Trans. Neural Networks200516364567810.1109/TNN.2005.845141
Paasivaara M, Heikkilä VT, Lassenius C (2012) Experiences in scaling the Product Owner role in large-scale globally distributed Scrum, in Proceedings - 2012 IEEE 7th International Conference on Global Software Engineering, ICGSE 2012, doi: https://doi.org/10.1109/ICGSE.2012.41
TirumalaSSAliSBabuAA Hybrid Agile model using SCRUM and Feature Driven DevelopmentInt. J. Comput. Appl.201615651510.5120/ijca2016912443
AhmadMODennehyDConboyKOivoMKanban in software engineering: A systematic mapping studyJ Syst Softw20181379611310.1016/j.jss.2017.11.045
Barbosa R, Silva AEA, Moraes R (2016) Use of Similarity Measure to Suggest the Existence of Duplicate User Stories in the Srum Process, in Proceedings - 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, DSN-W 2016. doi: https://doi.org/10.1109/DSN-W.2016.27
YakowitzSNearest-Neighbour Methods for Time Series AnalysisJ Time Ser Anal19878223524788614110.1111/j.1467-9892.1987.tb00435.x0615.62115
Czumaj A, Sohler C (2017) Sublinear Clustering in Encyclopedia of Machine Learning and Data Mining, Boston, MA: Springer US, pp. 1205–1209. doi: https://doi.org/10.1007/978-1-4899-7687-1_798
ParkH-SJunC-HA simple and fast algorithm for K-medoids clusteringExpert Syst. Appl.20093623336334110.1016/j.eswa.2008.01.039
Panigrahy R (2008) An Improved Algorithm Finding Nearest Neighbor Using Kd-trees, in LATIN: Theoretical Informatics, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 387–398. doi: https://doi.org/10.1007/978-3-540-78773-0_34
Cohen-Addad V, Larsen KG, Saulpic D, Schwiegelshohn C (2022) Towards optimal lower bounds for k-median and k-means coresets, in Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing, pp. 1038–1051. doi: https://doi.org/10.1145/3519935.3519946
Sedano T, Ralph P, Peraire C (2019) The Product Backlog, in 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE), pp. 200–211. doi: https://doi.org/10.1109/ICSE.2019.00036
Samworth RJ (2012) Optimal weighted nearest neighbour classifiers. Ann. Stat. 40(5). https://doi.org/10.1214/12-AOS1049
Song G, Rochas J, El Beze LE, Huet F, Magoulès F (2016) K Nearest Neighbour Joins for Big Data on MapReduce: A Theoretical and Experimental Analysis, IEEE Trans Knowl Data Eng, doi: https://doi.org/10.1109/TKDE.2016.2562627
Xu R, Wunsch DC (2008) Clustering. doi: https://doi.org/10.1002/9780470382776
Blankenship J, Bussa M, Millett S, Blankenship J, Bussa M, Millett S (2011) Sprint 0: Generating the Product Backlog,” in Pro Agile .NET Development with Scrum, doi: https://doi.org/10.1007/978-1-4302-3534-7_4
WangCPedryczWLiZZhouMResidual-driven Fuzzy C-Means Clustering for Image SegmentationIEEE/CAA J. Autom. Sin.202184876889427209910.1109/JAS.2020.1003420
Radigan D (2018) The product backlog: your ultimate to-do list | Atlassian, Atlassian Agile Coach
Charikar M, Guha S, Tardos É, Shmoys DB (2002) A constant-factor approximation algorithm for the k-median problem. J Comput Syst Sci. 65(1):129–149. https://doi.org/10.1006/JCSS.2002.1882
LiJSongSZhangYZhouZRobust K-Median and K-Means Clustering Algorithms for Incomplete DataMath. Probl. Eng.2016201618358423710.1155/2016/43219281400.62133
Masulli F,Rovetta S (2015) Clustering high-dimensional data, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). doi: https://doi.org/10.1007/978-3-662-48577-4_1
Sharma S, Kumar D (2019) Agile Release Planning Using Natural Language Processing Algorithm, in 2019 Amity International Conference on Artificial Intelligence (AICAI), pp. 934–938. doi: https://doi.org/10.1109/AICAI.2019.8701252.
15406_CR19
MA Wong (15406_CR37) 1983; 45
15406_CR9
15406_CR8
R Xu (15406_CR39) 2005; 16
S Yakowitz (15406_CR40) 1987; 8
H-S Park (15406_CR27) 2009; 36
H Berger (15406_CR5) 2009; 19
F Maurer (15406_CR23) 2002; 6
MO Ahmad (15406_CR2) 2018; 137
15406_CR22
15406_CR25
15406_CR24
15406_CR26
15406_CR28
C Wang (15406_CR36) 2021; 8
CC Holmes (15406_CR16) 2002; 64
J Li (15406_CR20) 2016; 2016
SS Tirumala (15406_CR35) 2016; 156
15406_CR1
15406_CR3
S Kosub (15406_CR18) 2019; 120
15406_CR30
15406_CR4
KS Rawat (15406_CR29) 2021; 55
15406_CR7
15406_CR10
15406_CR32
15406_CR6
15406_CR31
15406_CR12
15406_CR34
15406_CR11
15406_CR33
15406_CR14
15406_CR13
JA Hartigan (15406_CR15) 1979; 28
15406_CR38
A Likas (15406_CR21) 2003; 36
15406_CR17
References_xml – reference: MaurerFMartelSExtreme programming. Rapid development for Web-based applicationsIEEE Internet Comput.200261869010.1109/4236.989006
– reference: Paasivaara M, Heikkilä VT, Lassenius C (2012) Experiences in scaling the Product Owner role in large-scale globally distributed Scrum, in Proceedings - 2012 IEEE 7th International Conference on Global Software Engineering, ICGSE 2012, doi: https://doi.org/10.1109/ICGSE.2012.41
– reference: YakowitzSNearest-Neighbour Methods for Time Series AnalysisJ Time Ser Anal19878223524788614110.1111/j.1467-9892.1987.tb00435.x0615.62115
– reference: Sedano T, Ralph P, Peraire C (2019) The Product Backlog, in 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE), pp. 200–211. doi: https://doi.org/10.1109/ICSE.2019.00036
– reference: Alsalemi AM, Yeoh ET (2016) A survey on product backlog change management and requirement traceability in agile (Scrum), in 2015 9th Malaysian Software Engineering Conference, MySEC 2015. doi: https://doi.org/10.1109/MySEC.2015.7475219
– reference: Kupiainen E, Mäntylä MV, Itkonen J (2015) Using metrics in Agile and Lean software development - A systematic literature review of industrial studies, Information and Software Technology.doi: https://doi.org/10.1016/j.infsof.2015.02.005
– reference: Panigrahy R (2008) An Improved Algorithm Finding Nearest Neighbor Using Kd-trees, in LATIN: Theoretical Informatics, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 387–398. doi: https://doi.org/10.1007/978-3-540-78773-0_34
– reference: Frahling G, Sohler C (2006) A fast k-means implementation using coresets, in Proceedings of the twenty-second annual symposium on Computational geometry, pp. 135–143. doi: 10.1145/1137856.1137879
– reference: TirumalaSSAliSBabuAA Hybrid Agile model using SCRUM and Feature Driven DevelopmentInt. J. Comput. Appl.201615651510.5120/ijca2016912443
– reference: Samworth RJ (2012) Optimal weighted nearest neighbour classifiers. Ann. Stat. 40(5). https://doi.org/10.1214/12-AOS1049
– reference: Cohen-Addad V, Larsen KG, Saulpic D, Schwiegelshohn C (2022) Towards optimal lower bounds for k-median and k-means coresets, in Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing, pp. 1038–1051. doi: https://doi.org/10.1145/3519935.3519946
– reference: XuRWunschIIDSurvey of Clustering AlgorithmsIEEE Trans. Neural Networks200516364567810.1109/TNN.2005.845141
– reference: Xu R, Wunsch DC (2008) Clustering. doi: https://doi.org/10.1002/9780470382776
– reference: Barbosa R, Silva AEA, Moraes R (2016) Use of Similarity Measure to Suggest the Existence of Duplicate User Stories in the Srum Process, in Proceedings - 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, DSN-W 2016. doi: https://doi.org/10.1109/DSN-W.2016.27
– reference: Bolloju N, Gupta A, Alter S, Gupta S, Jain S (2017) Improving scrum user stories and product backlog using work system snapshots, in AMCIS 2017 - America’s Conference on Information Systems: A Tradition of Innovation
– reference: LikasAVlassisNVerbeekJJThe global k-means clustering algorithmPattern Recognit.200336245146110.1016/S0031-3203(02)00060-2
– reference: WangCPedryczWLiZZhouMResidual-driven Fuzzy C-Means Clustering for Image SegmentationIEEE/CAA J. Autom. Sin.202184876889427209910.1109/JAS.2020.1003420
– reference: Abrahamsson P, Warsta J, Siponen MT, Ronkainen J (2003) New directions on agile methods: a comparative analysis, in 25th International Conference on Software Engineering, 2003. Proceedings, pp. 244–254. doi: https://doi.org/10.1109/ICSE.2003.1201204
– reference: BergerHBeynon-DaviesPThe utility of rapid application development in large-scale, complex projectsInf. Syst. J.200919654957010.1111/j.1365-2575.2009.00329.x
– reference: Czumaj A, Sohler C (2017) Sublinear Clustering in Encyclopedia of Machine Learning and Data Mining, Boston, MA: Springer US, pp. 1205–1209. doi: https://doi.org/10.1007/978-1-4899-7687-1_798
– reference: Boerman MP, Lubsen Z, Tamburri DA, Visser J (2015) Measuring and monitoring agile development status, in International Workshop on Emerging Trends in Software Metrics, WETSoM. doi: https://doi.org/10.1109/WETSoM.2015.15
– reference: Ghosh S, Kumar S (2013) Comparative Analysis of K-Means and Fuzzy C-Means Algorithms, Int J Adv Comput Sci Appl, vol. 4, no. 4, doi: https://doi.org/10.14569/IJACSA.2013.040406
– reference: Masulli F,Rovetta S (2015) Clustering high-dimensional data, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). doi: https://doi.org/10.1007/978-3-662-48577-4_1
– reference: Sharma S, Kumar D (2019) On the Development of Feature-Based Sprint in AGILE, in Ambient Communications and Computer Systems. Advances in Intelligent Systems and Computing, Volume 904., T. M. Hu YC., Tiwari S., Mishra K., Ed. Springer, Singapore, pp. 223–235. doi: https://doi.org/10.1007/978-981-13-5934-7_20
– reference: WongMALaneTA K th Nearest Neighbour Clustering ProcedureJ. R. Stat. Soc. Ser. B198345336236873764510.1111/j.2517-6161.1983.tb01262.x0535.62055
– reference: Sharma S, Kumar D (2019) Agile Release Planning Using Natural Language Processing Algorithm, in 2019 Amity International Conference on Artificial Intelligence (AICAI), pp. 934–938. doi: https://doi.org/10.1109/AICAI.2019.8701252.
– reference: AhmadMODennehyDConboyKOivoMKanban in software engineering: A systematic mapping studyJ Syst Softw20181379611310.1016/j.jss.2017.11.045
– reference: HolmesCCAdamsNMA probabilistic nearest neighbour method for statistical pattern recognitionJ. R. Stat. Soc. Ser. B Statistical Methodol.2002642295306190470610.1111/1467-9868.003381059.62065
– reference: LiJSongSZhangYZhouZRobust K-Median and K-Means Clustering Algorithms for Incomplete DataMath. Probl. Eng.2016201618358423710.1155/2016/43219281400.62133
– reference: Charikar M, Guha S, Tardos É, Shmoys DB (2002) A constant-factor approximation algorithm for the k-median problem. J Comput Syst Sci. 65(1):129–149. https://doi.org/10.1006/JCSS.2002.1882
– reference: Duraisamy G, Atan R (2013) Requirement traceability matrix through documentation for SCRUM methodology, J Theor Appl Inf Technol
– reference: KosubSA note on the triangle inequality for the Jaccard distancePattern Recognit. Lett.2019120363810.1016/j.patrec.2018.12.007
– reference: Noll J, Razzak MA, Bass JM, Beecham S (2017) A study of the scrum master’s role, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 10611 LNCS, pp. 307–323.  10.1007/978-3-319-69926-4_22
– reference: RawatKSSoodSKEmerging trends and global scope of big data analytics: a scientometric analysisQual. Quant.20215541371139610.1007/s11135-020-01061-y
– reference: Radigan D (2018) The product backlog: your ultimate to-do list | Atlassian, Atlassian Agile Coach
– reference: Kayes I, Sarker M, Chakareski J (2016) Product backlog rating: a case study on measuring test quality in scrum, Innov Syst Softw Eng, doi: https://doi.org/10.1007/s11334-016-0271-0
– reference: Song G, Rochas J, El Beze LE, Huet F, Magoulès F (2016) K Nearest Neighbour Joins for Big Data on MapReduce: A Theoretical and Experimental Analysis, IEEE Trans Knowl Data Eng, doi: https://doi.org/10.1109/TKDE.2016.2562627
– reference: ParkH-SJunC-HA simple and fast algorithm for K-medoids clusteringExpert Syst. Appl.20093623336334110.1016/j.eswa.2008.01.039
– reference: HartiganJAWongMAAlgorithm AS 136: A K-Means Clustering AlgorithmAppl. Stat.197928110010.2307/23468300447.62062
– reference: Blankenship J, Bussa M, Millett S, Blankenship J, Bussa M, Millett S (2011) Sprint 0: Generating the Product Backlog,” in Pro Agile .NET Development with Scrum, doi: https://doi.org/10.1007/978-1-4302-3534-7_4
– volume: 120
  start-page: 36
  year: 2019
  ident: 15406_CR18
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2018.12.007
– ident: 15406_CR24
  doi: 10.1007/978-3-319-69926-4_22
– volume: 137
  start-page: 96
  year: 2018
  ident: 15406_CR2
  publication-title: J Syst Softw
  doi: 10.1016/j.jss.2017.11.045
– volume: 8
  start-page: 235
  issue: 2
  year: 1987
  ident: 15406_CR40
  publication-title: J Time Ser Anal
  doi: 10.1111/j.1467-9892.1987.tb00435.x
– volume: 2016
  start-page: 1
  year: 2016
  ident: 15406_CR20
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2016/4321928
– ident: 15406_CR17
  doi: 10.1007/s11334-016-0271-0
– volume: 156
  start-page: 1
  issue: 5
  year: 2016
  ident: 15406_CR35
  publication-title: Int. J. Comput. Appl.
  doi: 10.5120/ijca2016912443
– ident: 15406_CR14
  doi: 10.14569/IJACSA.2013.040406
– ident: 15406_CR26
  doi: 10.1007/978-3-540-78773-0_34
– ident: 15406_CR33
  doi: 10.1109/AICAI.2019.8701252
– ident: 15406_CR11
  doi: 10.1007/978-1-4899-7687-1_798
– volume: 8
  start-page: 876
  issue: 4
  year: 2021
  ident: 15406_CR36
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2020.1003420
– ident: 15406_CR28
– ident: 15406_CR7
  doi: 10.1109/WETSoM.2015.15
– ident: 15406_CR3
  doi: 10.1109/MySEC.2015.7475219
– ident: 15406_CR13
  doi: 10.1145/1137856.1137879
– ident: 15406_CR10
  doi: 10.1145/3519935.3519946
– ident: 15406_CR25
  doi: 10.1109/ICGSE.2012.41
– volume: 64
  start-page: 295
  issue: 2
  year: 2002
  ident: 15406_CR16
  publication-title: J. R. Stat. Soc. Ser. B Statistical Methodol.
  doi: 10.1111/1467-9868.00338
– ident: 15406_CR12
– ident: 15406_CR22
  doi: 10.1007/978-3-662-48577-4_1
– ident: 15406_CR32
  doi: 10.1007/978-981-13-5934-7_20
– ident: 15406_CR4
  doi: 10.1109/DSN-W.2016.27
– ident: 15406_CR1
  doi: 10.1109/ICSE.2003.1201204
– volume: 16
  start-page: 645
  issue: 3
  year: 2005
  ident: 15406_CR39
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/TNN.2005.845141
– ident: 15406_CR19
  doi: 10.1016/j.infsof.2015.02.005
– ident: 15406_CR9
  doi: 10.1006/JCSS.2002.1882
– volume: 36
  start-page: 451
  issue: 2
  year: 2003
  ident: 15406_CR21
  publication-title: Pattern Recognit.
  doi: 10.1016/S0031-3203(02)00060-2
– volume: 55
  start-page: 1371
  issue: 4
  year: 2021
  ident: 15406_CR29
  publication-title: Qual. Quant.
  doi: 10.1007/s11135-020-01061-y
– ident: 15406_CR31
  doi: 10.1109/ICSE.2019.00036
– ident: 15406_CR8
– volume: 6
  start-page: 86
  issue: 1
  year: 2002
  ident: 15406_CR23
  publication-title: IEEE Internet Comput.
  doi: 10.1109/4236.989006
– volume: 45
  start-page: 362
  issue: 3
  year: 1983
  ident: 15406_CR37
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/j.2517-6161.1983.tb01262.x
– volume: 19
  start-page: 549
  issue: 6
  year: 2009
  ident: 15406_CR5
  publication-title: Inf. Syst. J.
  doi: 10.1111/j.1365-2575.2009.00329.x
– volume: 36
  start-page: 3336
  issue: 2
  year: 2009
  ident: 15406_CR27
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2008.01.039
– ident: 15406_CR30
  doi: 10.1214/12-AOS1049
– volume: 28
  start-page: 100
  issue: 1
  year: 1979
  ident: 15406_CR15
  publication-title: Appl. Stat.
  doi: 10.2307/2346830
– ident: 15406_CR6
  doi: 10.1007/978-1-4302-3534-7_4
– ident: 15406_CR34
  doi: 10.1109/TKDE.2016.2562627
– ident: 15406_CR38
  doi: 10.1002/9780470382776
SSID ssj0016524
Score 2.343518
Snippet Context The recent research trend has highlighted that multiple stakeholders are involved during requirement gathering in agile software development. Hence,...
ContextThe recent research trend has highlighted that multiple stakeholders are involved during requirement gathering in agile software development. Hence,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 46695
SubjectTerms Algorithms
Clustering
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Management methods
Multimedia Information Systems
Optimization techniques
Parameter identification
Programming languages
Redundancy
Software development
Special Purpose and Application-Based Systems
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB5qe9GDj6pYrZKDNw3ubjb7OIiotBTBUsRCb0uSTavYl33Qv-9km-2qoLeFXXL4spnvSzLzDcBlEGnFpIhpyGKf-toNaBwpTUMlQ0NgKJHMgf5zO2h1_ace75WgndfCmLTKPCZmgTqdKHNGfoMbA470iL_Y3fSTmq5R5nY1b6EhbGuF9DazGNuCimecscpQeWi0Oy-be4WA2za3kUORK11bRrMupnNNqQpyGEVZgfvs1U-qKvTnryvTjIma-7BrJSS5X8_5AZT0uAp7eXsGYldrFXa-eQ0eQtJZe7sSKdQHBjwywWAxslWYZGPlSt7HRAwwVJA5BuiVmGmSFnlFxKTJD4gaLo2_gnkUwwGitHgbHUG32Xh9bFHbXYEqL3QWVArjhej2Y-1JlFFcmkZVkkVSOSnzBOd9oZlj7OBDHSPph8qPNO_7qLAUioiIHUN5PBnrEyBBlEoWK9dhUvqxUtLru06Uego_ZZzxGlzlQCbTtYlGUtglG9gThD3JYE9WNajnWCd2Qc2TYvprcJ3jX7z-e7TT_0c7g20vm3KToFKH8mK21OcoMxbywv47X3kZz0I
  priority: 102
  providerName: ProQuest
Title Product backlog optimization technique in agile software development using clustering algorithm
URI https://link.springer.com/article/10.1007/s11042-023-15406-w
https://www.proquest.com/docview/2895066425
Volume 82
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: ADMLS
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-7721
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH5RuOjBH6gRRdKDN22yrevWHdHwIxoJMZLgaVlLQSIMAyP8-76OjanRg6c1WdPD2-v7vq7vfQ_g2hNaMRkF1GeBS11tezQQSlNfSd8AGFIk80P_qet1-u7DgA-yorBlnu2eX0mmkboodrNNKQliDEXYx3PwehfK3Mh5oRf3ncb27sDjWStbYVHEQzsrlfl9je9wVHDMH9eiKdq0juAgo4mksfmux7Cj4woc5i0YSLYjK7D_RU_wBMLeRr-VyEi9Y1AjcwwIs6zSkmzlWskkJtEYwwFZYhBeRwtNhkXuEDGp8GOipiujoWCG0XQ8X0ySt9kp9FvNl_sOzTooUOX4VkJlZPQO7VGgHYlUiUvTjEoyIZU1ZE7E-SjSzDKS774OENh95QrNRy6yKIVEQbAzKMXzWJ8D8cRQskDZFpPSDZSSzsi2xNBROJVxxqtwkxsy_NgIZYSFJLIxe4hmD1Ozh-sq1HJbh9mmWYZ49uPIgDCKVOE2t3_x-u_VLv43_RL2nNQFTFJKDUrJYqWvkFoksg67otWuQ7nRfn1s4vOu2e0911P_-gTezMoe
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xHIADO6KsPsAJLJI4znJAiFVlqxACiZuxHbcgSgu0qOLn-DbGqUMACW7cIiXyYTyZ98aeeQOwFiVGMyVTGrM0pKHxI5om2tBYq9gCGFIke6B_Xouq1-HJDb8ZgPeiF8aWVRYxMQ_UWVvbM_ItTAw4wiO62M7TM7VTo-ztajFCQ7rRCtl2LjHmGjtOzVsPU7jO9vEB7vd6EBwdXu1XqZsyQHUQe12qpNUE9OupCRTSCa7swCbFEqW9jAWS87o0zLOy6LFJEfxiHSaG10NkGhrBNGG47iAMhyxMMfkb3jusXVx-3mNE3I3VTTyK2Oy7tp1-855vW2MQMynSGMzre9-hseS7P65oc-Q7moRxR1nJbt_HpmDAtKZhohgHQVx0mIaxL9qGMyAu-lqyREn9gAGWtDE4PbquT_IpHUvuW0Q2MDSRDgJCT74YkpV1TMSW5TeIbr5aPQf7KJsN3JXu3eMsXP-LnedgqNVumXkgUZIplmrfY0qFqdYqqPtekgUaP2Wc8QpsFIYUT33RDlHKM1uzCzS7yM0uehVYKmwt3A_cEaW7VWCzsH_5-vfVFv5ebRVGqlfnZ-LsuHa6CKNBvv22OGYJhrovr2YZKU5XrTg_InD73677ASuPChU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RkKpyoHQLYikPH-DUWiRxnMcBVRUQoAtoD6zEzY0dZ1sBWWAXrfrX-HWdyYMAUrlxi5RoDuPJfJ_tmW8AtoLIGqHTmIci9rlv3YDHkbE8NDokAEOKRAf6p2fB0cD_eSEvZuCh6YWhssomJ5aJOhsZOiPfwY2BRHjEENvJ67KI_n7y_eaW0wQpumltxmlUIdKzf6e4fRvvHu_jWm97XnJwvnfE6wkD3HihM-E6JT1AN4-tp5FKSE3DmrSItHEy4aVS5qkVDkmihzZG4AuNH1mZ-8gyDAJpJNDuO5gLScWdutSTw8cbjEDWA3UjhyMqu3XDTtW251JTDKIlRwKDO_rpc1Bsme6Ly9kS85JFWKjJKvtRRdcnmLFFBz42gyBYnRc6MP9E1fAzqH6lIst0ai4xtbIRpqXrut-TPYrGsj8FS4eYlNgYoWCa3lmWtRVMjAryh8xc3ZOSAz2mV0Ncg8nv6yUYvImXl2G2GBV2BVgQZVrExnWE1n5sjPZy14kyz-CnQgrZha-NI9VNJdehWmFmcrtCt6vS7WrahbXG16r-dceqDbQufGv8377-v7XV161twnsMWHVyfNb7Ah-8cvWpKmYNZid393Yduc1Eb5RBxODXW0ftP9UmB68
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Product+backlog+optimization+technique+in+agile+software+development+using+clustering+algorithm&rft.jtitle=Multimedia+tools+and+applications&rft.au=Sharma%2C+Sarika&rft.au=Kumar%2C+Deepak&rft.date=2023-12-01&rft.pub=Springer+US&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=82&rft.issue=30&rft.spage=46695&rft.epage=46715&rft_id=info:doi/10.1007%2Fs11042-023-15406-w&rft.externalDocID=10_1007_s11042_023_15406_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon