Constraint-free discretized manifold-based path planner

Autonomous robotic path planning in partially known environments, such as warehouse robotics, deals with static and dynamic constraints. Static constraints include stationary obstacles, robotic and environmental limitations. Dynamic constraints include humans, robots and dis/appearance of anticipate...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of intelligent robotics and applications Online Vol. 7; no. 4; pp. 810 - 855
Main Authors Radhakrishnan, Sindhu, Gueaieb, Wail
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.12.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2366-5971
2366-598X
DOI10.1007/s41315-023-00300-3

Cover

Abstract Autonomous robotic path planning in partially known environments, such as warehouse robotics, deals with static and dynamic constraints. Static constraints include stationary obstacles, robotic and environmental limitations. Dynamic constraints include humans, robots and dis/appearance of anticipated dangers, such as spills. Path planning consists of two steps: First, a path between the source and target is generated. Second, path segments are evaluated for constraint violation. Sampling algorithms trade memory for maximal map representation. Optimization algorithms stagnate at non-optimal solutions. Alternatively, detailed grid-maps view terrain/structure as expensive memory costs. The open problem is thus to represent only constraint-free, navigable regions and generating anticipatory/reactive paths to combat new constraints. To solve this problem, a Constraint-Free Discretized Manifolds-based Path Planner (CFDMPP) is proposed in this paper. The algorithm’s first step focuses on maximizing map knowledge using manifolds. The second uses homology and homotopy classes to compute paths. The former constructs a representation of the navigable space as a manifold, which is free of apriori known constraints. Paths on this manifold are constraint-free and do not have to be explicitly evaluated for constraint violation. The latter handles new constraint knowledge that invalidate the original path. Using homology and homotopy, path classes can be recognized and avoided by tuning a design parameter, resulting in an alternative constraint-free path. Path classes on the discretized constraint-free manifold characterize numerical uniqueness of paths around constraints. This designation is what allows path class characterization, avoidance, and querying of a new path class (multiple classes with tuning), even when constraints are simply anticipatory.
AbstractList Autonomous robotic path planning in partially known environments, such as warehouse robotics, deals with static and dynamic constraints. Static constraints include stationary obstacles, robotic and environmental limitations. Dynamic constraints include humans, robots and dis/appearance of anticipated dangers, such as spills. Path planning consists of two steps: First, a path between the source and target is generated. Second, path segments are evaluated for constraint violation. Sampling algorithms trade memory for maximal map representation. Optimization algorithms stagnate at non-optimal solutions. Alternatively, detailed grid-maps view terrain/structure as expensive memory costs. The open problem is thus to represent only constraint-free, navigable regions and generating anticipatory/reactive paths to combat new constraints. To solve this problem, a Constraint-Free Discretized Manifolds-based Path Planner (CFDMPP) is proposed in this paper. The algorithm’s first step focuses on maximizing map knowledge using manifolds. The second uses homology and homotopy classes to compute paths. The former constructs a representation of the navigable space as a manifold, which is free of apriori known constraints. Paths on this manifold are constraint-free and do not have to be explicitly evaluated for constraint violation. The latter handles new constraint knowledge that invalidate the original path. Using homology and homotopy, path classes can be recognized and avoided by tuning a design parameter, resulting in an alternative constraint-free path. Path classes on the discretized constraint-free manifold characterize numerical uniqueness of paths around constraints. This designation is what allows path class characterization, avoidance, and querying of a new path class (multiple classes with tuning), even when constraints are simply anticipatory.
Author Gueaieb, Wail
Radhakrishnan, Sindhu
Author_xml – sequence: 1
  givenname: Sindhu
  surname: Radhakrishnan
  fullname: Radhakrishnan, Sindhu
  organization: School of Electrical Engineering and Computer Science, University of Ottawa
– sequence: 2
  givenname: Wail
  orcidid: 0000-0001-6490-4648
  surname: Gueaieb
  fullname: Gueaieb, Wail
  email: wgueaieb@uottawa.ca
  organization: School of Electrical Engineering and Computer Science, University of Ottawa
BookMark eNp9kEtLAzEQx4MoWGu_gKeC5-jksUn2KMUXFLwoeAvJZla3tNk12R700xtd0ZtzmRn4P-B3Qg5jH5GQMwYXDEBfZskEqyhwQQEEABUHZMaFUrSqzfPh763ZMVnkvAEADlIpqWZEr_qYx-S6ONI2IS5Dl5uEY_eBYblzsWv7baDe5fIObnxdDlsXI6ZTctS6bcbFz56Tp5vrx9UdXT_c3q-u1rThGkbqqzLcBJQIDRc8BJDAPPeNqqQX3LQKnTaayZYJGQworBvmddC1Zz4oMSfnU-6Q-rc95tFu-n2KpdLymnMwYCQvKj6pmtTnnLC1Q-p2Lr1bBvaLkZ0Y2cLIfjOyopjEZMpFHF8w_UX_4_oEHpJqCQ
Cites_doi 10.3390/en13102623
10.1109/ROBOT.1994.351061
10.1109/ICRA.2012.6224899
10.1155/2017/6716820
10.1007/s00158-011-0728-6
10.1007/s11370-017-0236-7
10.1109/IROS40897.2019.8967598
10.1016/j.mechmachtheory.2005.01.006
10.1177/0278364911406761
10.1177/0278364919855422
10.1016/j.robot.2015.02.007
10.1007/s00454-003-2949-y
10.1016/j.conengprac.2008.12.001
10.1177/0278364908098411
10.3390/app10124154
10.1007/s10514-017-9673-6
10.1016/0196-8858(90)90017-S
10.1007/s10514-017-9665-6
10.1109/CDC.1987.272738
10.1109/ICMA.2013.6617971
10.1016/j.cja.2020.09.036
10.1177/027836499101000604
10.1093/oso/9780198534471.001.0001
10.1017/S0263574712000331
10.1016/0921-8890(91)90041-I
10.1007/978-1-4419-9982-5
10.1049/ccs.2019.0025
10.1016/j.conengprac.2018.04.014
10.1137/0313012
10.1109/ROBOT.2000.844107
10.1177/027836498600500106
10.1109/LRA.2018.2853801
10.1109/IROS.2006.282100
10.1016/j.eswa.2015.02.033
10.4171/rmi/1039
10.1109/ROBOT.2002.1013429
10.1109/TRO.2017.2738664
10.1177/0278364902021009119
10.1109/TITS.2017.2673778
10.1177/027836498300200402
10.1137/S0036144598347059
10.1016/S0921-8890(99)00003-2
10.1080/00207179.2019.1603400
10.1007/s10514-015-9518-0
10.1007/s10846-012-9794-2
10.1016/j.apor.2012.06.002
10.1177/1729881416657751
10.1109/ACCESS.2014.2302442
10.1007/s10514-012-9304-1
10.1017/S0263574709990786
10.1023/A:1023926519261
10.7551/mitpress/9481.003.0007
10.15607/RSS.2012.VIII.019
10.1007/s11370-019-00281-y
10.1109/ROBOT.1988.12323
10.1109/ROBOT.2001.932822
10.1109/CCECE.2014.6901109
10.1109/ROBOT.2001.932892
10.1109/ACCESS.2020.3004229
10.1007/BF01840369
10.1109/IROS.2008.4651052
10.1007/978-1-4419-7400-6
10.1109/TRO.2015.2459373
10.1109/IROS.2007.4399557
10.2514/6.2008-7166.
10.1109/LRA.2020.3026638
10.1109/ROBOT.2003.1241685
10.1177/0278364913507324
10.1109/RTSI.2016.7740549
10.1109/TRO.2012.2222272
10.1109/TRO.2010.2049527
10.2507/IJSIMM15(3)6.347
10.1109/ISIC.1995.525112
10.1016/j.proeng.2014.12.098
10.1155/2018/5868915
10.1073/pnas.93.4.1591
10.1142/S0218127402004498
10.1007/s41315-022-00256-w
10.1007/s10846-016-0388-2
10.1609/aaai.v24i1.7735
10.1177/0278364913482016
10.1109/IROS.1992.587377
10.1115/1.4038980
10.1177/0278364907078094
10.1016/j.robot.2017.09.003
10.1109/TRO.2004.833790
10.1109/ROBOT.1993.291936
10.3390/s18020571
10.1177/02783640122067453
10.1109/ROBOT.1987.1087982
10.1109/TRO.2009.2022441
10.1080/00423114.2014.902537
10.1177/0278364910396389
10.1007/978-94-007-4620-6_11
10.1137/S0036144503429121
10.1115/DSCC2010-4263
10.1109/ROBOT.2000.844730
10.1016/j.rcim.2008.01.008
10.1073/pnas.95.15.8431
10.1109/TITS.2012.2198214
10.1109/IROS40897.2019.8967728
10.1109/ICCA.2014.6870943
10.1007/s10514-011-9266-8
10.1609/icaps.v21i1.13457
10.1007/s10846-015-0278-z
10.4271/2005-01-2692
10.1109/70.660866
10.1177/0278364918779555
10.1109/21.61211
10.1007/s10440-014-9973-1
10.1109/TRO.2013.2260679
10.1016/j.amc.2013.01.038
10.1007/s10846-011-9568-2
10.1007/978-1-84628-642-1
10.1177/0278364919846910
10.1007/s10846-021-01344-y
10.1017/S0263574702004071
10.1016/j.robot.2014.10.021
10.1007/s40295-019-00171-6
10.1109/LRA.2018.2795642
10.1007/s00170-016-9074-6
10.1109/RAMECH.2004.1438016
10.1109/LRA.2017.2712650
10.1109/TRO.2004.829459
10.1109/ROBIO.2013.6739744
10.1016/j.apm.2020.03.034
10.1109/ROBOT.1987.1088038
10.1177/0278364904045481
10.1016/j.robot.2014.07.002
10.1080/01691864.2021.1896381
10.1109/HRI.2016.7451763
10.3390/s20113265
10.1002/rob.20014
10.1109/TITS.2016.2604240
10.1109/ISCAS.2015.7169274
10.1109/ICRA.2016.7487118
10.1007/978-1-84882-891-9
10.1007/s12213-018-0107-0
10.1177/0278364908097581
10.1080/01691864.2016.1168317
10.1007/s00454-002-0760-9
10.1177/0278364911432324
10.1109/70.508439
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s41315-023-00300-3
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2366-598X
EndPage 855
ExternalDocumentID 10_1007_s41315_023_00300_3
GrantInformation_xml – fundername: Natural Sciences and Engineering Research Council of Canada (NSERC)
  grantid: RGPIN-2014-06512
GroupedDBID -EM
0R~
406
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AARHV
AASML
AATNV
AATVU
AAUYE
ABAKF
ABDZT
ABECU
ABFTV
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADKNI
ADKPE
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEJRE
AEMSY
AEOHA
AESKC
AEVLU
AEXYK
AFBBN
AFKRA
AFQWF
AGDGC
AGMZJ
AGQEE
AGRTI
AHKAY
AHSBF
AIAKS
AIGIU
AILAN
AITGF
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ARAPS
AXYYD
BENPR
BGLVJ
BGNMA
BSONS
CCPQU
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
FERAY
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
GJIRD
H13
HCIFZ
IKXTQ
IWAJR
J-C
JZLTJ
K7-
KOV
LLZTM
M4Y
M7S
NPVJJ
NQJWS
NU0
O9J
PT4
PTHSS
RLLFE
ROL
RSV
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UOJIU
UTJUX
UZXMN
VFIZW
W23
Z88
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c270t-b555528de4e0c232dd0401b2bc654b328f6ea78714f134d806e9c1b7d79b1bd63
IEDL.DBID 8FG
ISSN 2366-5971
IngestDate Sat Aug 23 14:44:06 EDT 2025
Wed Oct 01 00:37:07 EDT 2025
Fri Feb 21 02:42:35 EST 2025
IsPeerReviewed false
IsScholarly true
Issue 4
Keywords Manifolds
Path planning
Topology
Robotics
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-b555528de4e0c232dd0401b2bc654b328f6ea78714f134d806e9c1b7d79b1bd63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6490-4648
PQID 2922080842
PQPubID 6587181
PageCount 46
ParticipantIDs proquest_journals_2922080842
crossref_primary_10_1007_s41315_023_00300_3
springer_journals_10_1007_s41315_023_00300_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20231200
2023-12-00
20231201
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 20231200
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Atlanta
PublicationTitle International journal of intelligent robotics and applications Online
PublicationTitleAbbrev Int J Intell Robot Appl
PublicationYear 2023
Publisher Springer Nature Singapore
Springer Nature B.V
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
References NoreenIKhanARyuHDohNLHabibZOptimal path planning in cluttered environment using RRT-ABIntel. Serv. Robot.20171114152
Nicolaescu, L.I.: Lectures on the Geometry of Manifolds vol. 32, 2nd edn. Ringgold Inc, Portland (2008). http://search.proquest.com/docview/200118389
BłaszczykZCarrasquel-VeraJGTopological complexity and efficiency of motion planning algorithmsRevista Matemática Iberoamericana20183441679168438962451412.55002
Quinlan, S.: Real-time modification of collision-free paths. ProQuest Dissertations Publishing (1995)
RasekhipourYFadakarIKhajepourAAutonomous driving motion planning with obstacles prioritization using lexicographic optimizationControl. Eng. Pract.201877235246
NeedhamTVisual Complex Analysis1997Oxford University PressOxford University Press Inc., New York0893.30001
Olmstead Muhs, J.C., Yang, J.: A geodesics-based model for obstacle avoidance. In: 2005 Digital Human Modeling for Design and Engineering Symposium (2005). https://doi.org/10.4271/2005-01-2692
BevilacquaPFregoMFontanelliDPalopoliLReactive planning for assistive robotsIEEE Robotics and Automation Letters20183212761283
Kim, S., Sreenath, K., Bhattacharya, S., Kumar, V.: Trajectory Planning for Systems with Homotopy Class Constraints. In: Latest Advances in Robot Kinematics (ARK), Innsbruck, Austria, pp. 83–90 (2012)
Stopp, A., Riethmuller, T.: Fast reactive path planning by 2d and 3d multi-layer spatial grids for mobile robot navigation. In: Proceedings of Tenth International Symposium on Intelligent Control, pp. 545–550 (1995)
McFetridgeLIbrahimMYA new methodology of mobile robot navigation: The agoraphilic algorithmRobotics and Computer-Integrated Manufacturing2009253545551
WuK-LHoT-JHuangSALinK-HLinY-CLiuJ-SPath planning and replanning for mobile robot navigation on 3D terrain: An approach based on geodesicMath. Probl. Eng.2016201611235686911400.68234
CabelloSLiuYMantlerASnoeyinkJTesting homotopy for paths in the planeDiscrete & Computational Geometry2004311618120423181060.68127
Diankov, R., Kuffner, J.: Randomized statistical path planning. In: 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1–6 (2007). https://doi.org/10.1109/IROS.2007.4399557
Stein, E.M.: Complex Analysis. Princeton lectures in analysis ; 2. Princeton University Press, Princeton, N.J (2003)
Jaillet, L., Porta, J.: Asymptotically-optimal path planning on manifolds. Robotics Science and Systems VIII (2012)
JailletLCortésJSiméonTSampling-based path planning on configuration-space costmapsIEEE Trans. Rob.2010264635646
Ademovic, A., Lacevic, B.: Path planning for robotic manipulators using expanded bubbles of free c-space. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), vol. 2016-, pp. 77–82 (2016). https://doi.org/10.1109/ICRA.2016.7487118
BelkhoucheFBendjilaliBReactive path planning for 3-D autonomous vehiclesIEEE Trans. Control Syst. Technol.2012201249256
MediavillaMGonzálezJLFraileJCRamón PeránJReactive approach to on-line path planning for robot manipulators in dynamic environmentsRobotica2002204375384
BhattacharyaSLikhachevMKumarVTopological constraints in search-based robot path planningAuton. Robot.2012333273290
PerssonP-OStrangGA simple mesh generator in matlabSIAM Rev.2004462329345211445810.1137/S00361445034291211061.65134
SgorbissaAIntegrated robot planning, path following, and obstacle avoidance in two and three dimensions: Wheeled robots, underwater vehicles, and multicoptersThe International journal of robotics research2019387853876
LaValleSMKuffnerJJRandomized kinodynamic planningThe International Journal of Robotics Research2001205378400
TaoSTanJPath planning with obstacle avoidance based on normalized r -functionsJournal of Robotics20182018110
Simeon, T., Laumond, J.-P., Van Geem, C.V., Cortes, J.: Computer aided motion: Move3d within molog. In: Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164), vol. 2, pp. 1494–1499 (2001). https://doi.org/10.1109/ROBOT.2001.932822
LamirauxFBonnafousDLefebvreOReactive path deformation for nonholonomic mobile robotsIEEE Trans. Rob.2004206967977
BlochACamarinhaMColomboLJDynamic interpolation for obstacle avoidance on riemannian manifoldsInt. J. Control202194358860042177271480.93302
BerensonDSrinivasaSKuffnerJTask space regions: A framework for pose-constrained manipulation planningThe International Journal of Robotics Research2011301214351460
QureshiAHAyazYIntelligent bidirectional rapidly-exploring random trees for optimal motion planning in complex cluttered environmentsRobot. Auton. Syst.201568111
YoonYShinJKimHJParkYSastrySModel-predictive active steering and obstacle avoidance for autonomous ground vehiclesControl. Eng. Pract.2009177741750
LiuGTrinkleJYangYLuoSMotion planning of planar closed chains based on structural setsIEEE Access20208117203117217
Oriolo, G.: Motion Planning 3 Artifical Potential Fields. Professor Oriolo’s notes for his class in Artificial Intelligence and Robotics. (2020). http://diag.uniroma1.it/oriolo/amr/slides/MotionPlanning3_Slides.pdf
Eduardo De Cos-CholulaHUlises Diaz-ArangoGHernandez-MartinezLVazquez-LealHSarmiento-ReyesATeresa Sanz-PascualMLeobardo Herrera-MayACastaneda-SheissaRFPGA implementation of homotopic path planning method with automatic assignment of repulsion parameterEnergies (Basel)202013102623
Jenkins, K.D.: The shortest path problem in the plane with obstacles: A graph modeling approach to producing finite search lists of homotopy classes. Master’s thesis, Naval Postgraduate School Monterey California (June 1991)
LinYSaripalliSSampling-based path planning for uav collision avoidanceIEEE Trans. Intell. Transp. Syst.2017181131793192
CampanaMLamirauxFLaumondJ-PA gradient-based path optimization method for motion planningAdv. Robot.20163017–1811261144
HughesKTokutaARanganathanNTrulla : An algorithm for path planning among weighted regions by localized propagationsProceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems1992146947610.1109/IROS.1992.587377
KalaRHomotopy conscious roadmap construction by fast sampling of narrow corridorsApplied Intelligence (Dordrecht, Netherlands)201645410891102
McMahonTThomasSAmatoNMSampling-based motion planning with reachable volumes for high-degree-of-freedom manipulatorsThe International Journal of Robotics Research2018377779817
KavrakiLESvestkaPLatombeJ-COvermarsMHProbabilistic roadmaps for path planning in high-dimensional configuration spacesIEEE Trans. Robot. Autom.199612456658010.1109/70.508439
Lee, J.M.: Introduction to Smooth Manifolds., 2nd edn. Graduate Texts in Mathematics ; v.218. Springer, New York, NY (2002). https://doi.org/10.1007/978-1-4419-9982-5
AtakaALamH-KAlthoeferKReactive magnetic-field-inspired navigation method for robots in unknown convex 3-D environmentsIEEE Robotics and Automation Letters20183435833590
Alonso-MoraJDeCastroJARamanVRusDKress-GazitHReactive mission and motion planning with deadlock resolution avoiding dynamic obstaclesAuton. Robot.2018424801824
LumelskyVJStepanovAAPath-planning strategies for a point mobile automaton moving amidst unknown obstacles of arbitrary shapeAlgorithmica198721–44034309183610643.68150
Dash, A.K., Chen, I.-M., Yeo, S.H., Yang, G.: Singularity-free path planning of parallel manipulators using clustering algorithm and line geometry. In: 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422), vol. 1, pp. 761–766 (2003)
Hernández, E., Carreras, M., Ridao, P.: A bug-based path planner guided with homotopy classes. ICINCO 2012 - Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics 2, 123–131 (2012)
TrinkleJCMilgramRJComplete path planning for closed kinematic chains with spherical jointsThe International Journal of Robotics Research2002219773789
VolpeRKhoslaPManipulator control with superquadric artificial potential functions: theory and experimentsIEEE Trans. Syst. Man Cybern.19902061423143610.1109/21.61211
Diaz-Arango, G., Sarmiento-Reyes, A., Hernandez-Martinez, L., Vazquez-Leal, H., Lopez-Hernandez, D.D., Marin-Hernandez, A.: Path optimization for terrestrial robots using homotopy path planning method. In: 2015 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2824–2827 (2015)
Bohigas, O., Henderson, M.E., Ros, L., Porta, J.M.: A singularity-free path planner for closed-chain manipulators. In: 2012 IEEE International Conference on Robotics and Automation, pp. 2128–2134 (2012). https://doi.org/10.1109/ICRA.2012.6224899
LiuYZhengZQinFHomotopy based optimal configuration space reduction for anytime robotic motion planningChin. J. Aeronaut.2021341364379
Diaz-ArangoGVazquez-LealHHernandez-MartinezLManuel Jimenez-FernandezVHeredia-JimenezAAmbrosioRCHuerta-ChuaJDe Cos-CholulaHHernandez-MendezSMultiple-target homotopic quasi-complete path planning method for mobile robot using a piecewise linear approachSensors (Basel, Switzerland)202020113265
M.LaValle, S.: Rapidly-exploring random trees: A new tool for path planning. Technical report, Iowa State University, Ames, IA 50011 USA (June 1998)
KattepurAPurushotamanBRoboplanner: a pragmatic task planning framework for autonomous robotsCognitive Computation and Systems2020211222
Stentz, A.: Optimal and efficient path planning for partially-known environments. In: Proceedings of the 1994 IEEE International Conference on Robotics and Automation, pp. 3310–33174 (1994). https://doi.org/10.1109/ROBOT.1994.351061
DuchoňFBabinecAKajanMBeňoPFlorekMFicoTJurišicaLPath planning with modified a star algorithm for a mobile robotProcedia Engineering2014965969
Lee, J., Pippin, C., Balch, T.: Cost based planning with RRT in outdoor environments. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 684–689 (2008). https://doi.org/10.1109/IROS.2008.4651052
CockayneEJHallGWCPlane motion of a particle subject to curvature constraintsSIAM Journal on Control19751311972204333030305.53004
KangGKimYBLeeYHOhHSYouWSChoiHRSampling-based motion planning of manipulator with
DE Koditschek (300_CR81) 1990; 11
I Noreen (300_CR112) 2017; 11
M Mediavilla (300_CR105) 2002; 20
H Eduardo De Cos-Cholula (300_CR43) 2020; 13
JM Porta (300_CR120) 2012; 31
T Needham (300_CR109) 1997
W Wang (300_CR157) 2017; 90
J Park (300_CR117) 2015; 31
K Wei (300_CR160) 2018; 18
300_CR153
300_CR33
B Xu (300_CR165) 2013; 71
300_CR36
X Li (300_CR96) 2020; 85
300_CR37
JM Lee (300_CR93) 2011
300_CR34
Z Błaszczyk (300_CR21) 2018; 34
J-M Park (300_CR116) 2009; 223
I Havoutis (300_CR52) 2013; 32
C Wang (300_CR156) 2016; 15
F Belkhouche (300_CR11) 2012; 20
R Kimmel (300_CR79) 1998; 95
JR Munkres (300_CR107) 2000
300_CR147
R Volpe (300_CR154) 1990; 20
O Montiel (300_CR106) 2015; 42
300_CR141
300_CR142
300_CR143
300_CR144
300_CR145
N Shvalb (300_CR140) 2007; 26
W Yao (300_CR166) 2017; 97
300_CR47
300_CR48
300_CR46
M Campana (300_CR28) 2016; 30
A Bloch (300_CR22) 2021; 94
J Barraquand (300_CR9) 2016; 10
Y Yoon (300_CR168) 2009; 17
300_CR40
J van den Berg (300_CR151) 2008; 27
300_CR2
H Akbaripour (300_CR5) 2017; 89
300_CR1
D Berenson (300_CR12) 2011; 30
Y Liu (300_CR99) 2020; 10
HK Paikray (300_CR115) 2022; 6
Y Gao (300_CR49) 2014; 52
VJ Lumelsky (300_CR101) 1987; 2
AR Diéguez (300_CR39) 2003; 37
300_CR8
L Dorst (300_CR41) 1991; 7
300_CR130
300_CR131
B Zhang (300_CR169) 2016; 13
R Kala (300_CR66) 2016; 45
H Vazquez-Leal (300_CR152) 2013; 219
S Cabello (300_CR27) 2004; 31
300_CR14
B Wang (300_CR159) 2020; 5
300_CR15
D Wang (300_CR158) 2020; 206
S Bhattacharya (300_CR19) 2012; 33
O Bohigas (300_CR24) 2013; 29
300_CR91
SM LaValle (300_CR90) 2004; 23
AV Savkin (300_CR136) 2013; 31
300_CR94
P-O Persson (300_CR119) 2004; 46
300_CR92
JA Sethian (300_CR138) 1999; 41
300_CR124
G Kang (300_CR68) 2019; 12
RR Murphy (300_CR108) 1999; 27
300_CR125
300_CR126
L De Filippis (300_CR35) 2012; 65
T McMahon (300_CR104) 2018; 37
300_CR127
LW Tu (300_CR150) 2010
RA Brooks (300_CR26) 1983; 2
300_CR16
S Tao (300_CR148) 2018; 2018
A Kattepur (300_CR70) 2020; 2
M Elbanhawi (300_CR44) 2014; 2
MA Hossain (300_CR58) 2015; 64
L Jaillet (300_CR64) 2010; 26
300_CR25
S Karaman (300_CR69) 2011; 30
300_CR23
G Liu (300_CR98) 2020; 8
J Lengyel (300_CR95) 1990; 24
300_CR113
300_CR114
300_CR118
L Jaillet (300_CR63) 2008; 27
JC Trinkle (300_CR149) 2002; 21
SM LaValle (300_CR89) 2001; 20
300_CR110
AH Qureshi (300_CR129) 2016; 40
300_CR111
Y Lin (300_CR97) 2017; 18
300_CR76
300_CR77
H Kim (300_CR78) 2018; 14
300_CR75
LE Kavraki (300_CR72) 1996; 12
E Masehian (300_CR102) 2004; 21
M Farber (300_CR45) 2003; 29
300_CR73
J Gregoire (300_CR51) 2018; 42
AH Qureshi (300_CR128) 2015; 68
300_CR71
R Kala (300_CR67) 2016; 82
P Cui (300_CR32) 2017; 2017
K Hughes (300_CR60) 1992; 1
S Bhattacharya (300_CR18) 2015; 139
S Carpin (300_CR29) 2005; 21
F Belkhouche (300_CR10) 2009; 25
S Bhattacharya (300_CR20) 2014; 33
A Wu (300_CR163) 2012; 32
F Duchoň (300_CR42) 2014; 96
MP Aghababa (300_CR3) 2012; 38
P Bevilacqua (300_CR13) 2018; 3
300_CR88
Y Liu (300_CR100) 2021; 34
300_CR85
300_CR86
ME Henderson (300_CR53) 2002; 12
300_CR80
F Lamiraux (300_CR87) 2004; 20
J Alonso-Mora (300_CR6) 2018; 42
EJ Cockayne (300_CR31) 1975; 13
O Khatib (300_CR74) 1986; 5
300_CR82
D Roy (300_CR134) 2011; 29
J Suh (300_CR146) 2017; 33
W Kowalczyk (300_CR84) 2017; 85
L Jaillet (300_CR62) 2013; 29
300_CR54
300_CR55
300_CR59
JC Ryu (300_CR135) 2012; 45
A Pressley (300_CR121) 2010
300_CR50
L McFetridge (300_CR103) 2009; 25
A-C Hildebrandt (300_CR57) 2017; 2
JA Sethian (300_CR137) 1996; 93
Y Rasekhipour (300_CR133) 2018; 77
J Agirrebeitia (300_CR4) 2005; 40
K-L Wu (300_CR164) 2016; 2016
300_CR161
K Chu (300_CR30) 2012; 13
300_CR162
Y Rasekhipour (300_CR132) 2017; 18
A Sgorbissa (300_CR139) 2019; 38
A Ataka (300_CR7) 2018; 3
300_CR167
300_CR65
L Qin (300_CR122) 2013; 2013
E Hernandez (300_CR56) 2015; 64
W Kowalczyk (300_CR83) 2018; 93
P Quillen (300_CR123) 2019; 66
S Bhattacharya (300_CR17) 2019; 38
G Diaz-Arango (300_CR38) 2020; 20
300_CR61
H Wada (300_CR155) 2021; 35
References_xml – reference: DiéguezARSanzRLópezJDeliberative on-line local path planning for autonomous mobile robotsJournal of Intelligent & Robotic Systems2003371119
– reference: ParkJKarumanchiSIagnemmaKHomotopy-based divide-and-conquer strategy for optimal trajectory planning via mixed-integer programmingIEEE Trans. Rob.201531511011115
– reference: NeedhamTVisual Complex Analysis1997Oxford University PressOxford University Press Inc., New York0893.30001
– reference: ZhangBLiuYLuQWangJA path planning strategy for searching the most reliable path in uncertain environmentsInt. J. Adv. Rob. Syst.201613517298814166577510.1177/1729881416657751
– reference: PerssonP-OStrangGA simple mesh generator in matlabSIAM Rev.2004462329345211445810.1137/S00361445034291211061.65134
– reference: WadaHKinugawaJKosugeKReactive motion planning using time-layered c-spaces for a collaborative robot padyAdv. Robot.2021358490503
– reference: McMahonTThomasSAmatoNMSampling-based motion planning with reachable volumes for high-degree-of-freedom manipulatorsThe International Journal of Robotics Research2018377779817
– reference: CuiPYanWWangYReactive path planning approach for docking robots in unknown environmentJ. Adv. Transp.20172017111
– reference: KavrakiLESvestkaPLatombeJ-COvermarsMHProbabilistic roadmaps for path planning in high-dimensional configuration spacesIEEE Trans. Robot. Autom.199612456658010.1109/70.508439
– reference: Wu, K., Lo, C., Lin, Y., Liu, J.: 3D path planning based on nonlinear geodesic equation. In: 11th IEEE International Conference on Control Automation (ICCA), pp. 342–347 (2014). https://doi.org/10.1109/ICCA.2014.6870943
– reference: BhattacharyaSLikhachevMKumarVTopological constraints in search-based robot path planningAuton. Robot.2012333273290
– reference: Bohlin, R., Kavraki, L.E.: Path planning using lazy PRM. In: Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), vol. 1, pp. 521–5281 (2000). https://doi.org/10.1109/ROBOT.2000.844107
– reference: BarraquandJLatombeJ-CRobot motion planning: A distributed representation approachThe International Journal of Robotics Research2016106628649
– reference: HughesKTokutaARanganathanNTrulla : An algorithm for path planning among weighted regions by localized propagationsProceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems1992146947610.1109/IROS.1992.587377
– reference: Kim, D., Kang, M., Yoon, S.-E.: Volumetric tree: Adaptive sparse graph for effective exploration of homotopy classes. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1496–1503 (2019)
– reference: CabelloSLiuYMantlerASnoeyinkJTesting homotopy for paths in the planeDiscrete & Computational Geometry2004311618120423181060.68127
– reference: LeeJMIntroduction To Topological Manifolds20112DordrechtSpringer1209.57001
– reference: Radhakrishnan, S., Gueaieb, W.: Reconfigurable EKF for 2D SLAM. In: 2016 IEEE 2nd International Forum on Research and Technologies for Society and Industry Leveraging a Better Tomorrow (RTSI), pp. 1–6 (2016). https://doi.org/10.1109/RTSI.2016.7740549
– reference: Alonso-MoraJDeCastroJARamanVRusDKress-GazitHReactive mission and motion planning with deadlock resolution avoiding dynamic obstaclesAuton. Robot.2018424801824
– reference: RasekhipourYKhajepourAChenSLitkouhiBA potential field-based model predictive path-planning controller for autonomous road vehiclesIEEE Trans. Intell. Transp. Syst.20171851255126710.1109/TITS.2016.2604240
– reference: WuK-LHoT-JHuangSALinK-HLinY-CLiuJ-SPath planning and replanning for mobile robot navigation on 3D terrain: An approach based on geodesicMath. Probl. Eng.2016201611235686911400.68234
– reference: Faverjon, B., Tournassoud, P.: A local based approach for path planning of manipulators with a high number of degrees of freedom. In: Proceedings. 1987 IEEE International Conference on Robotics and Automation, vol. 4, pp. 1152–1159 (1987). https://doi.org/10.1109/ROBOT.1987.1087982
– reference: WangWZuoLXuXA learning-based multi-rrt approach for robot path planning in narrow passagesJournal of Intelligent & Robotic Systems2017901–281100
– reference: Olmstead Muhs, J.C., Yang, J.: A geodesics-based model for obstacle avoidance. In: 2005 Digital Human Modeling for Design and Engineering Symposium (2005). https://doi.org/10.4271/2005-01-2692
– reference: McFetridgeLIbrahimMYA new methodology of mobile robot navigation: The agoraphilic algorithmRobotics and Computer-Integrated Manufacturing2009253545551
– reference: Leica, P., Chavez, D., Rosales, A., Roberti, F., Toibero, J.M., Carelli, R.: Strategy based on multiple objectives and null space for the formation of mobile robots and dynamic obstacle avoidance. Revista Politécnica (Quito) 33(1) (2014)
– reference: Yi, D., Goodrich, M., Seppi, K.: Homotopy-aware RRT: Toward human-robot topological path-planning. In: The Eleventh ACM/IEEE International Conference on Human Robot Interaction. HRI ’16, pp. 279–286 (2016)
– reference: DorstLMandhyanITrovatoKThe geometrical representation of path planning problemsRobot. Auton. Syst.199172181195
– reference: MurphyRRHughesKMarzilliANollEIntegrating explicit path planning with reactive control of mobile robots using trullaRobot. Auton. Syst.1999274225245
– reference: SethianJAFast marching methods. SIAM review1999412199235
– reference: BhattacharyaSTowards optimal path computation in a simplicial complexThe International Journal of Robotics Research20193889811009
– reference: Kolur, K., Chintalapudi, S., Boots, B., Mukadam, M.: Online motion planning over multiple homotopy classes with gaussian process inference. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2358–2364 (2019)
– reference: NoreenIKhanARyuHDohNLHabibZOptimal path planning in cluttered environment using RRT-ABIntel. Serv. Robot.20171114152
– reference: BohigasOHendersonMERosLManubensMPortaJMPlanning singularity-free paths on closed-chain manipulatorsIEEE Trans. Rob.201329488889810.1109/TRO.2013.2260679
– reference: LamirauxFBonnafousDLefebvreOReactive path deformation for nonholonomic mobile robotsIEEE Trans. Rob.2004206967977
– reference: LiuGTrinkleJYangYLuoSMotion planning of planar closed chains based on structural setsIEEE Access20208117203117217
– reference: Bhattacharya, S., Likhachev, M., Kumar, V.: Identification and representation of homotopy classes of trajectories for search-based path planning in 3D. In: Durrant-Whyte, H., Roy, N., Abbeel, P. (eds.) Robotics: Science and Systems VII. The MIT Press, One Broadway 12th Floor Cambridge, MA 02142 (2012). https://doi.org/10.7551/mitpress/9481.003.0007
– reference: Jaillet, L., Porta, J.: Asymptotically-optimal path planning on manifolds. Robotics Science and Systems VIII (2012)
– reference: AghababaMP3D Path planning for underwater vehicles using five evolutionary optimization algorithms avoiding static and energetic obstaclesAppl. Ocean Res.2012384862
– reference: Lee, J., Pippin, C., Balch, T.: Cost based planning with RRT in outdoor environments. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 684–689 (2008). https://doi.org/10.1109/IROS.2008.4651052
– reference: MediavillaMGonzálezJLFraileJCRamón PeránJReactive approach to on-line path planning for robot manipulators in dynamic environmentsRobotica2002204375384
– reference: Lee, J.M.: Introduction to Smooth Manifolds., 2nd edn. Graduate Texts in Mathematics ; v.218. Springer, New York, NY (2002). https://doi.org/10.1007/978-1-4419-9982-5
– reference: KhatibOReal-time obstacle avoidance for manipulators and mobile robotsThe International Journal of Robotics Research1986519098
– reference: WangBLiuZLiQProrokAMobile robot path planning in dynamic environments through globally guided reinforcement learningIEEE Robotics and Automation Letters20205469326939
– reference: YaoWQiNZhaoJWanNBounded curvature path planning with expected length for dubins vehicle entering target manifoldRobot. Auton. Syst.201797217229
– reference: Bhattacharya, S., Likhachev, M., Kumar, V.: Search-based path planning with homotopy class constraints in 3d. In: Invited Paper for Sub-area Spotlights Track on ’Best-paper Talks’, Proceedings of Twenty-Sixth Conference on Artificial Intelligence (AAAI-12) (2012)
– reference: LiXZhaoGLiBGenerating optimal path by level set approach for a mobile robot moving in static/dynamic environmentsAppl. Math. Model.2020852102304099345
– reference: SethianJAA fast marching level set method for monotonically advancing frontsProceedings of the National Academy of Sciences - PNAS19969341591159513740100852.65055
– reference: Bhattacharya, S., Kumar, V., Likhachev, M.: Search-based path planning with homotopy class constraints. In: Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence. AAAI’10, pp. 1230–1237 (2010)
– reference: BhattacharyaSGhristRKumarVMulti-robot coverage and exploration on riemannian manifolds with boundariesThe International Journal of Robotics Research2014331113137
– reference: JailletLCortésJSiméonTSampling-based path planning on configuration-space costmapsIEEE Trans. Rob.2010264635646
– reference: AgirrebeitiaJAvilésRde BustosIFAjuriaGA new APF strategy for path planning in environments with obstaclesMech. Mach. Theory200540664565821540531127.70301
– reference: SgorbissaAIntegrated robot planning, path following, and obstacle avoidance in two and three dimensions: Wheeled robots, underwater vehicles, and multicoptersThe International journal of robotics research2019387853876
– reference: Hernández, E., Carreras, M., Ridao, P.: A bug-based path planner guided with homotopy classes. ICINCO 2012 - Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics 2, 123–131 (2012)
– reference: Nicolaescu, L.: Homeomorphisms vs. Diffeomorphisms. Professor Nicolaescu’s notes on the topic. (2003). https://www3.nd.edu/~low lnicolae/FYsem2003.pdf
– reference: MontielOOrozco-RosasUSepúlvedaRPath planning for mobile robots using bacterial potential field for avoiding static and dynamic obstaclesExpert Syst. Appl.2015421251775191
– reference: Atramentov, A., LaValle, S.M.: Efficient nearest neighbor searching for motion planning. In: Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292), vol. 1, pp. 632–6371 (2002). https://doi.org/10.1109/ROBOT.2002.1013429
– reference: Eduardo De Cos-CholulaHUlises Diaz-ArangoGHernandez-MartinezLVazquez-LealHSarmiento-ReyesATeresa Sanz-PascualMLeobardo Herrera-MayACastaneda-SheissaRFPGA implementation of homotopic path planning method with automatic assignment of repulsion parameterEnergies (Basel)202013102623
– reference: KaramanSFrazzoliESampling-based algorithms for optimal motion planningThe International Journal of Robotics Research20113078468941220.91006
– reference: BrooksRAPlanning collision- free motions for pick-and-place operationsThe International Journal of Robotics Research1983241944
– reference: Volpe, R., Khosla, P.: Artificial potentials with elliptical isopotential contours for obstacle avoidance. In: 26th IEEE Conference on Decision and Control, vol. 26, pp. 180–185 (1987). https://doi.org/10.1109/CDC.1987.272738
– reference: Radhakrishnan, S.: Observable 2D SLAM and Evidential Occupancy Grids. Master’s thesis, Carleton University (2014)
– reference: Ferguson, D., Stentz, A.: Anytime RRTs. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5369–5375 (2006). https://doi.org/10.1109/IROS.2006.282100
– reference: DuchoňFBabinecAKajanMBeňoPFlorekMFicoTJurišicaLPath planning with modified a star algorithm for a mobile robotProcedia Engineering2014965969
– reference: LengyelJReichertMDonaldBRGreenbergDPReal-time robot motion planning using rasterizing computer graphics hardwareComputer graphics (New York, N.Y.)1990244327335
– reference: AkbaripourHAkbaripourHMasehianEMasehianESemi-lazy probabilistic roadmap: a parameter-tuned, resilient and robust path planning method for manipulator robotsInt. J. Adv. Manuf. Technol.2017895140114301348.68231
– reference: KimHCheangUKRogowskiLWKimMJMotion planning of particle based microrobots for static obstacle avoidanceJournal of Micro-Bio Robotics2018141–24149
– reference: PressleyAElementary Differential Geometry20102LondonSpringer undergraduate mathematics series. Springer10.1007/978-1-84882-891-91191.53002
– reference: Ginesi, M., Meli, D., Roberti, A., Sansonetto, N., Fiorini, P.: Dynamic movement primitives: Volumetric obstacle avoidance using dynamic potential functions. Journal of Intelligent & Robotic Systems 101(4) (2021)
– reference: Hsu, D., Sun, Zheng: Adaptively combining multiple sampling strategies for probabilistic roadmap planning. In: IEEE Conference on Robotics, Automation and Mechatronics, 2004., vol. 2, pp. 774–7792 (2004). https://doi.org/10.1109/RAMECH.2004.1438016
– reference: Kuffner, J.J., LaValle, S.M.: RRT-connect: An efficient approach to single-query path planning. In: Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), vol. 2, pp. 995–10012 (2000). https://doi.org/10.1109/ROBOT.2000.844730
– reference: RoyDAlgorithmic path planning of static robots in three dimensions using configuration space metricsRobotica2011292295315
– reference: BelkhoucheFBendjilaliBReactive path planning for 3-D autonomous vehiclesIEEE Trans. Control Syst. Technol.2012201249256
– reference: Kim, S., Sreenath, K., Bhattacharya, S., Kumar, V.: Trajectory Planning for Systems with Homotopy Class Constraints. In: Latest Advances in Robot Kinematics (ARK), Innsbruck, Austria, pp. 83–90 (2012)
– reference: WuAHowJPGuaranteed infinite horizon avoidance of unpredictable, dynamically constrained obstaclesAuton. Robot.2012323227242
– reference: WangDWangPZhangXGuoXShuYTianXAn obstacle avoidance strategy for the wave glider based on the improved artificial potential field and collision prediction modelOcean Eng.2020206
– reference: Abbas, M.A., Milman, R., Eklund, J.M.: Obstacle avoidance in real time with nonlinear model predictive control of autonomous vehicles. In: 2014 IEEE 27th Canadian Conference on Electrical and Computer Engineering (CCECE), pp. 1–6 (2014). https://doi.org/10.1109/CCECE.2014.6901109
– reference: HavoutisIRamamoorthySMotion planning and reactive control on learnt skill manifoldsThe International Journal of Robotics Research2013329–1011201150
– reference: ChuKLeeMSunwooMLocal path planning for off-road autonomous driving with avoidance of static obstaclesIEEE Trans. Intell. Transp. Syst.201213415991616
– reference: Gao, Y., Lin, T., Borrelli, F., Tseng, E., Hrovat, D.: Predictive Control of Autonomous Ground Vehicles With Obstacle Avoidance on Slippery Roads. Dynamic Systems and Control Conference, vol. ASME 2010 Dynamic Systems and Control Conference, Volume 1, pp. 265–272 (2010). https://doi.org/10.1115/DSCC2010-4263. ASME
– reference: Kavraki, L.E., Kolountzakis, M.N., Latombe, J.-.: Analysis of probabilistic roadmaps for path planning. IEEE Transactions on Robotics and Automation 14(1), 166–171 (1998). https://doi.org/10.1109/70.660866
– reference: KowalczykWRapid navigation function control for two-wheeled mobile robotsJournal of Intelligent & Robotic Systems2018933–4687697
– reference: BelkhoucheFReactive path planning in a dynamic environmentIEEE Trans. Rob.2009254902911
– reference: Dash, A.K., Chen, I.-M., Yeo, S.H., Yang, G.: Singularity-free path planning of parallel manipulators using clustering algorithm and line geometry. In: 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422), vol. 1, pp. 761–766 (2003)
– reference: QinLYinQZhaYPengYDynamic detection of topological information from grid-based generalized voronoi diagramsMath. Probl. Eng.2013201311131322631296.68178
– reference: Diaz-Arango, G., Sarmiento-Reyes, A., Hernandez-Martinez, L., Vazquez-Leal, H., Lopez-Hernandez, D.D., Marin-Hernandez, A.: Path optimization for terrestrial robots using homotopy path planning method. In: 2015 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2824–2827 (2015)
– reference: Oriolo, G.: Motion Planning 3 Artifical Potential Fields. Professor Oriolo’s notes for his class in Artificial Intelligence and Robotics. (2020). http://diag.uniroma1.it/oriolo/amr/slides/MotionPlanning3_Slides.pdf
– reference: ShvalbNShohamMLiuGTrinkleJCMotion planning for a class of planar closed-chain manipulatorsThe International Journal of Robotics Research2007265457473
– reference: Jenkins, K.D.: The shortest path problem in the plane with obstacles: A graph modeling approach to producing finite search lists of homotopy classes. Master’s thesis, Naval Postgraduate School Monterey California (June 1991)
– reference: KowalczykWKowalczykWPrzybylaMPrzybylaMKozlowskiKKozlowskiKSet-point control of mobile robot with obstacle detection and avoidance using navigation function - experimental verificationJournal of Intelligent & Robotic Systems2017853539552
– reference: RyuJCRyuJCParkFCParkFCKimYYKimYYMobile robot path planning algorithm by equivalent conduction heat flow topology optimizationStruct. Multidiscip. Optim.201245570371529134391274.70011
– reference: AtakaALamH-KAlthoeferKReactive magnetic-field-inspired navigation method for robots in unknown convex 3-D environmentsIEEE Robotics and Automation Letters20183435833590
– reference: HildebrandtA-CKlischatMWahrmannDWittmannRSygullaFSeiwaldPRixenDBuschmannTReal-time path planning in unknown environments for bipedal robotsIEEE Robotics and Automation Letters20172418561863
– reference: Quinlan, S.: Real-time modification of collision-free paths. ProQuest Dissertations Publishing (1995)
– reference: HendersonMEMultiple parameter continuation: Computing implicitly defined k-manifoldsInt. J. Bifurcat. Chaos Appl. Sci. Eng.200212345147618948761044.37053
– reference: Siciliano, B.: Robotics Modelling, Planning and Control, 1st ed. 2009. edn. Advanced Textbooks in Control and Signal Processing. Springer, London (2009). https://doi.org/10.1007/978-1-84628-642-1
– reference: KalaRHomotopy conscious roadmap construction by fast sampling of narrow corridorsApplied Intelligence (Dordrecht, Netherlands)201645410891102
– reference: ElbanhawiMSimicMSampling-based robot motion planning: A reviewIEEE Access20142567710.1109/ACCESS.2014.2302442
– reference: Hernández, E., Carreras, M., Ridao, P.: A path planning algorithm for an AUV guided with homotopy classes. In: Proceedings of the Twenty-First International Conference on Automated Planning and Scheduling, vol. 21 (2011)
– reference: VolpeRKhoslaPManipulator control with superquadric artificial potential functions: theory and experimentsIEEE Trans. Syst. Man Cybern.19902061423143610.1109/21.61211
– reference: Stentz, A.: Optimal and efficient path planning for partially-known environments. In: Proceedings of the 1994 IEEE International Conference on Robotics and Automation, pp. 3310–33174 (1994). https://doi.org/10.1109/ROBOT.1994.351061
– reference: SuhJGongJOhSFast sampling-based cost-aware path planning with nonmyopic extensions using cross entropyIEEE Trans. Rob.201733613131326
– reference: WangCMaoYSDuKJSimulation on local obstacle avoidance algorithm for unmanned surface vehicleInternational Journal of Simulation Modelling2016153460472
– reference: Koditschek, D.: Exact robot navigation by means of potential functions: Some topological considerations. In: Proceedings. 1987 IEEE International Conference on Robotics and Automation, vol. 4, pp. 1–6 (1987). https://doi.org/10.1109/ROBOT.1987.1088038
– reference: De FilippisLGuglieriGQuagliottiFPath planning strategies for UAVs in 3D environmentsJournal of Intelligent & Robotic Systems2012651247264
– reference: FarberMTopological complexity of motion planningDiscrete & Computational Geometry200329221122119572281038.68130
– reference: HernandezECarrerasMRidaoPA comparison of homotopic path planning algorithms for robotic applicationsRobot. Auton. Syst.2015644458
– reference: M.LaValle, S.: Rapidly-exploring random trees: A new tool for path planning. Technical report, Iowa State University, Ames, IA 50011 USA (June 1998)
– reference: BłaszczykZCarrasquel-VeraJGTopological complexity and efficiency of motion planning algorithmsRevista Matemática Iberoamericana20183441679168438962451412.55002
– reference: CarpinSPillonettoGMotion planning using adaptive random walksIEEE Trans. Rob.2005211129136
– reference: Nicolaescu, L.I.: Lectures on the Geometry of Manifolds vol. 32, 2nd edn. Ringgold Inc, Portland (2008). http://search.proquest.com/docview/200118389/
– reference: WeiKRenBA method on dynamic path planning for robotic manipulator autonomous obstacle avoidance based on an improved RRT algorithmSensors (Basel, Switzerland)2018182571
– reference: Bohigas, O., Henderson, M.E., Ros, L., Porta, J.M.: A singularity-free path planner for closed-chain manipulators. In: 2012 IEEE International Conference on Robotics and Automation, pp. 2128–2134 (2012). https://doi.org/10.1109/ICRA.2012.6224899
– reference: Qureshi, A.H., Iqbal, K.F., Qamar, S.M., Islam, F., Ayaz, Y., Muhammad, N.: Potential guided directional-RRT* for accelerated motion planning in cluttered environments. In: 2013 IEEE International Conference on Mechatronics and Automation, pp. 519–524 (2013). https://doi.org/10.1109/ICMA.2013.6617971
– reference: KimmelRSethianJAComputing geodesic paths on manifoldsProceedings of the National Academy of Sciences - PNAS199895158431843516391350908.65049
– reference: MasehianEAmin-NaseriMRA voronoi diagram-visibility graph-potential field compound algorithm for robot path planningJ. Robot. Syst.2004216275300
– reference: Donald, B., Lynch, K.K.M.., Rus, D. (eds.): Algorithmic and Computational Robotics : New Directions 2000 WAFR, 1st edn. A K Peters/CRC Press, an imprint of Taylor and Francis, Boca Raton, FL (2001)
– reference: Ademovic, A., Lacevic, B.: Path planning for robotic manipulators using expanded bubbles of free c-space. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), vol. 2016-, pp. 77–82 (2016). https://doi.org/10.1109/ICRA.2016.7487118
– reference: BevilacquaPFregoMFontanelliDPalopoliLReactive planning for assistive robotsIEEE Robotics and Automation Letters20183212761283
– reference: JailletLSimeonTPath deformation roadmaps: Compact graphs with useful cycles for motion planningThe International Journal of Robotics Research20082711–121175118810.1177/0278364908098411
– reference: ParkJ-MKimD-WYoonY-SKimHJYiK-SObstacle avoidance of autonomous vehicles based on model predictive controlProceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering20092231214991516
– reference: XuBXuBStilwellDJStilwellDJKurdilaAJKurdilaAJFast path re-planning based on fast marching and level setsJournal of Intelligent & Robotic Systems2013713303317
– reference: QureshiAHAyazYIntelligent bidirectional rapidly-exploring random trees for optimal motion planning in complex cluttered environmentsRobot. Auton. Syst.201568111
– reference: QureshiAHQureshiAHAyazYAyazYPotential functions based sampling heuristic for optimal path planningAuton. Robot.201640610791093
– reference: GregoireJČápMFrazzoliELocally-optimal multi-robot navigation under delaying disturbances using homotopy constraintsAuton. Robot.2018424895907
– reference: Kennedy, M., Thakur, D., Ani Hsieh, M., Bhattacharya, S., Kumar, V.: Optimal paths for polygonal robots in SE(2). Journal of Mechanisms and Robotics 10(2) (2018)
– reference: LaValleSMBranickyMSLindemannSROn the relationship between classical grid search and probabilistic roadmapsThe International Journal of Robotics Research2004237–8673692
– reference: MunkresJRTopology20002Upper Saddle River, NJPrentice Hall0951.54001
– reference: KalaRHomotopic roadmap generation for robot motion planningJournal of Intelligent & Robotic Systems20168235555753508639
– reference: LinYSaripalliSSampling-based path planning for uav collision avoidanceIEEE Trans. Intell. Transp. Syst.2017181131793192
– reference: Simeon, T., Laumond, J.-P., Van Geem, C.V., Cortes, J.: Computer aided motion: Move3d within molog. In: Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164), vol. 2, pp. 1494–1499 (2001). https://doi.org/10.1109/ROBOT.2001.932822
– reference: Khosla, P., Volpe, R.: Superquadric artificial potentials for obstacle avoidance and approach. In: Proceedings. 1988 IEEE International Conference on Robotics and Automation, pp. 1778–17843 (1988). https://doi.org/10.1109/ROBOT.1988.12323
– reference: Stopp, A., Riethmuller, T.: Fast reactive path planning by 2d and 3d multi-layer spatial grids for mobile robot navigation. In: Proceedings of Tenth International Symposium on Intelligent Control, pp. 545–550 (1995)
– reference: QuillenPMuñozJSubbaraoKPath planning to a reachable state using minimum control effort based navigation functionsJ. Astronaut. Sci.2019664554581
– reference: SavkinAVHoyMReactive and the shortest path navigation of a wheeled mobile robot in cluttered environmentsRobotica2013312323330
– reference: TrinkleJCMilgramRJComplete path planning for closed kinematic chains with spherical jointsThe International Journal of Robotics Research2002219773789
– reference: Vazquez-LealHMarin-HernandezAKhanYYıldırımAFilobello-NinoUCastaneda-SheissaRJimenez-FernandezVMExploring collision-free path planning by using homotopy continuation methodsAppl. Math. Comput.2013219147514753230325931366.70011
– reference: YoonYShinJKimHJParkYSastrySModel-predictive active steering and obstacle avoidance for autonomous ground vehiclesControl. Eng. Pract.2009177741750
– reference: Tanner, H.G., Kumar, A.: Towards decentralization of multi-robot navigation functions. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pp. 4132–4137 (2005)
– reference: TuLWAn Introduction to Manifolds20102New YorkUniversitext. Springer10.1007/978-1-4419-7400-6
– reference: PortaJMJailletLBohigasORandomized path planning on manifolds based on higher-dimensional continuationThe International Journal of Robotics Research2012312201215
– reference: BerensonDSrinivasaSKuffnerJTask space regions: A framework for pose-constrained manipulation planningThe International Journal of Robotics Research2011301214351460
– reference: LaValleSMKuffnerJJRandomized kinodynamic planningThe International Journal of Robotics Research2001205378400
– reference: HossainMAFerdousIAutonomous robot path planning in dynamic environment using a new optimization technique inspired by bacterial foraging techniqueRobot. Auton. Syst.201564137141
– reference: KoditschekDERimonERobot navigation functions on manifolds with boundaryAdv. Appl. Math.199011441244210772560727.58003
– reference: BhattacharyaSPivtoraikoMA classification of configuration spaces of planar robot arms for a continuous inverse kinematics problemActa Appl. Math.2015139113316634005861321.70004
– reference: CockayneEJHallGWCPlane motion of a particle subject to curvature constraintsSIAM Journal on Control19751311972204333030305.53004
– reference: LiuYQiNYaoWZhaoJXuSCooperative path planning for aerial recovery of a UAV swarm using genetic algorithm and homotopic approachAppl. Sci.202010124154
– reference: KattepurAPurushotamanBRoboplanner: a pragmatic task planning framework for autonomous robotsCognitive Computation and Systems2020211222
– reference: Quinlan, S., Khatib, O.: Elastic bands: connecting path planning and control. In: [1993] Proceedings IEEE International Conference on Robotics and Automation, pp. 802–8072 (1993). https://doi.org/10.1109/ROBOT.1993.291936
– reference: KangGKimYBLeeYHOhHSYouWSChoiHRSampling-based motion planning of manipulator with goal-oriented samplingIntel. Serv. Robot.2019123265273
– reference: PaikrayHKDasPKPandaSOptimal path planning of multi-robot in dynamic environment using hybridization of meta-heuristic algorithmInternational journal of intelligent robotics and applications Online202264625667
– reference: Diaz-ArangoGVazquez-LealHHernandez-MartinezLManuel Jimenez-FernandezVHeredia-JimenezAAmbrosioRCHuerta-ChuaJDe Cos-CholulaHHernandez-MendezSMultiple-target homotopic quasi-complete path planning method for mobile robot using a piecewise linear approachSensors (Basel, Switzerland)202020113265
– reference: Dale, L.K., Amato, N.M.: Probabilistic roadmaps-putting it all together. In: Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164), vol. 2, pp. 1940–19472 (2001). https://doi.org/10.1109/ROBOT.2001.932892
– reference: Wilson, J.: Manifolds. Notes for graduate students via seminar by Dr.Jenny Wilson (2012). http://www.math.lsa.umich.edu/~low jchw/WOMPtalk-Manifolds.pdf
– reference: BlochACamarinhaMColomboLJDynamic interpolation for obstacle avoidance on riemannian manifoldsInt. J. Control202194358860042177271480.93302
– reference: Kuwata, Y., Teo, J., Karaman, S., Fiore, G., Frazzoli, E., How, J.: Motion planning in complex environments using closed-loop prediction. In: AIAA Guidance, Navigation and Control Conference and Exhibit (2008). https://doi.org/10.2514/6.2008-7166.AIAA
– reference: van den BergJOvermarsMPlanning time-minimal safe paths amidst unpredictably moving obstaclesThe International Journal of Robotics Research20082711–12127412941188.93030
– reference: LumelskyVJStepanovAAPath-planning strategies for a point mobile automaton moving amidst unknown obstacles of arbitrary shapeAlgorithmica198721–44034309183610643.68150
– reference: JailletLPortaJMPath planning under kinematic constraints by rapidly exploring manifoldsIEEE Trans. Rob.201329110511710.1109/TRO.2012.2222272
– reference: Stein, E.M.: Complex Analysis. Princeton lectures in analysis ; 2. Princeton University Press, Princeton, N.J (2003)
– reference: GaoYGrayATsengHEBorrelliFA tube-based robust nonlinear predictive control approach to semiautonomous ground vehiclesVeh. Syst. Dyn.201452680282310.1080/00423114.2014.902537
– reference: Persson, P.-O.: Mesh generation for implicit geometries. Ph.D. dissertation, Massachusetts Institute of Technology (February 2005). http://persson.berkeley.edu/thesis/persson-thesis.pdf
– reference: CampanaMLamirauxFLaumondJ-PA gradient-based path optimization method for motion planningAdv. Robot.20163017–1811261144
– reference: Qureshi, A.H., Mumtaz, S., Iqbal, K.F., Ali, B., Ayaz, Y., Ahmed, F., Muhammad, M.S., Hasan, O., Kim, W.Y., Ra, M.: Adaptive potential guided directional-RRT. In: 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 1887–1892 (2013). https://doi.org/10.1109/ROBIO.2013.6739744
– reference: TaoSTanJPath planning with obstacle avoidance based on normalized r -functionsJournal of Robotics20182018110
– reference: Diankov, R., Kuffner, J.: Randomized statistical path planning. In: 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1–6 (2007). https://doi.org/10.1109/IROS.2007.4399557
– reference: RasekhipourYFadakarIKhajepourAAutonomous driving motion planning with obstacles prioritization using lexicographic optimizationControl. Eng. Pract.201877235246
– reference: LiuYZhengZQinFHomotopy based optimal configuration space reduction for anytime robotic motion planningChin. J. Aeronaut.2021341364379
– volume: 13
  start-page: 2623
  issue: 10
  year: 2020
  ident: 300_CR43
  publication-title: Energies (Basel)
  doi: 10.3390/en13102623
– ident: 300_CR144
  doi: 10.1109/ROBOT.1994.351061
– ident: 300_CR23
  doi: 10.1109/ICRA.2012.6224899
– volume: 2017
  start-page: 1
  year: 2017
  ident: 300_CR32
  publication-title: J. Adv. Transp.
  doi: 10.1155/2017/6716820
– volume: 45
  start-page: 703
  issue: 5
  year: 2012
  ident: 300_CR135
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-011-0728-6
– volume: 11
  start-page: 41
  issue: 1
  year: 2017
  ident: 300_CR112
  publication-title: Intel. Serv. Robot.
  doi: 10.1007/s11370-017-0236-7
– ident: 300_CR82
  doi: 10.1109/IROS40897.2019.8967598
– volume: 40
  start-page: 645
  issue: 6
  year: 2005
  ident: 300_CR4
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2005.01.006
– volume: 30
  start-page: 846
  issue: 7
  year: 2011
  ident: 300_CR69
  publication-title: The International Journal of Robotics Research
  doi: 10.1177/0278364911406761
– volume: 38
  start-page: 981
  issue: 8
  year: 2019
  ident: 300_CR17
  publication-title: The International Journal of Robotics Research
  doi: 10.1177/0278364919855422
– volume: 68
  start-page: 1
  year: 2015
  ident: 300_CR128
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2015.02.007
– volume: 31
  start-page: 61
  issue: 1
  year: 2004
  ident: 300_CR27
  publication-title: Discrete & Computational Geometry
  doi: 10.1007/s00454-003-2949-y
– volume: 17
  start-page: 741
  issue: 7
  year: 2009
  ident: 300_CR168
  publication-title: Control. Eng. Pract.
  doi: 10.1016/j.conengprac.2008.12.001
– volume: 27
  start-page: 1175
  issue: 11–12
  year: 2008
  ident: 300_CR63
  publication-title: The International Journal of Robotics Research
  doi: 10.1177/0278364908098411
– volume: 10
  start-page: 4154
  issue: 12
  year: 2020
  ident: 300_CR99
  publication-title: Appl. Sci.
  doi: 10.3390/app10124154
– volume: 42
  start-page: 895
  issue: 4
  year: 2018
  ident: 300_CR51
  publication-title: Auton. Robot.
  doi: 10.1007/s10514-017-9673-6
– volume: 11
  start-page: 412
  issue: 4
  year: 1990
  ident: 300_CR81
  publication-title: Adv. Appl. Math.
  doi: 10.1016/0196-8858(90)90017-S
– volume: 42
  start-page: 801
  issue: 4
  year: 2018
  ident: 300_CR6
  publication-title: Auton. Robot.
  doi: 10.1007/s10514-017-9665-6
– volume: 93
  start-page: 687
  issue: 3–4
  year: 2018
  ident: 300_CR83
  publication-title: Journal of Intelligent & Robotic Systems
– ident: 300_CR153
  doi: 10.1109/CDC.1987.272738
– ident: 300_CR126
  doi: 10.1109/ICMA.2013.6617971
– volume: 34
  start-page: 364
  issue: 1
  year: 2021
  ident: 300_CR100
  publication-title: Chin. J. Aeronaut.
  doi: 10.1016/j.cja.2020.09.036
– volume: 10
  start-page: 628
  issue: 6
  year: 2016
  ident: 300_CR9
  publication-title: The International Journal of Robotics Research
  doi: 10.1177/027836499101000604
– volume-title: Visual Complex Analysis
  year: 1997
  ident: 300_CR109
  doi: 10.1093/oso/9780198534471.001.0001
– volume: 31
  start-page: 323
  issue: 2
  year: 2013
  ident: 300_CR136
  publication-title: Robotica
  doi: 10.1017/S0263574712000331
– volume: 7
  start-page: 181
  issue: 2
  year: 1991
  ident: 300_CR41
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/0921-8890(91)90041-I
– ident: 300_CR92
  doi: 10.1007/978-1-4419-9982-5
– ident: 300_CR125
– volume: 2016
  start-page: 1
  year: 2016
  ident: 300_CR164
  publication-title: Math. Probl. Eng.
– volume: 2013
  start-page: 1
  year: 2013
  ident: 300_CR122
  publication-title: Math. Probl. Eng.
– volume: 2
  start-page: 12
  issue: 1
  year: 2020
  ident: 300_CR70
  publication-title: Cognitive Computation and Systems
  doi: 10.1049/ccs.2019.0025
– volume: 77
  start-page: 235
  year: 2018
  ident: 300_CR133
  publication-title: Control. Eng. Pract.
  doi: 10.1016/j.conengprac.2018.04.014
– volume: 13
  start-page: 197
  issue: 1
  year: 1975
  ident: 300_CR31
  publication-title: SIAM Journal on Control
  doi: 10.1137/0313012
– ident: 300_CR111
– ident: 300_CR25
  doi: 10.1109/ROBOT.2000.844107
– volume: 5
  start-page: 90
  issue: 1
  year: 1986
  ident: 300_CR74
  publication-title: The International Journal of Robotics Research
  doi: 10.1177/027836498600500106
– volume: 3
  start-page: 3583
  issue: 4
  year: 2018
  ident: 300_CR7
  publication-title: IEEE Robotics and Automation Letters
  doi: 10.1109/LRA.2018.2853801
– ident: 300_CR47
  doi: 10.1109/IROS.2006.282100
– volume: 42
  start-page: 5177
  issue: 12
  year: 2015
  ident: 300_CR106
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.02.033
– volume: 34
  start-page: 1679
  issue: 4
  year: 2018
  ident: 300_CR21
  publication-title: Revista Matemática Iberoamericana
  doi: 10.4171/rmi/1039
– ident: 300_CR8
  doi: 10.1109/ROBOT.2002.1013429
– volume: 33
  start-page: 1313
  issue: 6
  year: 2017
  ident: 300_CR146
  publication-title: IEEE Trans. Rob.
  doi: 10.1109/TRO.2017.2738664
– volume: 21
  start-page: 773
  issue: 9
  year: 2002
  ident: 300_CR149
  publication-title: The International Journal of Robotics Research
  doi: 10.1177/0278364902021009119
– volume: 18
  start-page: 3179
  issue: 11
  year: 2017
  ident: 300_CR97
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2017.2673778
– volume: 2
  start-page: 19
  issue: 4
  year: 1983
  ident: 300_CR26
  publication-title: The International Journal of Robotics Research
  doi: 10.1177/027836498300200402
– volume: 41
  start-page: 199
  issue: 2
  year: 1999
  ident: 300_CR138
  publication-title: Fast marching methods. SIAM review
  doi: 10.1137/S0036144598347059
– volume: 27
  start-page: 225
  issue: 4
  year: 1999
  ident: 300_CR108
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/S0921-8890(99)00003-2
– volume: 94
  start-page: 588
  issue: 3
  year: 2021
  ident: 300_CR22
  publication-title: Int. J. Control
  doi: 10.1080/00207179.2019.1603400
– ident: 300_CR114
– volume: 40
  start-page: 1079
  issue: 6
  year: 2016
  ident: 300_CR129
  publication-title: Auton. Robot.
  doi: 10.1007/s10514-015-9518-0
– volume: 71
  start-page: 303
  issue: 3
  year: 2013
  ident: 300_CR165
  publication-title: Journal of Intelligent & Robotic Systems
  doi: 10.1007/s10846-012-9794-2
– volume: 38
  start-page: 48
  year: 2012
  ident: 300_CR3
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2012.06.002
– volume: 13
  start-page: 172988141665775
  issue: 5
  year: 2016
  ident: 300_CR169
  publication-title: Int. J. Adv. Rob. Syst.
  doi: 10.1177/1729881416657751
– volume: 2
  start-page: 56
  year: 2014
  ident: 300_CR44
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2014.2302442
– volume: 33
  start-page: 273
  issue: 3
  year: 2012
  ident: 300_CR19
  publication-title: Auton. Robot.
  doi: 10.1007/s10514-012-9304-1
– volume: 29
  start-page: 295
  issue: 2
  year: 2011
  ident: 300_CR134
  publication-title: Robotica
  doi: 10.1017/S0263574709990786
– ident: 300_CR131
– volume: 37
  start-page: 1
  issue: 1
  year: 2003
  ident: 300_CR39
  publication-title: Journal of Intelligent & Robotic Systems
  doi: 10.1023/A:1023926519261
– volume: 45
  start-page: 1089
  issue: 4
  year: 2016
  ident: 300_CR66
  publication-title: Applied Intelligence (Dordrecht, Netherlands)
– ident: 300_CR15
  doi: 10.7551/mitpress/9481.003.0007
– ident: 300_CR61
  doi: 10.15607/RSS.2012.VIII.019
– volume: 12
  start-page: 265
  issue: 3
  year: 2019
  ident: 300_CR68
  publication-title: Intel. Serv. Robot.
  doi: 10.1007/s11370-019-00281-y
– ident: 300_CR75
  doi: 10.1109/ROBOT.1988.12323
– ident: 300_CR142
  doi: 10.1109/ROBOT.2001.932822
– ident: 300_CR1
  doi: 10.1109/CCECE.2014.6901109
– ident: 300_CR33
  doi: 10.1109/ROBOT.2001.932892
– volume: 8
  start-page: 117203
  year: 2020
  ident: 300_CR98
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3004229
– volume: 2
  start-page: 403
  issue: 1–4
  year: 1987
  ident: 300_CR101
  publication-title: Algorithmica
  doi: 10.1007/BF01840369
– ident: 300_CR16
– ident: 300_CR91
  doi: 10.1109/IROS.2008.4651052
– volume-title: An Introduction to Manifolds
  year: 2010
  ident: 300_CR150
  doi: 10.1007/978-1-4419-7400-6
– volume: 31
  start-page: 1101
  issue: 5
  year: 2015
  ident: 300_CR117
  publication-title: IEEE Trans. Rob.
  doi: 10.1109/TRO.2015.2459373
– ident: 300_CR36
  doi: 10.1109/IROS.2007.4399557
– ident: 300_CR86
  doi: 10.2514/6.2008-7166.
– volume: 5
  start-page: 6932
  issue: 4
  year: 2020
  ident: 300_CR159
  publication-title: IEEE Robotics and Automation Letters
  doi: 10.1109/LRA.2020.3026638
– ident: 300_CR34
  doi: 10.1109/ROBOT.2003.1241685
– volume: 33
  start-page: 113
  issue: 1
  year: 2014
  ident: 300_CR20
  publication-title: The International Journal of Robotics Research
  doi: 10.1177/0278364913507324
– ident: 300_CR130
  doi: 10.1109/RTSI.2016.7740549
– volume: 29
  start-page: 105
  issue: 1
  year: 2013
  ident: 300_CR62
  publication-title: IEEE Trans. Rob.
  doi: 10.1109/TRO.2012.2222272
– volume: 26
  start-page: 635
  issue: 4
  year: 2010
  ident: 300_CR64
  publication-title: IEEE Trans. Rob.
  doi: 10.1109/TRO.2010.2049527
– volume: 15
  start-page: 460
  issue: 3
  year: 2016
  ident: 300_CR156
  publication-title: International Journal of Simulation Modelling
  doi: 10.2507/IJSIMM15(3)6.347
– ident: 300_CR145
  doi: 10.1109/ISIC.1995.525112
– volume: 90
  start-page: 81
  issue: 1–2
  year: 2017
  ident: 300_CR157
  publication-title: Journal of Intelligent & Robotic Systems
– volume: 96
  start-page: 59
  year: 2014
  ident: 300_CR42
  publication-title: Procedia Engineering
  doi: 10.1016/j.proeng.2014.12.098
– volume: 2018
  start-page: 1
  year: 2018
  ident: 300_CR148
  publication-title: Journal of Robotics
  doi: 10.1155/2018/5868915
– volume: 93
  start-page: 1591
  issue: 4
  year: 1996
  ident: 300_CR137
  publication-title: Proceedings of the National Academy of Sciences - PNAS
  doi: 10.1073/pnas.93.4.1591
– volume: 12
  start-page: 451
  issue: 3
  year: 2002
  ident: 300_CR53
  publication-title: Int. J. Bifurcat. Chaos Appl. Sci. Eng.
  doi: 10.1142/S0218127402004498
– ident: 300_CR161
– volume: 6
  start-page: 625
  issue: 4
  year: 2022
  ident: 300_CR115
  publication-title: International journal of intelligent robotics and applications Online
  doi: 10.1007/s41315-022-00256-w
– volume: 85
  start-page: 539
  issue: 3
  year: 2017
  ident: 300_CR84
  publication-title: Journal of Intelligent & Robotic Systems
  doi: 10.1007/s10846-016-0388-2
– ident: 300_CR14
  doi: 10.1609/aaai.v24i1.7735
– volume: 32
  start-page: 1120
  issue: 9–10
  year: 2013
  ident: 300_CR52
  publication-title: The International Journal of Robotics Research
  doi: 10.1177/0278364913482016
– volume: 1
  start-page: 469
  year: 1992
  ident: 300_CR60
  publication-title: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
  doi: 10.1109/IROS.1992.587377
– ident: 300_CR73
  doi: 10.1115/1.4038980
– volume: 24
  start-page: 327
  issue: 4
  year: 1990
  ident: 300_CR95
  publication-title: Computer graphics (New York, N.Y.)
– volume: 26
  start-page: 457
  issue: 5
  year: 2007
  ident: 300_CR140
  publication-title: The International Journal of Robotics Research
  doi: 10.1177/0278364907078094
– volume: 97
  start-page: 217
  year: 2017
  ident: 300_CR166
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2017.09.003
– volume: 21
  start-page: 129
  issue: 1
  year: 2005
  ident: 300_CR29
  publication-title: IEEE Trans. Rob.
  doi: 10.1109/TRO.2004.833790
– ident: 300_CR124
  doi: 10.1109/ROBOT.1993.291936
– volume: 18
  start-page: 571
  issue: 2
  year: 2018
  ident: 300_CR160
  publication-title: Sensors (Basel, Switzerland)
  doi: 10.3390/s18020571
– volume: 20
  start-page: 378
  issue: 5
  year: 2001
  ident: 300_CR89
  publication-title: The International Journal of Robotics Research
  doi: 10.1177/02783640122067453
– ident: 300_CR46
  doi: 10.1109/ROBOT.1987.1087982
– volume: 25
  start-page: 902
  issue: 4
  year: 2009
  ident: 300_CR10
  publication-title: IEEE Trans. Rob.
  doi: 10.1109/TRO.2009.2022441
– volume: 52
  start-page: 802
  issue: 6
  year: 2014
  ident: 300_CR49
  publication-title: Veh. Syst. Dyn.
  doi: 10.1080/00423114.2014.902537
– volume: 30
  start-page: 1435
  issue: 12
  year: 2011
  ident: 300_CR12
  publication-title: The International Journal of Robotics Research
  doi: 10.1177/0278364910396389
– ident: 300_CR77
  doi: 10.1007/978-94-007-4620-6_11
– volume: 46
  start-page: 329
  issue: 2
  year: 2004
  ident: 300_CR119
  publication-title: SIAM Rev.
  doi: 10.1137/S0036144503429121
– ident: 300_CR48
  doi: 10.1115/DSCC2010-4263
– ident: 300_CR85
  doi: 10.1109/ROBOT.2000.844730
– ident: 300_CR88
– volume: 25
  start-page: 545
  issue: 3
  year: 2009
  ident: 300_CR103
  publication-title: Robotics and Computer-Integrated Manufacturing
  doi: 10.1016/j.rcim.2008.01.008
– volume: 95
  start-page: 8431
  issue: 15
  year: 1998
  ident: 300_CR79
  publication-title: Proceedings of the National Academy of Sciences - PNAS
  doi: 10.1073/pnas.95.15.8431
– ident: 300_CR143
– volume: 13
  start-page: 1599
  issue: 4
  year: 2012
  ident: 300_CR30
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2012.2198214
– ident: 300_CR76
  doi: 10.1109/IROS40897.2019.8967728
– ident: 300_CR162
  doi: 10.1109/ICCA.2014.6870943
– volume: 32
  start-page: 227
  issue: 3
  year: 2012
  ident: 300_CR163
  publication-title: Auton. Robot.
  doi: 10.1007/s10514-011-9266-8
– ident: 300_CR55
  doi: 10.1609/icaps.v21i1.13457
– volume: 82
  start-page: 555
  issue: 3
  year: 2016
  ident: 300_CR67
  publication-title: Journal of Intelligent & Robotic Systems
  doi: 10.1007/s10846-015-0278-z
– ident: 300_CR94
– ident: 300_CR113
  doi: 10.4271/2005-01-2692
– volume-title: Introduction To Topological Manifolds
  year: 2011
  ident: 300_CR93
– ident: 300_CR71
  doi: 10.1109/70.660866
– volume: 20
  start-page: 249
  issue: 1
  year: 2012
  ident: 300_CR11
  publication-title: IEEE Trans. Control Syst. Technol.
– volume: 37
  start-page: 779
  issue: 7
  year: 2018
  ident: 300_CR104
  publication-title: The International Journal of Robotics Research
  doi: 10.1177/0278364918779555
– volume: 20
  start-page: 1423
  issue: 6
  year: 1990
  ident: 300_CR154
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/21.61211
– volume: 139
  start-page: 133
  issue: 1
  year: 2015
  ident: 300_CR18
  publication-title: Acta Appl. Math.
  doi: 10.1007/s10440-014-9973-1
– volume: 29
  start-page: 888
  issue: 4
  year: 2013
  ident: 300_CR24
  publication-title: IEEE Trans. Rob.
  doi: 10.1109/TRO.2013.2260679
– volume: 219
  start-page: 7514
  issue: 14
  year: 2013
  ident: 300_CR152
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2013.01.038
– volume: 65
  start-page: 247
  issue: 1
  year: 2012
  ident: 300_CR35
  publication-title: Journal of Intelligent & Robotic Systems
  doi: 10.1007/s10846-011-9568-2
– ident: 300_CR141
  doi: 10.1007/978-1-84628-642-1
– volume: 38
  start-page: 853
  issue: 7
  year: 2019
  ident: 300_CR139
  publication-title: The International journal of robotics research
  doi: 10.1177/0278364919846910
– ident: 300_CR50
  doi: 10.1007/s10846-021-01344-y
– volume: 20
  start-page: 375
  issue: 4
  year: 2002
  ident: 300_CR105
  publication-title: Robotica
  doi: 10.1017/S0263574702004071
– volume: 64
  start-page: 44
  year: 2015
  ident: 300_CR56
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2014.10.021
– volume: 66
  start-page: 554
  issue: 4
  year: 2019
  ident: 300_CR123
  publication-title: J. Astronaut. Sci.
  doi: 10.1007/s40295-019-00171-6
– ident: 300_CR147
– volume: 3
  start-page: 1276
  issue: 2
  year: 2018
  ident: 300_CR13
  publication-title: IEEE Robotics and Automation Letters
  doi: 10.1109/LRA.2018.2795642
– volume: 89
  start-page: 1401
  issue: 5
  year: 2017
  ident: 300_CR5
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-016-9074-6
– ident: 300_CR59
  doi: 10.1109/RAMECH.2004.1438016
– volume: 2
  start-page: 1856
  issue: 4
  year: 2017
  ident: 300_CR57
  publication-title: IEEE Robotics and Automation Letters
  doi: 10.1109/LRA.2017.2712650
– volume: 20
  start-page: 967
  issue: 6
  year: 2004
  ident: 300_CR87
  publication-title: IEEE Trans. Rob.
  doi: 10.1109/TRO.2004.829459
– ident: 300_CR118
– ident: 300_CR127
  doi: 10.1109/ROBIO.2013.6739744
– volume: 85
  start-page: 210
  year: 2020
  ident: 300_CR96
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2020.03.034
– ident: 300_CR80
  doi: 10.1109/ROBOT.1987.1088038
– volume: 23
  start-page: 673
  issue: 7–8
  year: 2004
  ident: 300_CR90
  publication-title: The International Journal of Robotics Research
  doi: 10.1177/0278364904045481
– volume-title: Topology
  year: 2000
  ident: 300_CR107
– volume: 64
  start-page: 137
  year: 2015
  ident: 300_CR58
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2014.07.002
– volume: 206
  year: 2020
  ident: 300_CR158
  publication-title: Ocean Eng.
– volume: 35
  start-page: 490
  issue: 8
  year: 2021
  ident: 300_CR155
  publication-title: Adv. Robot.
  doi: 10.1080/01691864.2021.1896381
– ident: 300_CR167
  doi: 10.1109/HRI.2016.7451763
– volume: 20
  start-page: 3265
  issue: 11
  year: 2020
  ident: 300_CR38
  publication-title: Sensors (Basel, Switzerland)
  doi: 10.3390/s20113265
– ident: 300_CR54
– ident: 300_CR110
– volume: 21
  start-page: 275
  issue: 6
  year: 2004
  ident: 300_CR102
  publication-title: J. Robot. Syst.
  doi: 10.1002/rob.20014
– volume: 18
  start-page: 1255
  issue: 5
  year: 2017
  ident: 300_CR132
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2016.2604240
– ident: 300_CR37
  doi: 10.1109/ISCAS.2015.7169274
– ident: 300_CR2
  doi: 10.1109/ICRA.2016.7487118
– ident: 300_CR40
– volume-title: Elementary Differential Geometry
  year: 2010
  ident: 300_CR121
  doi: 10.1007/978-1-84882-891-9
– volume: 14
  start-page: 41
  issue: 1–2
  year: 2018
  ident: 300_CR78
  publication-title: Journal of Micro-Bio Robotics
  doi: 10.1007/s12213-018-0107-0
– ident: 300_CR65
– volume: 27
  start-page: 1274
  issue: 11–12
  year: 2008
  ident: 300_CR151
  publication-title: The International Journal of Robotics Research
  doi: 10.1177/0278364908097581
– volume: 30
  start-page: 1126
  issue: 17–18
  year: 2016
  ident: 300_CR28
  publication-title: Adv. Robot.
  doi: 10.1080/01691864.2016.1168317
– volume: 223
  start-page: 1499
  issue: 12
  year: 2009
  ident: 300_CR116
  publication-title: Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering
– volume: 29
  start-page: 211
  issue: 2
  year: 2003
  ident: 300_CR45
  publication-title: Discrete & Computational Geometry
  doi: 10.1007/s00454-002-0760-9
– volume: 31
  start-page: 201
  issue: 2
  year: 2012
  ident: 300_CR120
  publication-title: The International Journal of Robotics Research
  doi: 10.1177/0278364911432324
– volume: 12
  start-page: 566
  issue: 4
  year: 1996
  ident: 300_CR72
  publication-title: IEEE Trans. Robot. Autom.
  doi: 10.1109/70.508439
SSID ssj0002046646
ssib031263572
Score 2.24314
Snippet Autonomous robotic path planning in partially known environments, such as warehouse robotics, deals with static and dynamic constraints. Static constraints...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 810
SubjectTerms Algorithms
Artificial Intelligence
Computer Science
Control
Design parameters
Discretization
Electronics and Microelectronics
Homology
Industrial robots
Instrumentation
Machines
Manifolds
Manufacturing
Mechatronics
Optimization
Path planning
Planning
Processes
Regular Paper
Representations
Robotics
Tuning
User Interfaces and Human Computer Interaction
Title Constraint-free discretized manifold-based path planner
URI https://link.springer.com/article/10.1007/s41315-023-00300-3
https://www.proquest.com/docview/2922080842
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2366-598X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002046646
  issn: 2366-5971
  databaseCode: AFBBN
  dateStart: 20170201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2366-598X
  dateEnd: 20241003
  omitProxy: true
  ssIdentifier: ssj0002046646
  issn: 2366-5971
  databaseCode: BENPR
  dateStart: 20170201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFA66XbyIouJ0jh68abBJ2rQ9ySbWIThEHOwWzI8eRLa51Yt_ve-lqUNBeykkJdCXl5cvP773EXLOs7RicVVQKXRKE5bjRhODpYoxiN8BVPgMfA8TOZ4m97N0Fjbc1uFaZRsTfaC2C4N75Fe84BzQTZ7w6-U7RdUoPF0NEhrbpMs4eBIyxcu71p8ElqWBF_rqD90wmXqjNyclBSzNAo_Gs-kgnjOkKwuKrg_h6edctQGgv85M_VRU7pHdgCGjYdPp-2TLzQ8IXllZe8GHmlYr5yLk2yJF8dPZCJNcVIs3S3HSshHKEEdLlCtyq0MyLW-fb8Y0qCJQw7O4pjqFh-fWJS42gIeshXHINNdGpokWPK-ke4FhyJKKicTmsXSFYTqzWaGZtlIckc58MXfHJAK0lWWAgDILq7DUmdwhwIstFIjCxKJHLtr_V8sm-YX6TnPsraXAWspbS8HX_dZEKgyEtdp0W49ctmbbVP_d2sn_rZ2SHRR-by6W9EmnXn24M4AHtR54HxiQ7rAcjSbwHt1OHp--AG8Msxo
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV27TsMwFLVKGWBBIEA8CmSACSxiO3GSASEElJY-plbqFvAjA0JtaYsQfBTfyL1OQgUSbM2YRJZyc-x7_LjnEHLMozBjfpZQKVRIAxbjQhODqYrWyN-BVDgFvk5XNvrB_SAcVMhnWQuDxyrLMdEN1GakcY38nCecA7uJA345fqHoGoW7q6WFRg6Lln1_gynb9KJ5A__3hPP6be-6QQtXAap55M-oCuHisbGB9TXwCWMAx0xxpWUYKMHjTNpHgDELMiYCE_vSJpqpyESJYspIAe0ukeVACIFa_XH9rsSvYKjsUtShPrlNPhRvz_3tpKTA3VlRt-Oq9yB_MCyPFhS7GgyHP3PjnPD-2qN1qa--TtYKzupd5SDbIBU73CR4RGbqDCZmNJtY62F9L5ZEfljjoahGNno2FJOk8dD22BujPZKdbJH-QuK1TarD0dDuEA_YXRQB44oMzPpCq2OLhNI3cEMk2he75LT8_nSci22k37LKLlopRCt10Urh7VoZorToeNN0DpNdclaGbf7479b2_m_tiKw0ep122m52W_tkFU3n80MtNVKdTV7tAVCTmTp0ePDIw6IB-AVn2eww
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constraint-free+discretized+manifold-based+path+planner&rft.jtitle=International+journal+of+intelligent+robotics+and+applications+Online&rft.au=Radhakrishnan%2C+Sindhu&rft.au=Gueaieb%2C+Wail&rft.date=2023-12-01&rft.issn=2366-5971&rft.eissn=2366-598X&rft.volume=7&rft.issue=4&rft.spage=810&rft.epage=855&rft_id=info:doi/10.1007%2Fs41315-023-00300-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s41315_023_00300_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2366-5971&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2366-5971&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2366-5971&client=summon