Product backlog optimization technique in agile software development using clustering algorithm
Context The recent research trend has highlighted that multiple stakeholders are involved during requirement gathering in agile software development. Hence, leading to an increased number of duplicate user stories in agile product backlog during requirement gathering. Objective The objective of this...
        Saved in:
      
    
          | Published in | Multimedia tools and applications Vol. 82; no. 30; pp. 46695 - 46715 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          Springer US
    
        01.12.2023
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1380-7501 1573-7721  | 
| DOI | 10.1007/s11042-023-15406-w | 
Cover
| Abstract | Context
The recent research trend has highlighted that multiple stakeholders are involved during requirement gathering in agile software development. Hence, leading to an increased number of duplicate user stories in agile product backlog during requirement gathering.
Objective
The objective of this paper is to evaluate the existing techniques employed in identifying and eliminating the duplicate user stories from agile product backlog and to overcome the existing gaps with the help of a newly proposed clustering algorithm.
Method
An agile user story is expressed as a function of input and output parameters. That said multiple user stories having similar set of input parameters are most likely to be duplicate causing a redundancy. The newly proposed algorithm is used for clustering user stories having similar set of input parameters through various iterations and then removing the identified duplicate user stories from agile product backlog. This paper also introduces the concept of mass clustering which means clustering a number of user stories in single run.
Results
Experimental results prove the proposed model is capable of handling small and large releases ranging between 100 to 1000 user stories with similar efficiency. The proposed clustering algorithm outperformed the clustering algorithms and resulted in 37% decrease in agile product backlog by eliminating duplicate user stories causing redundancy. The experimental results are obtained from the logs of the MATLAB tool. However, the provided algorithm is generic in nature and can be implemented using R, Python or SAS programming tools. The provided algorithms employs proven matrix operations.
Conclusion
The proposed clustering algorithm overcomes the limitation of existing user story management methods and clearly out performs when compared with other clustering algorithms. Finally, this paper gives recommendations about the usage of the provided clustering algorithm during agile release planning for eliminating duplicate user stories from agile product backlog. | 
    
|---|---|
| AbstractList | ContextThe recent research trend has highlighted that multiple stakeholders are involved during requirement gathering in agile software development. Hence, leading to an increased number of duplicate user stories in agile product backlog during requirement gathering.ObjectiveThe objective of this paper is to evaluate the existing techniques employed in identifying and eliminating the duplicate user stories from agile product backlog and to overcome the existing gaps with the help of a newly proposed clustering algorithm.MethodAn agile user story is expressed as a function of input and output parameters. That said multiple user stories having similar set of input parameters are most likely to be duplicate causing a redundancy. The newly proposed algorithm is used for clustering user stories having similar set of input parameters through various iterations and then removing the identified duplicate user stories from agile product backlog. This paper also introduces the concept of mass clustering which means clustering a number of user stories in single run.ResultsExperimental results prove the proposed model is capable of handling small and large releases ranging between 100 to 1000 user stories with similar efficiency. The proposed clustering algorithm outperformed the clustering algorithms and resulted in 37% decrease in agile product backlog by eliminating duplicate user stories causing redundancy. The experimental results are obtained from the logs of the MATLAB tool. However, the provided algorithm is generic in nature and can be implemented using R, Python or SAS programming tools. The provided algorithms employs proven matrix operations.ConclusionThe proposed clustering algorithm overcomes the limitation of existing user story management methods and clearly out performs when compared with other clustering algorithms. Finally, this paper gives recommendations about the usage of the provided clustering algorithm during agile release planning for eliminating duplicate user stories from agile product backlog. Context The recent research trend has highlighted that multiple stakeholders are involved during requirement gathering in agile software development. Hence, leading to an increased number of duplicate user stories in agile product backlog during requirement gathering. Objective The objective of this paper is to evaluate the existing techniques employed in identifying and eliminating the duplicate user stories from agile product backlog and to overcome the existing gaps with the help of a newly proposed clustering algorithm. Method An agile user story is expressed as a function of input and output parameters. That said multiple user stories having similar set of input parameters are most likely to be duplicate causing a redundancy. The newly proposed algorithm is used for clustering user stories having similar set of input parameters through various iterations and then removing the identified duplicate user stories from agile product backlog. This paper also introduces the concept of mass clustering which means clustering a number of user stories in single run. Results Experimental results prove the proposed model is capable of handling small and large releases ranging between 100 to 1000 user stories with similar efficiency. The proposed clustering algorithm outperformed the clustering algorithms and resulted in 37% decrease in agile product backlog by eliminating duplicate user stories causing redundancy. The experimental results are obtained from the logs of the MATLAB tool. However, the provided algorithm is generic in nature and can be implemented using R, Python or SAS programming tools. The provided algorithms employs proven matrix operations. Conclusion The proposed clustering algorithm overcomes the limitation of existing user story management methods and clearly out performs when compared with other clustering algorithms. Finally, this paper gives recommendations about the usage of the provided clustering algorithm during agile release planning for eliminating duplicate user stories from agile product backlog.  | 
    
| Author | Kumar, Deepak Sharma, Sarika  | 
    
| Author_xml | – sequence: 1 givenname: Sarika orcidid: 0000-0001-8209-9312 surname: Sharma fullname: Sharma, Sarika email: sarika.s17@gmail.com organization: Amity Institute of Information Technology, Amity University – sequence: 2 givenname: Deepak orcidid: 0000-0003-2409-9706 surname: Kumar fullname: Kumar, Deepak organization: Amity Institute of Information Technology, Amity University  | 
    
| BookMark | eNp9kM1OwzAQhC0EEm3hBThZ4hxY23GcHFHFn1QJDnC2HNdJXRI72A4VPD0pReLGaecwM7v7zdGx884gdEHgigCI60gI5DQDyjLCcyiy3RGaES5YJgQlx5NmJWSCAzlF8xi3AKTgNJ8h-Rz8etQJ10q_db7Ffki2t18qWe9wMnrj7PtosHVYtbYzOPom7VQweG0-TOeH3riEx2hdi3U3xmTCXqqu9cGmTX-GThrVRXP-Oxfo9e72ZfmQrZ7uH5c3q0xTASmrFUzHkqYytOY557WgJdSsrDWsGVWcN8owoLQCYaqCMKHz0vAm5yTXFZCSLdDloXcIfro3Jrn1Y3DTSknLikNR5JRPLnpw6eBjDKaRQ7C9Cp-SgNyDlAeQcgIpf0DK3RRih1Ac9r-Z8Ff9T-obTtB5Vw | 
    
| Cites_doi | 10.1016/j.patrec.2018.12.007 10.1007/978-3-319-69926-4_22 10.1016/j.jss.2017.11.045 10.1111/j.1467-9892.1987.tb00435.x 10.1155/2016/4321928 10.1007/s11334-016-0271-0 10.5120/ijca2016912443 10.14569/IJACSA.2013.040406 10.1007/978-3-540-78773-0_34 10.1109/AICAI.2019.8701252 10.1007/978-1-4899-7687-1_798 10.1109/JAS.2020.1003420 10.1109/WETSoM.2015.15 10.1109/MySEC.2015.7475219 10.1145/1137856.1137879 10.1145/3519935.3519946 10.1109/ICGSE.2012.41 10.1111/1467-9868.00338 10.1007/978-3-662-48577-4_1 10.1007/978-981-13-5934-7_20 10.1109/DSN-W.2016.27 10.1109/ICSE.2003.1201204 10.1109/TNN.2005.845141 10.1016/j.infsof.2015.02.005 10.1006/JCSS.2002.1882 10.1016/S0031-3203(02)00060-2 10.1007/s11135-020-01061-y 10.1109/ICSE.2019.00036 10.1109/4236.989006 10.1111/j.2517-6161.1983.tb01262.x 10.1111/j.1365-2575.2009.00329.x 10.1016/j.eswa.2008.01.039 10.1214/12-AOS1049 10.2307/2346830 10.1007/978-1-4302-3534-7_4 10.1109/TKDE.2016.2562627 10.1002/9780470382776  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | 
    
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | 
    
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U  | 
    
| DOI | 10.1007/s11042-023-15406-w | 
    
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Local Electronic Collection Information ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library (Proquest) Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic  | 
    
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni)  | 
    
| DatabaseTitleList | ABI/INFORM Global (Corporate) | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Computer Science  | 
    
| EISSN | 1573-7721 | 
    
| EndPage | 46715 | 
    
| ExternalDocumentID | 10_1007_s11042_023_15406_w | 
    
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQUKI PRINS Q9U  | 
    
| ID | FETCH-LOGICAL-c270t-ba05731f9e2b5455b7280b38bc0d32a55fae3022907e96137c48e5f4514c90183 | 
    
| IEDL.DBID | U2A | 
    
| ISSN | 1380-7501 | 
    
| IngestDate | Fri Jul 25 23:43:24 EDT 2025 Wed Oct 01 04:51:30 EDT 2025 Fri Feb 21 02:40:59 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 30 | 
    
| Keywords | Agile methodology Parameters Clustering Algorithm Software engineering  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c270t-ba05731f9e2b5455b7280b38bc0d32a55fae3022907e96137c48e5f4514c90183 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0001-8209-9312 0000-0003-2409-9706  | 
    
| PQID | 2895066425 | 
    
| PQPubID | 54626 | 
    
| PageCount | 21 | 
    
| ParticipantIDs | proquest_journals_2895066425 crossref_primary_10_1007_s11042_023_15406_w springer_journals_10_1007_s11042_023_15406_w  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20231200 2023-12-00 20231201  | 
    
| PublicationDateYYYYMMDD | 2023-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2023 text: 20231200  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York – name: Dordrecht  | 
    
| PublicationSubtitle | An International Journal | 
    
| PublicationTitle | Multimedia tools and applications | 
    
| PublicationTitleAbbrev | Multimed Tools Appl | 
    
| PublicationYear | 2023 | 
    
| Publisher | Springer US Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer US – name: Springer Nature B.V  | 
    
| References | Kupiainen E, Mäntylä MV, Itkonen J (2015) Using metrics in Agile and Lean software development - A systematic literature review of industrial studies, Information and Software Technology.doi: https://doi.org/10.1016/j.infsof.2015.02.005 MaurerFMartelSExtreme programming. Rapid development for Web-based applicationsIEEE Internet Comput.200261869010.1109/4236.989006 Abrahamsson P, Warsta J, Siponen MT, Ronkainen J (2003) New directions on agile methods: a comparative analysis, in 25th International Conference on Software Engineering, 2003. Proceedings, pp. 244–254. doi: https://doi.org/10.1109/ICSE.2003.1201204 Duraisamy G, Atan R (2013) Requirement traceability matrix through documentation for SCRUM methodology, J Theor Appl Inf Technol KosubSA note on the triangle inequality for the Jaccard distancePattern Recognit. Lett.2019120363810.1016/j.patrec.2018.12.007 Sharma S, Kumar D (2019) On the Development of Feature-Based Sprint in AGILE, in Ambient Communications and Computer Systems. Advances in Intelligent Systems and Computing, Volume 904., T. M. Hu YC., Tiwari S., Mishra K., Ed. Springer, Singapore, pp. 223–235. doi: https://doi.org/10.1007/978-981-13-5934-7_20 Frahling G, Sohler C (2006) A fast k-means implementation using coresets, in Proceedings of the twenty-second annual symposium on Computational geometry, pp. 135–143. doi: 10.1145/1137856.1137879 Alsalemi AM, Yeoh ET (2016) A survey on product backlog change management and requirement traceability in agile (Scrum), in 2015 9th Malaysian Software Engineering Conference, MySEC 2015. doi: https://doi.org/10.1109/MySEC.2015.7475219 HartiganJAWongMAAlgorithm AS 136: A K-Means Clustering AlgorithmAppl. Stat.197928110010.2307/23468300447.62062 HolmesCCAdamsNMA probabilistic nearest neighbour method for statistical pattern recognitionJ. R. Stat. Soc. Ser. B Statistical Methodol.2002642295306190470610.1111/1467-9868.003381059.62065 WongMALaneTA K th Nearest Neighbour Clustering ProcedureJ. R. Stat. Soc. Ser. B198345336236873764510.1111/j.2517-6161.1983.tb01262.x0535.62055 Kayes I, Sarker M, Chakareski J (2016) Product backlog rating: a case study on measuring test quality in scrum, Innov Syst Softw Eng, doi: https://doi.org/10.1007/s11334-016-0271-0 Bolloju N, Gupta A, Alter S, Gupta S, Jain S (2017) Improving scrum user stories and product backlog using work system snapshots, in AMCIS 2017 - America’s Conference on Information Systems: A Tradition of Innovation BergerHBeynon-DaviesPThe utility of rapid application development in large-scale, complex projectsInf. Syst. J.200919654957010.1111/j.1365-2575.2009.00329.x RawatKSSoodSKEmerging trends and global scope of big data analytics: a scientometric analysisQual. Quant.20215541371139610.1007/s11135-020-01061-y Ghosh S, Kumar S (2013) Comparative Analysis of K-Means and Fuzzy C-Means Algorithms, Int J Adv Comput Sci Appl, vol. 4, no. 4, doi: https://doi.org/10.14569/IJACSA.2013.040406 Noll J, Razzak MA, Bass JM, Beecham S (2017) A study of the scrum master’s role, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 10611 LNCS, pp. 307–323. 10.1007/978-3-319-69926-4_22 Boerman MP, Lubsen Z, Tamburri DA, Visser J (2015) Measuring and monitoring agile development status, in International Workshop on Emerging Trends in Software Metrics, WETSoM. doi: https://doi.org/10.1109/WETSoM.2015.15 LikasAVlassisNVerbeekJJThe global k-means clustering algorithmPattern Recognit.200336245146110.1016/S0031-3203(02)00060-2 XuRWunschIIDSurvey of Clustering AlgorithmsIEEE Trans. Neural Networks200516364567810.1109/TNN.2005.845141 Paasivaara M, Heikkilä VT, Lassenius C (2012) Experiences in scaling the Product Owner role in large-scale globally distributed Scrum, in Proceedings - 2012 IEEE 7th International Conference on Global Software Engineering, ICGSE 2012, doi: https://doi.org/10.1109/ICGSE.2012.41 TirumalaSSAliSBabuAA Hybrid Agile model using SCRUM and Feature Driven DevelopmentInt. J. Comput. Appl.201615651510.5120/ijca2016912443 AhmadMODennehyDConboyKOivoMKanban in software engineering: A systematic mapping studyJ Syst Softw20181379611310.1016/j.jss.2017.11.045 Barbosa R, Silva AEA, Moraes R (2016) Use of Similarity Measure to Suggest the Existence of Duplicate User Stories in the Srum Process, in Proceedings - 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, DSN-W 2016. doi: https://doi.org/10.1109/DSN-W.2016.27 YakowitzSNearest-Neighbour Methods for Time Series AnalysisJ Time Ser Anal19878223524788614110.1111/j.1467-9892.1987.tb00435.x0615.62115 Czumaj A, Sohler C (2017) Sublinear Clustering in Encyclopedia of Machine Learning and Data Mining, Boston, MA: Springer US, pp. 1205–1209. doi: https://doi.org/10.1007/978-1-4899-7687-1_798 ParkH-SJunC-HA simple and fast algorithm for K-medoids clusteringExpert Syst. Appl.20093623336334110.1016/j.eswa.2008.01.039 Panigrahy R (2008) An Improved Algorithm Finding Nearest Neighbor Using Kd-trees, in LATIN: Theoretical Informatics, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 387–398. doi: https://doi.org/10.1007/978-3-540-78773-0_34 Cohen-Addad V, Larsen KG, Saulpic D, Schwiegelshohn C (2022) Towards optimal lower bounds for k-median and k-means coresets, in Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing, pp. 1038–1051. doi: https://doi.org/10.1145/3519935.3519946 Sedano T, Ralph P, Peraire C (2019) The Product Backlog, in 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE), pp. 200–211. doi: https://doi.org/10.1109/ICSE.2019.00036 Samworth RJ (2012) Optimal weighted nearest neighbour classifiers. Ann. Stat. 40(5). https://doi.org/10.1214/12-AOS1049 Song G, Rochas J, El Beze LE, Huet F, Magoulès F (2016) K Nearest Neighbour Joins for Big Data on MapReduce: A Theoretical and Experimental Analysis, IEEE Trans Knowl Data Eng, doi: https://doi.org/10.1109/TKDE.2016.2562627 Xu R, Wunsch DC (2008) Clustering. doi: https://doi.org/10.1002/9780470382776 Blankenship J, Bussa M, Millett S, Blankenship J, Bussa M, Millett S (2011) Sprint 0: Generating the Product Backlog,” in Pro Agile .NET Development with Scrum, doi: https://doi.org/10.1007/978-1-4302-3534-7_4 WangCPedryczWLiZZhouMResidual-driven Fuzzy C-Means Clustering for Image SegmentationIEEE/CAA J. Autom. Sin.202184876889427209910.1109/JAS.2020.1003420 Radigan D (2018) The product backlog: your ultimate to-do list | Atlassian, Atlassian Agile Coach Charikar M, Guha S, Tardos É, Shmoys DB (2002) A constant-factor approximation algorithm for the k-median problem. J Comput Syst Sci. 65(1):129–149. https://doi.org/10.1006/JCSS.2002.1882 LiJSongSZhangYZhouZRobust K-Median and K-Means Clustering Algorithms for Incomplete DataMath. Probl. Eng.2016201618358423710.1155/2016/43219281400.62133 Masulli F,Rovetta S (2015) Clustering high-dimensional data, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). doi: https://doi.org/10.1007/978-3-662-48577-4_1 Sharma S, Kumar D (2019) Agile Release Planning Using Natural Language Processing Algorithm, in 2019 Amity International Conference on Artificial Intelligence (AICAI), pp. 934–938. doi: https://doi.org/10.1109/AICAI.2019.8701252. 15406_CR19 MA Wong (15406_CR37) 1983; 45 15406_CR9 15406_CR8 R Xu (15406_CR39) 2005; 16 S Yakowitz (15406_CR40) 1987; 8 H-S Park (15406_CR27) 2009; 36 H Berger (15406_CR5) 2009; 19 F Maurer (15406_CR23) 2002; 6 MO Ahmad (15406_CR2) 2018; 137 15406_CR22 15406_CR25 15406_CR24 15406_CR26 15406_CR28 C Wang (15406_CR36) 2021; 8 CC Holmes (15406_CR16) 2002; 64 J Li (15406_CR20) 2016; 2016 SS Tirumala (15406_CR35) 2016; 156 15406_CR1 15406_CR3 S Kosub (15406_CR18) 2019; 120 15406_CR30 15406_CR4 KS Rawat (15406_CR29) 2021; 55 15406_CR7 15406_CR10 15406_CR32 15406_CR6 15406_CR31 15406_CR12 15406_CR34 15406_CR11 15406_CR33 15406_CR14 15406_CR13 JA Hartigan (15406_CR15) 1979; 28 15406_CR38 A Likas (15406_CR21) 2003; 36 15406_CR17  | 
    
| References_xml | – reference: MaurerFMartelSExtreme programming. Rapid development for Web-based applicationsIEEE Internet Comput.200261869010.1109/4236.989006 – reference: Paasivaara M, Heikkilä VT, Lassenius C (2012) Experiences in scaling the Product Owner role in large-scale globally distributed Scrum, in Proceedings - 2012 IEEE 7th International Conference on Global Software Engineering, ICGSE 2012, doi: https://doi.org/10.1109/ICGSE.2012.41 – reference: YakowitzSNearest-Neighbour Methods for Time Series AnalysisJ Time Ser Anal19878223524788614110.1111/j.1467-9892.1987.tb00435.x0615.62115 – reference: Sedano T, Ralph P, Peraire C (2019) The Product Backlog, in 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE), pp. 200–211. doi: https://doi.org/10.1109/ICSE.2019.00036 – reference: Alsalemi AM, Yeoh ET (2016) A survey on product backlog change management and requirement traceability in agile (Scrum), in 2015 9th Malaysian Software Engineering Conference, MySEC 2015. doi: https://doi.org/10.1109/MySEC.2015.7475219 – reference: Kupiainen E, Mäntylä MV, Itkonen J (2015) Using metrics in Agile and Lean software development - A systematic literature review of industrial studies, Information and Software Technology.doi: https://doi.org/10.1016/j.infsof.2015.02.005 – reference: Panigrahy R (2008) An Improved Algorithm Finding Nearest Neighbor Using Kd-trees, in LATIN: Theoretical Informatics, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 387–398. doi: https://doi.org/10.1007/978-3-540-78773-0_34 – reference: Frahling G, Sohler C (2006) A fast k-means implementation using coresets, in Proceedings of the twenty-second annual symposium on Computational geometry, pp. 135–143. doi: 10.1145/1137856.1137879 – reference: TirumalaSSAliSBabuAA Hybrid Agile model using SCRUM and Feature Driven DevelopmentInt. J. Comput. Appl.201615651510.5120/ijca2016912443 – reference: Samworth RJ (2012) Optimal weighted nearest neighbour classifiers. Ann. Stat. 40(5). https://doi.org/10.1214/12-AOS1049 – reference: Cohen-Addad V, Larsen KG, Saulpic D, Schwiegelshohn C (2022) Towards optimal lower bounds for k-median and k-means coresets, in Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing, pp. 1038–1051. doi: https://doi.org/10.1145/3519935.3519946 – reference: XuRWunschIIDSurvey of Clustering AlgorithmsIEEE Trans. Neural Networks200516364567810.1109/TNN.2005.845141 – reference: Xu R, Wunsch DC (2008) Clustering. doi: https://doi.org/10.1002/9780470382776 – reference: Barbosa R, Silva AEA, Moraes R (2016) Use of Similarity Measure to Suggest the Existence of Duplicate User Stories in the Srum Process, in Proceedings - 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, DSN-W 2016. doi: https://doi.org/10.1109/DSN-W.2016.27 – reference: Bolloju N, Gupta A, Alter S, Gupta S, Jain S (2017) Improving scrum user stories and product backlog using work system snapshots, in AMCIS 2017 - America’s Conference on Information Systems: A Tradition of Innovation – reference: LikasAVlassisNVerbeekJJThe global k-means clustering algorithmPattern Recognit.200336245146110.1016/S0031-3203(02)00060-2 – reference: WangCPedryczWLiZZhouMResidual-driven Fuzzy C-Means Clustering for Image SegmentationIEEE/CAA J. Autom. Sin.202184876889427209910.1109/JAS.2020.1003420 – reference: Abrahamsson P, Warsta J, Siponen MT, Ronkainen J (2003) New directions on agile methods: a comparative analysis, in 25th International Conference on Software Engineering, 2003. Proceedings, pp. 244–254. doi: https://doi.org/10.1109/ICSE.2003.1201204 – reference: BergerHBeynon-DaviesPThe utility of rapid application development in large-scale, complex projectsInf. Syst. J.200919654957010.1111/j.1365-2575.2009.00329.x – reference: Czumaj A, Sohler C (2017) Sublinear Clustering in Encyclopedia of Machine Learning and Data Mining, Boston, MA: Springer US, pp. 1205–1209. doi: https://doi.org/10.1007/978-1-4899-7687-1_798 – reference: Boerman MP, Lubsen Z, Tamburri DA, Visser J (2015) Measuring and monitoring agile development status, in International Workshop on Emerging Trends in Software Metrics, WETSoM. doi: https://doi.org/10.1109/WETSoM.2015.15 – reference: Ghosh S, Kumar S (2013) Comparative Analysis of K-Means and Fuzzy C-Means Algorithms, Int J Adv Comput Sci Appl, vol. 4, no. 4, doi: https://doi.org/10.14569/IJACSA.2013.040406 – reference: Masulli F,Rovetta S (2015) Clustering high-dimensional data, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). doi: https://doi.org/10.1007/978-3-662-48577-4_1 – reference: Sharma S, Kumar D (2019) On the Development of Feature-Based Sprint in AGILE, in Ambient Communications and Computer Systems. Advances in Intelligent Systems and Computing, Volume 904., T. M. Hu YC., Tiwari S., Mishra K., Ed. Springer, Singapore, pp. 223–235. doi: https://doi.org/10.1007/978-981-13-5934-7_20 – reference: WongMALaneTA K th Nearest Neighbour Clustering ProcedureJ. R. Stat. Soc. Ser. B198345336236873764510.1111/j.2517-6161.1983.tb01262.x0535.62055 – reference: Sharma S, Kumar D (2019) Agile Release Planning Using Natural Language Processing Algorithm, in 2019 Amity International Conference on Artificial Intelligence (AICAI), pp. 934–938. doi: https://doi.org/10.1109/AICAI.2019.8701252. – reference: AhmadMODennehyDConboyKOivoMKanban in software engineering: A systematic mapping studyJ Syst Softw20181379611310.1016/j.jss.2017.11.045 – reference: HolmesCCAdamsNMA probabilistic nearest neighbour method for statistical pattern recognitionJ. R. Stat. Soc. Ser. B Statistical Methodol.2002642295306190470610.1111/1467-9868.003381059.62065 – reference: LiJSongSZhangYZhouZRobust K-Median and K-Means Clustering Algorithms for Incomplete DataMath. Probl. Eng.2016201618358423710.1155/2016/43219281400.62133 – reference: Charikar M, Guha S, Tardos É, Shmoys DB (2002) A constant-factor approximation algorithm for the k-median problem. J Comput Syst Sci. 65(1):129–149. https://doi.org/10.1006/JCSS.2002.1882 – reference: Duraisamy G, Atan R (2013) Requirement traceability matrix through documentation for SCRUM methodology, J Theor Appl Inf Technol – reference: KosubSA note on the triangle inequality for the Jaccard distancePattern Recognit. Lett.2019120363810.1016/j.patrec.2018.12.007 – reference: Noll J, Razzak MA, Bass JM, Beecham S (2017) A study of the scrum master’s role, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 10611 LNCS, pp. 307–323. 10.1007/978-3-319-69926-4_22 – reference: RawatKSSoodSKEmerging trends and global scope of big data analytics: a scientometric analysisQual. Quant.20215541371139610.1007/s11135-020-01061-y – reference: Radigan D (2018) The product backlog: your ultimate to-do list | Atlassian, Atlassian Agile Coach – reference: Kayes I, Sarker M, Chakareski J (2016) Product backlog rating: a case study on measuring test quality in scrum, Innov Syst Softw Eng, doi: https://doi.org/10.1007/s11334-016-0271-0 – reference: Song G, Rochas J, El Beze LE, Huet F, Magoulès F (2016) K Nearest Neighbour Joins for Big Data on MapReduce: A Theoretical and Experimental Analysis, IEEE Trans Knowl Data Eng, doi: https://doi.org/10.1109/TKDE.2016.2562627 – reference: ParkH-SJunC-HA simple and fast algorithm for K-medoids clusteringExpert Syst. Appl.20093623336334110.1016/j.eswa.2008.01.039 – reference: HartiganJAWongMAAlgorithm AS 136: A K-Means Clustering AlgorithmAppl. Stat.197928110010.2307/23468300447.62062 – reference: Blankenship J, Bussa M, Millett S, Blankenship J, Bussa M, Millett S (2011) Sprint 0: Generating the Product Backlog,” in Pro Agile .NET Development with Scrum, doi: https://doi.org/10.1007/978-1-4302-3534-7_4 – volume: 120 start-page: 36 year: 2019 ident: 15406_CR18 publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2018.12.007 – ident: 15406_CR24 doi: 10.1007/978-3-319-69926-4_22 – volume: 137 start-page: 96 year: 2018 ident: 15406_CR2 publication-title: J Syst Softw doi: 10.1016/j.jss.2017.11.045 – volume: 8 start-page: 235 issue: 2 year: 1987 ident: 15406_CR40 publication-title: J Time Ser Anal doi: 10.1111/j.1467-9892.1987.tb00435.x – volume: 2016 start-page: 1 year: 2016 ident: 15406_CR20 publication-title: Math. Probl. Eng. doi: 10.1155/2016/4321928 – ident: 15406_CR17 doi: 10.1007/s11334-016-0271-0 – volume: 156 start-page: 1 issue: 5 year: 2016 ident: 15406_CR35 publication-title: Int. J. Comput. Appl. doi: 10.5120/ijca2016912443 – ident: 15406_CR14 doi: 10.14569/IJACSA.2013.040406 – ident: 15406_CR26 doi: 10.1007/978-3-540-78773-0_34 – ident: 15406_CR33 doi: 10.1109/AICAI.2019.8701252 – ident: 15406_CR11 doi: 10.1007/978-1-4899-7687-1_798 – volume: 8 start-page: 876 issue: 4 year: 2021 ident: 15406_CR36 publication-title: IEEE/CAA J. Autom. Sin. doi: 10.1109/JAS.2020.1003420 – ident: 15406_CR28 – ident: 15406_CR7 doi: 10.1109/WETSoM.2015.15 – ident: 15406_CR3 doi: 10.1109/MySEC.2015.7475219 – ident: 15406_CR13 doi: 10.1145/1137856.1137879 – ident: 15406_CR10 doi: 10.1145/3519935.3519946 – ident: 15406_CR25 doi: 10.1109/ICGSE.2012.41 – volume: 64 start-page: 295 issue: 2 year: 2002 ident: 15406_CR16 publication-title: J. R. Stat. Soc. Ser. B Statistical Methodol. doi: 10.1111/1467-9868.00338 – ident: 15406_CR12 – ident: 15406_CR22 doi: 10.1007/978-3-662-48577-4_1 – ident: 15406_CR32 doi: 10.1007/978-981-13-5934-7_20 – ident: 15406_CR4 doi: 10.1109/DSN-W.2016.27 – ident: 15406_CR1 doi: 10.1109/ICSE.2003.1201204 – volume: 16 start-page: 645 issue: 3 year: 2005 ident: 15406_CR39 publication-title: IEEE Trans. Neural Networks doi: 10.1109/TNN.2005.845141 – ident: 15406_CR19 doi: 10.1016/j.infsof.2015.02.005 – ident: 15406_CR9 doi: 10.1006/JCSS.2002.1882 – volume: 36 start-page: 451 issue: 2 year: 2003 ident: 15406_CR21 publication-title: Pattern Recognit. doi: 10.1016/S0031-3203(02)00060-2 – volume: 55 start-page: 1371 issue: 4 year: 2021 ident: 15406_CR29 publication-title: Qual. Quant. doi: 10.1007/s11135-020-01061-y – ident: 15406_CR31 doi: 10.1109/ICSE.2019.00036 – ident: 15406_CR8 – volume: 6 start-page: 86 issue: 1 year: 2002 ident: 15406_CR23 publication-title: IEEE Internet Comput. doi: 10.1109/4236.989006 – volume: 45 start-page: 362 issue: 3 year: 1983 ident: 15406_CR37 publication-title: J. R. Stat. Soc. Ser. B doi: 10.1111/j.2517-6161.1983.tb01262.x – volume: 19 start-page: 549 issue: 6 year: 2009 ident: 15406_CR5 publication-title: Inf. Syst. J. doi: 10.1111/j.1365-2575.2009.00329.x – volume: 36 start-page: 3336 issue: 2 year: 2009 ident: 15406_CR27 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2008.01.039 – ident: 15406_CR30 doi: 10.1214/12-AOS1049 – volume: 28 start-page: 100 issue: 1 year: 1979 ident: 15406_CR15 publication-title: Appl. Stat. doi: 10.2307/2346830 – ident: 15406_CR6 doi: 10.1007/978-1-4302-3534-7_4 – ident: 15406_CR34 doi: 10.1109/TKDE.2016.2562627 – ident: 15406_CR38 doi: 10.1002/9780470382776  | 
    
| SSID | ssj0016524 | 
    
| Score | 2.343518 | 
    
| Snippet | Context
The recent research trend has highlighted that multiple stakeholders are involved during requirement gathering in agile software development. Hence,... ContextThe recent research trend has highlighted that multiple stakeholders are involved during requirement gathering in agile software development. Hence,...  | 
    
| SourceID | proquest crossref springer  | 
    
| SourceType | Aggregation Database Index Database Publisher  | 
    
| StartPage | 46695 | 
    
| SubjectTerms | Algorithms Clustering Computer Communication Networks Computer Science Data Structures and Information Theory Management methods Multimedia Information Systems Optimization techniques Parameter identification Programming languages Redundancy Software development Special Purpose and Application-Based Systems  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB5qe9GDj6pYrZKDNw3ubjb7OIiotBTBUsRCb0uSTavYl33Qv-9km-2qoLeFXXL4spnvSzLzDcBlEGnFpIhpyGKf-toNaBwpTUMlQ0NgKJHMgf5zO2h1_ace75WgndfCmLTKPCZmgTqdKHNGfoMbA470iL_Y3fSTmq5R5nY1b6EhbGuF9DazGNuCimecscpQeWi0Oy-be4WA2za3kUORK11bRrMupnNNqQpyGEVZgfvs1U-qKvTnryvTjIma-7BrJSS5X8_5AZT0uAp7eXsGYldrFXa-eQ0eQtJZe7sSKdQHBjwywWAxslWYZGPlSt7HRAwwVJA5BuiVmGmSFnlFxKTJD4gaLo2_gnkUwwGitHgbHUG32Xh9bFHbXYEqL3QWVArjhej2Y-1JlFFcmkZVkkVSOSnzBOd9oZlj7OBDHSPph8qPNO_7qLAUioiIHUN5PBnrEyBBlEoWK9dhUvqxUtLru06Uego_ZZzxGlzlQCbTtYlGUtglG9gThD3JYE9WNajnWCd2Qc2TYvprcJ3jX7z-e7TT_0c7g20vm3KToFKH8mK21OcoMxbywv47X3kZz0I priority: 102 providerName: ProQuest  | 
    
| Title | Product backlog optimization technique in agile software development using clustering algorithm | 
    
| URI | https://link.springer.com/article/10.1007/s11042-023-15406-w https://www.proquest.com/docview/2895066425  | 
    
| Volume | 82 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1573-7721 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: ADMLS dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-7721 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-7721 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH5RuOjBH6gRRdKDN22yrevWHdHwIxoJMZLgaVlLQSIMAyP8-76OjanRg6c1WdPD2-v7vq7vfQ_g2hNaMRkF1GeBS11tezQQSlNfSd8AGFIk80P_qet1-u7DgA-yorBlnu2eX0mmkboodrNNKQliDEXYx3PwehfK3Mh5oRf3ncb27sDjWStbYVHEQzsrlfl9je9wVHDMH9eiKdq0juAgo4mksfmux7Cj4woc5i0YSLYjK7D_RU_wBMLeRr-VyEi9Y1AjcwwIs6zSkmzlWskkJtEYwwFZYhBeRwtNhkXuEDGp8GOipiujoWCG0XQ8X0ySt9kp9FvNl_sOzTooUOX4VkJlZPQO7VGgHYlUiUvTjEoyIZU1ZE7E-SjSzDKS774OENh95QrNRy6yKIVEQbAzKMXzWJ8D8cRQskDZFpPSDZSSzsi2xNBROJVxxqtwkxsy_NgIZYSFJLIxe4hmD1Ozh-sq1HJbh9mmWYZ49uPIgDCKVOE2t3_x-u_VLv43_RL2nNQFTFJKDUrJYqWvkFoksg67otWuQ7nRfn1s4vOu2e0911P_-gTezMoe | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xHIADO6KsPsAJLJI4znJAiFVlqxACiZuxHbcgSgu0qOLn-DbGqUMACW7cIiXyYTyZ98aeeQOwFiVGMyVTGrM0pKHxI5om2tBYq9gCGFIke6B_Xouq1-HJDb8ZgPeiF8aWVRYxMQ_UWVvbM_ItTAw4wiO62M7TM7VTo-ztajFCQ7rRCtl2LjHmGjtOzVsPU7jO9vEB7vd6EBwdXu1XqZsyQHUQe12qpNUE9OupCRTSCa7swCbFEqW9jAWS87o0zLOy6LFJEfxiHSaG10NkGhrBNGG47iAMhyxMMfkb3jusXVx-3mNE3I3VTTyK2Oy7tp1-855vW2MQMynSGMzre9-hseS7P65oc-Q7moRxR1nJbt_HpmDAtKZhohgHQVx0mIaxL9qGMyAu-lqyREn9gAGWtDE4PbquT_IpHUvuW0Q2MDSRDgJCT74YkpV1TMSW5TeIbr5aPQf7KJsN3JXu3eMsXP-LnedgqNVumXkgUZIplmrfY0qFqdYqqPtekgUaP2Wc8QpsFIYUT33RDlHKM1uzCzS7yM0uehVYKmwt3A_cEaW7VWCzsH_5-vfVFv5ebRVGqlfnZ-LsuHa6CKNBvv22OGYJhrovr2YZKU5XrTg_InD73677ASuPChU | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RkKpyoHQLYikPH-DUWiRxnMcBVRUQoAtoD6zEzY0dZ1sBWWAXrfrX-HWdyYMAUrlxi5RoDuPJfJ_tmW8AtoLIGqHTmIci9rlv3YDHkbE8NDokAEOKRAf6p2fB0cD_eSEvZuCh6YWhssomJ5aJOhsZOiPfwY2BRHjEENvJ67KI_n7y_eaW0wQpumltxmlUIdKzf6e4fRvvHu_jWm97XnJwvnfE6wkD3HihM-E6JT1AN4-tp5FKSE3DmrSItHEy4aVS5qkVDkmihzZG4AuNH1mZ-8gyDAJpJNDuO5gLScWdutSTw8cbjEDWA3UjhyMqu3XDTtW251JTDKIlRwKDO_rpc1Bsme6Ly9kS85JFWKjJKvtRRdcnmLFFBz42gyBYnRc6MP9E1fAzqH6lIst0ai4xtbIRpqXrut-TPYrGsj8FS4eYlNgYoWCa3lmWtRVMjAryh8xc3ZOSAz2mV0Ncg8nv6yUYvImXl2G2GBV2BVgQZVrExnWE1n5sjPZy14kyz-CnQgrZha-NI9VNJdehWmFmcrtCt6vS7WrahbXG16r-dceqDbQufGv8377-v7XV161twnsMWHVyfNb7Ah-8cvWpKmYNZid393Yduc1Eb5RBxODXW0ftP9UmB68 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Product+backlog+optimization+technique+in+agile+software+development+using+clustering+algorithm&rft.jtitle=Multimedia+tools+and+applications&rft.au=Sharma%2C+Sarika&rft.au=Kumar%2C+Deepak&rft.date=2023-12-01&rft.pub=Springer+US&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=82&rft.issue=30&rft.spage=46695&rft.epage=46715&rft_id=info:doi/10.1007%2Fs11042-023-15406-w&rft.externalDocID=10_1007_s11042_023_15406_w | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |