Constraint-free discretized manifold-based path planner
Autonomous robotic path planning in partially known environments, such as warehouse robotics, deals with static and dynamic constraints. Static constraints include stationary obstacles, robotic and environmental limitations. Dynamic constraints include humans, robots and dis/appearance of anticipate...
Saved in:
Published in | International journal of intelligent robotics and applications Online Vol. 7; no. 4; pp. 810 - 855 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Nature Singapore
01.12.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 2366-5971 2366-598X |
DOI | 10.1007/s41315-023-00300-3 |
Cover
Abstract | Autonomous robotic path planning in partially known environments, such as warehouse robotics, deals with static and dynamic constraints. Static constraints include stationary obstacles, robotic and environmental limitations. Dynamic constraints include humans, robots and dis/appearance of anticipated dangers, such as spills. Path planning consists of two steps: First, a path between the source and target is generated. Second, path segments are evaluated for constraint violation. Sampling algorithms trade memory for maximal map representation. Optimization algorithms stagnate at non-optimal solutions. Alternatively, detailed grid-maps view terrain/structure as expensive memory costs. The open problem is thus to represent only constraint-free, navigable regions and generating anticipatory/reactive paths to combat new constraints. To solve this problem, a Constraint-Free Discretized Manifolds-based Path Planner (CFDMPP) is proposed in this paper. The algorithm’s first step focuses on maximizing map knowledge using manifolds. The second uses homology and homotopy classes to compute paths. The former constructs a representation of the navigable space as a manifold, which is free of apriori known constraints. Paths on this manifold are constraint-free and do not have to be explicitly evaluated for constraint violation. The latter handles new constraint knowledge that invalidate the original path. Using homology and homotopy, path classes can be recognized and avoided by tuning a design parameter, resulting in an alternative constraint-free path. Path classes on the discretized constraint-free manifold characterize numerical uniqueness of paths around constraints. This designation is what allows path class characterization, avoidance, and querying of a new path class (multiple classes with tuning), even when constraints are simply anticipatory. |
---|---|
AbstractList | Autonomous robotic path planning in partially known environments, such as warehouse robotics, deals with static and dynamic constraints. Static constraints include stationary obstacles, robotic and environmental limitations. Dynamic constraints include humans, robots and dis/appearance of anticipated dangers, such as spills. Path planning consists of two steps: First, a path between the source and target is generated. Second, path segments are evaluated for constraint violation. Sampling algorithms trade memory for maximal map representation. Optimization algorithms stagnate at non-optimal solutions. Alternatively, detailed grid-maps view terrain/structure as expensive memory costs. The open problem is thus to represent only constraint-free, navigable regions and generating anticipatory/reactive paths to combat new constraints. To solve this problem, a Constraint-Free Discretized Manifolds-based Path Planner (CFDMPP) is proposed in this paper. The algorithm’s first step focuses on maximizing map knowledge using manifolds. The second uses homology and homotopy classes to compute paths. The former constructs a representation of the navigable space as a manifold, which is free of apriori known constraints. Paths on this manifold are constraint-free and do not have to be explicitly evaluated for constraint violation. The latter handles new constraint knowledge that invalidate the original path. Using homology and homotopy, path classes can be recognized and avoided by tuning a design parameter, resulting in an alternative constraint-free path. Path classes on the discretized constraint-free manifold characterize numerical uniqueness of paths around constraints. This designation is what allows path class characterization, avoidance, and querying of a new path class (multiple classes with tuning), even when constraints are simply anticipatory. |
Author | Gueaieb, Wail Radhakrishnan, Sindhu |
Author_xml | – sequence: 1 givenname: Sindhu surname: Radhakrishnan fullname: Radhakrishnan, Sindhu organization: School of Electrical Engineering and Computer Science, University of Ottawa – sequence: 2 givenname: Wail orcidid: 0000-0001-6490-4648 surname: Gueaieb fullname: Gueaieb, Wail email: wgueaieb@uottawa.ca organization: School of Electrical Engineering and Computer Science, University of Ottawa |
BookMark | eNp9kEtLAzEQx4MoWGu_gKeC5-jksUn2KMUXFLwoeAvJZla3tNk12R700xtd0ZtzmRn4P-B3Qg5jH5GQMwYXDEBfZskEqyhwQQEEABUHZMaFUrSqzfPh763ZMVnkvAEADlIpqWZEr_qYx-S6ONI2IS5Dl5uEY_eBYblzsWv7baDe5fIObnxdDlsXI6ZTctS6bcbFz56Tp5vrx9UdXT_c3q-u1rThGkbqqzLcBJQIDRc8BJDAPPeNqqQX3LQKnTaayZYJGQworBvmddC1Zz4oMSfnU-6Q-rc95tFu-n2KpdLymnMwYCQvKj6pmtTnnLC1Q-p2Lr1bBvaLkZ0Y2cLIfjOyopjEZMpFHF8w_UX_4_oEHpJqCQ |
Cites_doi | 10.3390/en13102623 10.1109/ROBOT.1994.351061 10.1109/ICRA.2012.6224899 10.1155/2017/6716820 10.1007/s00158-011-0728-6 10.1007/s11370-017-0236-7 10.1109/IROS40897.2019.8967598 10.1016/j.mechmachtheory.2005.01.006 10.1177/0278364911406761 10.1177/0278364919855422 10.1016/j.robot.2015.02.007 10.1007/s00454-003-2949-y 10.1016/j.conengprac.2008.12.001 10.1177/0278364908098411 10.3390/app10124154 10.1007/s10514-017-9673-6 10.1016/0196-8858(90)90017-S 10.1007/s10514-017-9665-6 10.1109/CDC.1987.272738 10.1109/ICMA.2013.6617971 10.1016/j.cja.2020.09.036 10.1177/027836499101000604 10.1093/oso/9780198534471.001.0001 10.1017/S0263574712000331 10.1016/0921-8890(91)90041-I 10.1007/978-1-4419-9982-5 10.1049/ccs.2019.0025 10.1016/j.conengprac.2018.04.014 10.1137/0313012 10.1109/ROBOT.2000.844107 10.1177/027836498600500106 10.1109/LRA.2018.2853801 10.1109/IROS.2006.282100 10.1016/j.eswa.2015.02.033 10.4171/rmi/1039 10.1109/ROBOT.2002.1013429 10.1109/TRO.2017.2738664 10.1177/0278364902021009119 10.1109/TITS.2017.2673778 10.1177/027836498300200402 10.1137/S0036144598347059 10.1016/S0921-8890(99)00003-2 10.1080/00207179.2019.1603400 10.1007/s10514-015-9518-0 10.1007/s10846-012-9794-2 10.1016/j.apor.2012.06.002 10.1177/1729881416657751 10.1109/ACCESS.2014.2302442 10.1007/s10514-012-9304-1 10.1017/S0263574709990786 10.1023/A:1023926519261 10.7551/mitpress/9481.003.0007 10.15607/RSS.2012.VIII.019 10.1007/s11370-019-00281-y 10.1109/ROBOT.1988.12323 10.1109/ROBOT.2001.932822 10.1109/CCECE.2014.6901109 10.1109/ROBOT.2001.932892 10.1109/ACCESS.2020.3004229 10.1007/BF01840369 10.1109/IROS.2008.4651052 10.1007/978-1-4419-7400-6 10.1109/TRO.2015.2459373 10.1109/IROS.2007.4399557 10.2514/6.2008-7166. 10.1109/LRA.2020.3026638 10.1109/ROBOT.2003.1241685 10.1177/0278364913507324 10.1109/RTSI.2016.7740549 10.1109/TRO.2012.2222272 10.1109/TRO.2010.2049527 10.2507/IJSIMM15(3)6.347 10.1109/ISIC.1995.525112 10.1016/j.proeng.2014.12.098 10.1155/2018/5868915 10.1073/pnas.93.4.1591 10.1142/S0218127402004498 10.1007/s41315-022-00256-w 10.1007/s10846-016-0388-2 10.1609/aaai.v24i1.7735 10.1177/0278364913482016 10.1109/IROS.1992.587377 10.1115/1.4038980 10.1177/0278364907078094 10.1016/j.robot.2017.09.003 10.1109/TRO.2004.833790 10.1109/ROBOT.1993.291936 10.3390/s18020571 10.1177/02783640122067453 10.1109/ROBOT.1987.1087982 10.1109/TRO.2009.2022441 10.1080/00423114.2014.902537 10.1177/0278364910396389 10.1007/978-94-007-4620-6_11 10.1137/S0036144503429121 10.1115/DSCC2010-4263 10.1109/ROBOT.2000.844730 10.1016/j.rcim.2008.01.008 10.1073/pnas.95.15.8431 10.1109/TITS.2012.2198214 10.1109/IROS40897.2019.8967728 10.1109/ICCA.2014.6870943 10.1007/s10514-011-9266-8 10.1609/icaps.v21i1.13457 10.1007/s10846-015-0278-z 10.4271/2005-01-2692 10.1109/70.660866 10.1177/0278364918779555 10.1109/21.61211 10.1007/s10440-014-9973-1 10.1109/TRO.2013.2260679 10.1016/j.amc.2013.01.038 10.1007/s10846-011-9568-2 10.1007/978-1-84628-642-1 10.1177/0278364919846910 10.1007/s10846-021-01344-y 10.1017/S0263574702004071 10.1016/j.robot.2014.10.021 10.1007/s40295-019-00171-6 10.1109/LRA.2018.2795642 10.1007/s00170-016-9074-6 10.1109/RAMECH.2004.1438016 10.1109/LRA.2017.2712650 10.1109/TRO.2004.829459 10.1109/ROBIO.2013.6739744 10.1016/j.apm.2020.03.034 10.1109/ROBOT.1987.1088038 10.1177/0278364904045481 10.1016/j.robot.2014.07.002 10.1080/01691864.2021.1896381 10.1109/HRI.2016.7451763 10.3390/s20113265 10.1002/rob.20014 10.1109/TITS.2016.2604240 10.1109/ISCAS.2015.7169274 10.1109/ICRA.2016.7487118 10.1007/978-1-84882-891-9 10.1007/s12213-018-0107-0 10.1177/0278364908097581 10.1080/01691864.2016.1168317 10.1007/s00454-002-0760-9 10.1177/0278364911432324 10.1109/70.508439 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
DOI | 10.1007/s41315-023-00300-3 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Computer Science Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2366-598X |
EndPage | 855 |
ExternalDocumentID | 10_1007_s41315_023_00300_3 |
GrantInformation_xml | – fundername: Natural Sciences and Engineering Research Council of Canada (NSERC) grantid: RGPIN-2014-06512 |
GroupedDBID | -EM 0R~ 406 AACDK AAHNG AAIAL AAJBT AANZL AARHV AASML AATNV AATVU AAUYE ABAKF ABDZT ABECU ABFTV ABJCF ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACMLO ACOKC ACPIV ACZOJ ADHHG ADKNI ADKPE ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEJRE AEMSY AEOHA AESKC AEVLU AEXYK AFBBN AFKRA AFQWF AGDGC AGMZJ AGQEE AGRTI AHKAY AHSBF AIAKS AIGIU AILAN AITGF AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ARAPS AXYYD BENPR BGLVJ BGNMA BSONS CCPQU CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD FERAY FIGPU FINBP FNLPD FSGXE GGCAI GJIRD H13 HCIFZ IKXTQ IWAJR J-C JZLTJ K7- KOV LLZTM M4Y M7S NPVJJ NQJWS NU0 O9J PT4 PTHSS RLLFE ROL RSV SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UOJIU UTJUX UZXMN VFIZW W23 Z88 ZMTXR AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L6V P62 PKEHL PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c270t-b555528de4e0c232dd0401b2bc654b328f6ea78714f134d806e9c1b7d79b1bd63 |
IEDL.DBID | 8FG |
ISSN | 2366-5971 |
IngestDate | Sat Aug 23 14:44:06 EDT 2025 Wed Oct 01 00:37:07 EDT 2025 Fri Feb 21 02:42:35 EST 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 4 |
Keywords | Manifolds Path planning Topology Robotics |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c270t-b555528de4e0c232dd0401b2bc654b328f6ea78714f134d806e9c1b7d79b1bd63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6490-4648 |
PQID | 2922080842 |
PQPubID | 6587181 |
PageCount | 46 |
ParticipantIDs | proquest_journals_2922080842 crossref_primary_10_1007_s41315_023_00300_3 springer_journals_10_1007_s41315_023_00300_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20231200 2023-12-00 20231201 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 20231200 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore – name: Atlanta |
PublicationTitle | International journal of intelligent robotics and applications Online |
PublicationTitleAbbrev | Int J Intell Robot Appl |
PublicationYear | 2023 |
Publisher | Springer Nature Singapore Springer Nature B.V |
Publisher_xml | – name: Springer Nature Singapore – name: Springer Nature B.V |
References | NoreenIKhanARyuHDohNLHabibZOptimal path planning in cluttered environment using RRT-ABIntel. Serv. Robot.20171114152 Nicolaescu, L.I.: Lectures on the Geometry of Manifolds vol. 32, 2nd edn. Ringgold Inc, Portland (2008). http://search.proquest.com/docview/200118389 BłaszczykZCarrasquel-VeraJGTopological complexity and efficiency of motion planning algorithmsRevista Matemática Iberoamericana20183441679168438962451412.55002 Quinlan, S.: Real-time modification of collision-free paths. ProQuest Dissertations Publishing (1995) RasekhipourYFadakarIKhajepourAAutonomous driving motion planning with obstacles prioritization using lexicographic optimizationControl. Eng. Pract.201877235246 NeedhamTVisual Complex Analysis1997Oxford University PressOxford University Press Inc., New York0893.30001 Olmstead Muhs, J.C., Yang, J.: A geodesics-based model for obstacle avoidance. In: 2005 Digital Human Modeling for Design and Engineering Symposium (2005). https://doi.org/10.4271/2005-01-2692 BevilacquaPFregoMFontanelliDPalopoliLReactive planning for assistive robotsIEEE Robotics and Automation Letters20183212761283 Kim, S., Sreenath, K., Bhattacharya, S., Kumar, V.: Trajectory Planning for Systems with Homotopy Class Constraints. In: Latest Advances in Robot Kinematics (ARK), Innsbruck, Austria, pp. 83–90 (2012) Stopp, A., Riethmuller, T.: Fast reactive path planning by 2d and 3d multi-layer spatial grids for mobile robot navigation. In: Proceedings of Tenth International Symposium on Intelligent Control, pp. 545–550 (1995) McFetridgeLIbrahimMYA new methodology of mobile robot navigation: The agoraphilic algorithmRobotics and Computer-Integrated Manufacturing2009253545551 WuK-LHoT-JHuangSALinK-HLinY-CLiuJ-SPath planning and replanning for mobile robot navigation on 3D terrain: An approach based on geodesicMath. Probl. Eng.2016201611235686911400.68234 CabelloSLiuYMantlerASnoeyinkJTesting homotopy for paths in the planeDiscrete & Computational Geometry2004311618120423181060.68127 Diankov, R., Kuffner, J.: Randomized statistical path planning. In: 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1–6 (2007). https://doi.org/10.1109/IROS.2007.4399557 Stein, E.M.: Complex Analysis. Princeton lectures in analysis ; 2. Princeton University Press, Princeton, N.J (2003) Jaillet, L., Porta, J.: Asymptotically-optimal path planning on manifolds. Robotics Science and Systems VIII (2012) JailletLCortésJSiméonTSampling-based path planning on configuration-space costmapsIEEE Trans. Rob.2010264635646 Ademovic, A., Lacevic, B.: Path planning for robotic manipulators using expanded bubbles of free c-space. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), vol. 2016-, pp. 77–82 (2016). https://doi.org/10.1109/ICRA.2016.7487118 BelkhoucheFBendjilaliBReactive path planning for 3-D autonomous vehiclesIEEE Trans. Control Syst. Technol.2012201249256 MediavillaMGonzálezJLFraileJCRamón PeránJReactive approach to on-line path planning for robot manipulators in dynamic environmentsRobotica2002204375384 BhattacharyaSLikhachevMKumarVTopological constraints in search-based robot path planningAuton. Robot.2012333273290 PerssonP-OStrangGA simple mesh generator in matlabSIAM Rev.2004462329345211445810.1137/S00361445034291211061.65134 SgorbissaAIntegrated robot planning, path following, and obstacle avoidance in two and three dimensions: Wheeled robots, underwater vehicles, and multicoptersThe International journal of robotics research2019387853876 LaValleSMKuffnerJJRandomized kinodynamic planningThe International Journal of Robotics Research2001205378400 TaoSTanJPath planning with obstacle avoidance based on normalized r -functionsJournal of Robotics20182018110 Simeon, T., Laumond, J.-P., Van Geem, C.V., Cortes, J.: Computer aided motion: Move3d within molog. In: Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164), vol. 2, pp. 1494–1499 (2001). https://doi.org/10.1109/ROBOT.2001.932822 LamirauxFBonnafousDLefebvreOReactive path deformation for nonholonomic mobile robotsIEEE Trans. Rob.2004206967977 BlochACamarinhaMColomboLJDynamic interpolation for obstacle avoidance on riemannian manifoldsInt. J. Control202194358860042177271480.93302 BerensonDSrinivasaSKuffnerJTask space regions: A framework for pose-constrained manipulation planningThe International Journal of Robotics Research2011301214351460 QureshiAHAyazYIntelligent bidirectional rapidly-exploring random trees for optimal motion planning in complex cluttered environmentsRobot. Auton. Syst.201568111 YoonYShinJKimHJParkYSastrySModel-predictive active steering and obstacle avoidance for autonomous ground vehiclesControl. Eng. Pract.2009177741750 LiuGTrinkleJYangYLuoSMotion planning of planar closed chains based on structural setsIEEE Access20208117203117217 Oriolo, G.: Motion Planning 3 Artifical Potential Fields. Professor Oriolo’s notes for his class in Artificial Intelligence and Robotics. (2020). http://diag.uniroma1.it/oriolo/amr/slides/MotionPlanning3_Slides.pdf Eduardo De Cos-CholulaHUlises Diaz-ArangoGHernandez-MartinezLVazquez-LealHSarmiento-ReyesATeresa Sanz-PascualMLeobardo Herrera-MayACastaneda-SheissaRFPGA implementation of homotopic path planning method with automatic assignment of repulsion parameterEnergies (Basel)202013102623 Jenkins, K.D.: The shortest path problem in the plane with obstacles: A graph modeling approach to producing finite search lists of homotopy classes. Master’s thesis, Naval Postgraduate School Monterey California (June 1991) LinYSaripalliSSampling-based path planning for uav collision avoidanceIEEE Trans. Intell. Transp. Syst.2017181131793192 CampanaMLamirauxFLaumondJ-PA gradient-based path optimization method for motion planningAdv. Robot.20163017–1811261144 HughesKTokutaARanganathanNTrulla : An algorithm for path planning among weighted regions by localized propagationsProceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems1992146947610.1109/IROS.1992.587377 KalaRHomotopy conscious roadmap construction by fast sampling of narrow corridorsApplied Intelligence (Dordrecht, Netherlands)201645410891102 McMahonTThomasSAmatoNMSampling-based motion planning with reachable volumes for high-degree-of-freedom manipulatorsThe International Journal of Robotics Research2018377779817 KavrakiLESvestkaPLatombeJ-COvermarsMHProbabilistic roadmaps for path planning in high-dimensional configuration spacesIEEE Trans. Robot. Autom.199612456658010.1109/70.508439 Lee, J.M.: Introduction to Smooth Manifolds., 2nd edn. Graduate Texts in Mathematics ; v.218. Springer, New York, NY (2002). https://doi.org/10.1007/978-1-4419-9982-5 AtakaALamH-KAlthoeferKReactive magnetic-field-inspired navigation method for robots in unknown convex 3-D environmentsIEEE Robotics and Automation Letters20183435833590 Alonso-MoraJDeCastroJARamanVRusDKress-GazitHReactive mission and motion planning with deadlock resolution avoiding dynamic obstaclesAuton. Robot.2018424801824 LumelskyVJStepanovAAPath-planning strategies for a point mobile automaton moving amidst unknown obstacles of arbitrary shapeAlgorithmica198721–44034309183610643.68150 Dash, A.K., Chen, I.-M., Yeo, S.H., Yang, G.: Singularity-free path planning of parallel manipulators using clustering algorithm and line geometry. In: 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422), vol. 1, pp. 761–766 (2003) Hernández, E., Carreras, M., Ridao, P.: A bug-based path planner guided with homotopy classes. ICINCO 2012 - Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics 2, 123–131 (2012) TrinkleJCMilgramRJComplete path planning for closed kinematic chains with spherical jointsThe International Journal of Robotics Research2002219773789 VolpeRKhoslaPManipulator control with superquadric artificial potential functions: theory and experimentsIEEE Trans. Syst. Man Cybern.19902061423143610.1109/21.61211 Diaz-Arango, G., Sarmiento-Reyes, A., Hernandez-Martinez, L., Vazquez-Leal, H., Lopez-Hernandez, D.D., Marin-Hernandez, A.: Path optimization for terrestrial robots using homotopy path planning method. In: 2015 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2824–2827 (2015) Bohigas, O., Henderson, M.E., Ros, L., Porta, J.M.: A singularity-free path planner for closed-chain manipulators. In: 2012 IEEE International Conference on Robotics and Automation, pp. 2128–2134 (2012). https://doi.org/10.1109/ICRA.2012.6224899 LiuYZhengZQinFHomotopy based optimal configuration space reduction for anytime robotic motion planningChin. J. Aeronaut.2021341364379 Diaz-ArangoGVazquez-LealHHernandez-MartinezLManuel Jimenez-FernandezVHeredia-JimenezAAmbrosioRCHuerta-ChuaJDe Cos-CholulaHHernandez-MendezSMultiple-target homotopic quasi-complete path planning method for mobile robot using a piecewise linear approachSensors (Basel, Switzerland)202020113265 M.LaValle, S.: Rapidly-exploring random trees: A new tool for path planning. Technical report, Iowa State University, Ames, IA 50011 USA (June 1998) KattepurAPurushotamanBRoboplanner: a pragmatic task planning framework for autonomous robotsCognitive Computation and Systems2020211222 Stentz, A.: Optimal and efficient path planning for partially-known environments. In: Proceedings of the 1994 IEEE International Conference on Robotics and Automation, pp. 3310–33174 (1994). https://doi.org/10.1109/ROBOT.1994.351061 DuchoňFBabinecAKajanMBeňoPFlorekMFicoTJurišicaLPath planning with modified a star algorithm for a mobile robotProcedia Engineering2014965969 Lee, J., Pippin, C., Balch, T.: Cost based planning with RRT in outdoor environments. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 684–689 (2008). https://doi.org/10.1109/IROS.2008.4651052 CockayneEJHallGWCPlane motion of a particle subject to curvature constraintsSIAM Journal on Control19751311972204333030305.53004 KangGKimYBLeeYHOhHSYouWSChoiHRSampling-based motion planning of manipulator with DE Koditschek (300_CR81) 1990; 11 I Noreen (300_CR112) 2017; 11 M Mediavilla (300_CR105) 2002; 20 H Eduardo De Cos-Cholula (300_CR43) 2020; 13 JM Porta (300_CR120) 2012; 31 T Needham (300_CR109) 1997 W Wang (300_CR157) 2017; 90 J Park (300_CR117) 2015; 31 K Wei (300_CR160) 2018; 18 300_CR153 300_CR33 B Xu (300_CR165) 2013; 71 300_CR36 X Li (300_CR96) 2020; 85 300_CR37 JM Lee (300_CR93) 2011 300_CR34 Z Błaszczyk (300_CR21) 2018; 34 J-M Park (300_CR116) 2009; 223 I Havoutis (300_CR52) 2013; 32 C Wang (300_CR156) 2016; 15 F Belkhouche (300_CR11) 2012; 20 R Kimmel (300_CR79) 1998; 95 JR Munkres (300_CR107) 2000 300_CR147 R Volpe (300_CR154) 1990; 20 O Montiel (300_CR106) 2015; 42 300_CR141 300_CR142 300_CR143 300_CR144 300_CR145 N Shvalb (300_CR140) 2007; 26 W Yao (300_CR166) 2017; 97 300_CR47 300_CR48 300_CR46 M Campana (300_CR28) 2016; 30 A Bloch (300_CR22) 2021; 94 J Barraquand (300_CR9) 2016; 10 Y Yoon (300_CR168) 2009; 17 300_CR40 J van den Berg (300_CR151) 2008; 27 300_CR2 H Akbaripour (300_CR5) 2017; 89 300_CR1 D Berenson (300_CR12) 2011; 30 Y Liu (300_CR99) 2020; 10 HK Paikray (300_CR115) 2022; 6 Y Gao (300_CR49) 2014; 52 VJ Lumelsky (300_CR101) 1987; 2 AR Diéguez (300_CR39) 2003; 37 300_CR8 L Dorst (300_CR41) 1991; 7 300_CR130 300_CR131 B Zhang (300_CR169) 2016; 13 R Kala (300_CR66) 2016; 45 H Vazquez-Leal (300_CR152) 2013; 219 S Cabello (300_CR27) 2004; 31 300_CR14 B Wang (300_CR159) 2020; 5 300_CR15 D Wang (300_CR158) 2020; 206 S Bhattacharya (300_CR19) 2012; 33 O Bohigas (300_CR24) 2013; 29 300_CR91 SM LaValle (300_CR90) 2004; 23 AV Savkin (300_CR136) 2013; 31 300_CR94 P-O Persson (300_CR119) 2004; 46 300_CR92 JA Sethian (300_CR138) 1999; 41 300_CR124 G Kang (300_CR68) 2019; 12 RR Murphy (300_CR108) 1999; 27 300_CR125 300_CR126 L De Filippis (300_CR35) 2012; 65 T McMahon (300_CR104) 2018; 37 300_CR127 LW Tu (300_CR150) 2010 RA Brooks (300_CR26) 1983; 2 300_CR16 S Tao (300_CR148) 2018; 2018 A Kattepur (300_CR70) 2020; 2 M Elbanhawi (300_CR44) 2014; 2 MA Hossain (300_CR58) 2015; 64 L Jaillet (300_CR64) 2010; 26 300_CR25 S Karaman (300_CR69) 2011; 30 300_CR23 G Liu (300_CR98) 2020; 8 J Lengyel (300_CR95) 1990; 24 300_CR113 300_CR114 300_CR118 L Jaillet (300_CR63) 2008; 27 JC Trinkle (300_CR149) 2002; 21 SM LaValle (300_CR89) 2001; 20 300_CR110 AH Qureshi (300_CR129) 2016; 40 300_CR111 Y Lin (300_CR97) 2017; 18 300_CR76 300_CR77 H Kim (300_CR78) 2018; 14 300_CR75 LE Kavraki (300_CR72) 1996; 12 E Masehian (300_CR102) 2004; 21 M Farber (300_CR45) 2003; 29 300_CR73 J Gregoire (300_CR51) 2018; 42 AH Qureshi (300_CR128) 2015; 68 300_CR71 R Kala (300_CR67) 2016; 82 P Cui (300_CR32) 2017; 2017 K Hughes (300_CR60) 1992; 1 S Bhattacharya (300_CR18) 2015; 139 S Carpin (300_CR29) 2005; 21 F Belkhouche (300_CR10) 2009; 25 S Bhattacharya (300_CR20) 2014; 33 A Wu (300_CR163) 2012; 32 F Duchoň (300_CR42) 2014; 96 MP Aghababa (300_CR3) 2012; 38 P Bevilacqua (300_CR13) 2018; 3 300_CR88 Y Liu (300_CR100) 2021; 34 300_CR85 300_CR86 ME Henderson (300_CR53) 2002; 12 300_CR80 F Lamiraux (300_CR87) 2004; 20 J Alonso-Mora (300_CR6) 2018; 42 EJ Cockayne (300_CR31) 1975; 13 O Khatib (300_CR74) 1986; 5 300_CR82 D Roy (300_CR134) 2011; 29 J Suh (300_CR146) 2017; 33 W Kowalczyk (300_CR84) 2017; 85 L Jaillet (300_CR62) 2013; 29 300_CR54 300_CR55 300_CR59 JC Ryu (300_CR135) 2012; 45 A Pressley (300_CR121) 2010 300_CR50 L McFetridge (300_CR103) 2009; 25 A-C Hildebrandt (300_CR57) 2017; 2 JA Sethian (300_CR137) 1996; 93 Y Rasekhipour (300_CR133) 2018; 77 J Agirrebeitia (300_CR4) 2005; 40 K-L Wu (300_CR164) 2016; 2016 300_CR161 K Chu (300_CR30) 2012; 13 300_CR162 Y Rasekhipour (300_CR132) 2017; 18 A Sgorbissa (300_CR139) 2019; 38 A Ataka (300_CR7) 2018; 3 300_CR167 300_CR65 L Qin (300_CR122) 2013; 2013 E Hernandez (300_CR56) 2015; 64 W Kowalczyk (300_CR83) 2018; 93 P Quillen (300_CR123) 2019; 66 S Bhattacharya (300_CR17) 2019; 38 G Diaz-Arango (300_CR38) 2020; 20 300_CR61 H Wada (300_CR155) 2021; 35 |
References_xml | – reference: DiéguezARSanzRLópezJDeliberative on-line local path planning for autonomous mobile robotsJournal of Intelligent & Robotic Systems2003371119 – reference: ParkJKarumanchiSIagnemmaKHomotopy-based divide-and-conquer strategy for optimal trajectory planning via mixed-integer programmingIEEE Trans. Rob.201531511011115 – reference: NeedhamTVisual Complex Analysis1997Oxford University PressOxford University Press Inc., New York0893.30001 – reference: ZhangBLiuYLuQWangJA path planning strategy for searching the most reliable path in uncertain environmentsInt. J. Adv. Rob. Syst.201613517298814166577510.1177/1729881416657751 – reference: PerssonP-OStrangGA simple mesh generator in matlabSIAM Rev.2004462329345211445810.1137/S00361445034291211061.65134 – reference: WadaHKinugawaJKosugeKReactive motion planning using time-layered c-spaces for a collaborative robot padyAdv. Robot.2021358490503 – reference: McMahonTThomasSAmatoNMSampling-based motion planning with reachable volumes for high-degree-of-freedom manipulatorsThe International Journal of Robotics Research2018377779817 – reference: CuiPYanWWangYReactive path planning approach for docking robots in unknown environmentJ. Adv. Transp.20172017111 – reference: KavrakiLESvestkaPLatombeJ-COvermarsMHProbabilistic roadmaps for path planning in high-dimensional configuration spacesIEEE Trans. Robot. Autom.199612456658010.1109/70.508439 – reference: Wu, K., Lo, C., Lin, Y., Liu, J.: 3D path planning based on nonlinear geodesic equation. In: 11th IEEE International Conference on Control Automation (ICCA), pp. 342–347 (2014). https://doi.org/10.1109/ICCA.2014.6870943 – reference: BhattacharyaSLikhachevMKumarVTopological constraints in search-based robot path planningAuton. Robot.2012333273290 – reference: Bohlin, R., Kavraki, L.E.: Path planning using lazy PRM. In: Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), vol. 1, pp. 521–5281 (2000). https://doi.org/10.1109/ROBOT.2000.844107 – reference: BarraquandJLatombeJ-CRobot motion planning: A distributed representation approachThe International Journal of Robotics Research2016106628649 – reference: HughesKTokutaARanganathanNTrulla : An algorithm for path planning among weighted regions by localized propagationsProceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems1992146947610.1109/IROS.1992.587377 – reference: Kim, D., Kang, M., Yoon, S.-E.: Volumetric tree: Adaptive sparse graph for effective exploration of homotopy classes. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1496–1503 (2019) – reference: CabelloSLiuYMantlerASnoeyinkJTesting homotopy for paths in the planeDiscrete & Computational Geometry2004311618120423181060.68127 – reference: LeeJMIntroduction To Topological Manifolds20112DordrechtSpringer1209.57001 – reference: Radhakrishnan, S., Gueaieb, W.: Reconfigurable EKF for 2D SLAM. In: 2016 IEEE 2nd International Forum on Research and Technologies for Society and Industry Leveraging a Better Tomorrow (RTSI), pp. 1–6 (2016). https://doi.org/10.1109/RTSI.2016.7740549 – reference: Alonso-MoraJDeCastroJARamanVRusDKress-GazitHReactive mission and motion planning with deadlock resolution avoiding dynamic obstaclesAuton. Robot.2018424801824 – reference: RasekhipourYKhajepourAChenSLitkouhiBA potential field-based model predictive path-planning controller for autonomous road vehiclesIEEE Trans. Intell. Transp. Syst.20171851255126710.1109/TITS.2016.2604240 – reference: WuK-LHoT-JHuangSALinK-HLinY-CLiuJ-SPath planning and replanning for mobile robot navigation on 3D terrain: An approach based on geodesicMath. Probl. Eng.2016201611235686911400.68234 – reference: Faverjon, B., Tournassoud, P.: A local based approach for path planning of manipulators with a high number of degrees of freedom. In: Proceedings. 1987 IEEE International Conference on Robotics and Automation, vol. 4, pp. 1152–1159 (1987). https://doi.org/10.1109/ROBOT.1987.1087982 – reference: WangWZuoLXuXA learning-based multi-rrt approach for robot path planning in narrow passagesJournal of Intelligent & Robotic Systems2017901–281100 – reference: Olmstead Muhs, J.C., Yang, J.: A geodesics-based model for obstacle avoidance. In: 2005 Digital Human Modeling for Design and Engineering Symposium (2005). https://doi.org/10.4271/2005-01-2692 – reference: McFetridgeLIbrahimMYA new methodology of mobile robot navigation: The agoraphilic algorithmRobotics and Computer-Integrated Manufacturing2009253545551 – reference: Leica, P., Chavez, D., Rosales, A., Roberti, F., Toibero, J.M., Carelli, R.: Strategy based on multiple objectives and null space for the formation of mobile robots and dynamic obstacle avoidance. Revista Politécnica (Quito) 33(1) (2014) – reference: Yi, D., Goodrich, M., Seppi, K.: Homotopy-aware RRT: Toward human-robot topological path-planning. In: The Eleventh ACM/IEEE International Conference on Human Robot Interaction. HRI ’16, pp. 279–286 (2016) – reference: DorstLMandhyanITrovatoKThe geometrical representation of path planning problemsRobot. Auton. Syst.199172181195 – reference: MurphyRRHughesKMarzilliANollEIntegrating explicit path planning with reactive control of mobile robots using trullaRobot. Auton. Syst.1999274225245 – reference: SethianJAFast marching methods. SIAM review1999412199235 – reference: BhattacharyaSTowards optimal path computation in a simplicial complexThe International Journal of Robotics Research20193889811009 – reference: Kolur, K., Chintalapudi, S., Boots, B., Mukadam, M.: Online motion planning over multiple homotopy classes with gaussian process inference. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2358–2364 (2019) – reference: NoreenIKhanARyuHDohNLHabibZOptimal path planning in cluttered environment using RRT-ABIntel. Serv. Robot.20171114152 – reference: BohigasOHendersonMERosLManubensMPortaJMPlanning singularity-free paths on closed-chain manipulatorsIEEE Trans. Rob.201329488889810.1109/TRO.2013.2260679 – reference: LamirauxFBonnafousDLefebvreOReactive path deformation for nonholonomic mobile robotsIEEE Trans. Rob.2004206967977 – reference: LiuGTrinkleJYangYLuoSMotion planning of planar closed chains based on structural setsIEEE Access20208117203117217 – reference: Bhattacharya, S., Likhachev, M., Kumar, V.: Identification and representation of homotopy classes of trajectories for search-based path planning in 3D. In: Durrant-Whyte, H., Roy, N., Abbeel, P. (eds.) Robotics: Science and Systems VII. The MIT Press, One Broadway 12th Floor Cambridge, MA 02142 (2012). https://doi.org/10.7551/mitpress/9481.003.0007 – reference: Jaillet, L., Porta, J.: Asymptotically-optimal path planning on manifolds. Robotics Science and Systems VIII (2012) – reference: AghababaMP3D Path planning for underwater vehicles using five evolutionary optimization algorithms avoiding static and energetic obstaclesAppl. Ocean Res.2012384862 – reference: Lee, J., Pippin, C., Balch, T.: Cost based planning with RRT in outdoor environments. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 684–689 (2008). https://doi.org/10.1109/IROS.2008.4651052 – reference: MediavillaMGonzálezJLFraileJCRamón PeránJReactive approach to on-line path planning for robot manipulators in dynamic environmentsRobotica2002204375384 – reference: Lee, J.M.: Introduction to Smooth Manifolds., 2nd edn. Graduate Texts in Mathematics ; v.218. Springer, New York, NY (2002). https://doi.org/10.1007/978-1-4419-9982-5 – reference: KhatibOReal-time obstacle avoidance for manipulators and mobile robotsThe International Journal of Robotics Research1986519098 – reference: WangBLiuZLiQProrokAMobile robot path planning in dynamic environments through globally guided reinforcement learningIEEE Robotics and Automation Letters20205469326939 – reference: YaoWQiNZhaoJWanNBounded curvature path planning with expected length for dubins vehicle entering target manifoldRobot. Auton. Syst.201797217229 – reference: Bhattacharya, S., Likhachev, M., Kumar, V.: Search-based path planning with homotopy class constraints in 3d. In: Invited Paper for Sub-area Spotlights Track on ’Best-paper Talks’, Proceedings of Twenty-Sixth Conference on Artificial Intelligence (AAAI-12) (2012) – reference: LiXZhaoGLiBGenerating optimal path by level set approach for a mobile robot moving in static/dynamic environmentsAppl. Math. Model.2020852102304099345 – reference: SethianJAA fast marching level set method for monotonically advancing frontsProceedings of the National Academy of Sciences - PNAS19969341591159513740100852.65055 – reference: Bhattacharya, S., Kumar, V., Likhachev, M.: Search-based path planning with homotopy class constraints. In: Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence. AAAI’10, pp. 1230–1237 (2010) – reference: BhattacharyaSGhristRKumarVMulti-robot coverage and exploration on riemannian manifolds with boundariesThe International Journal of Robotics Research2014331113137 – reference: JailletLCortésJSiméonTSampling-based path planning on configuration-space costmapsIEEE Trans. Rob.2010264635646 – reference: AgirrebeitiaJAvilésRde BustosIFAjuriaGA new APF strategy for path planning in environments with obstaclesMech. Mach. Theory200540664565821540531127.70301 – reference: SgorbissaAIntegrated robot planning, path following, and obstacle avoidance in two and three dimensions: Wheeled robots, underwater vehicles, and multicoptersThe International journal of robotics research2019387853876 – reference: Hernández, E., Carreras, M., Ridao, P.: A bug-based path planner guided with homotopy classes. ICINCO 2012 - Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics 2, 123–131 (2012) – reference: Nicolaescu, L.: Homeomorphisms vs. Diffeomorphisms. Professor Nicolaescu’s notes on the topic. (2003). https://www3.nd.edu/~low lnicolae/FYsem2003.pdf – reference: MontielOOrozco-RosasUSepúlvedaRPath planning for mobile robots using bacterial potential field for avoiding static and dynamic obstaclesExpert Syst. Appl.2015421251775191 – reference: Atramentov, A., LaValle, S.M.: Efficient nearest neighbor searching for motion planning. In: Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292), vol. 1, pp. 632–6371 (2002). https://doi.org/10.1109/ROBOT.2002.1013429 – reference: Eduardo De Cos-CholulaHUlises Diaz-ArangoGHernandez-MartinezLVazquez-LealHSarmiento-ReyesATeresa Sanz-PascualMLeobardo Herrera-MayACastaneda-SheissaRFPGA implementation of homotopic path planning method with automatic assignment of repulsion parameterEnergies (Basel)202013102623 – reference: KaramanSFrazzoliESampling-based algorithms for optimal motion planningThe International Journal of Robotics Research20113078468941220.91006 – reference: BrooksRAPlanning collision- free motions for pick-and-place operationsThe International Journal of Robotics Research1983241944 – reference: Volpe, R., Khosla, P.: Artificial potentials with elliptical isopotential contours for obstacle avoidance. In: 26th IEEE Conference on Decision and Control, vol. 26, pp. 180–185 (1987). https://doi.org/10.1109/CDC.1987.272738 – reference: Radhakrishnan, S.: Observable 2D SLAM and Evidential Occupancy Grids. Master’s thesis, Carleton University (2014) – reference: Ferguson, D., Stentz, A.: Anytime RRTs. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5369–5375 (2006). https://doi.org/10.1109/IROS.2006.282100 – reference: DuchoňFBabinecAKajanMBeňoPFlorekMFicoTJurišicaLPath planning with modified a star algorithm for a mobile robotProcedia Engineering2014965969 – reference: LengyelJReichertMDonaldBRGreenbergDPReal-time robot motion planning using rasterizing computer graphics hardwareComputer graphics (New York, N.Y.)1990244327335 – reference: AkbaripourHAkbaripourHMasehianEMasehianESemi-lazy probabilistic roadmap: a parameter-tuned, resilient and robust path planning method for manipulator robotsInt. J. Adv. Manuf. Technol.2017895140114301348.68231 – reference: KimHCheangUKRogowskiLWKimMJMotion planning of particle based microrobots for static obstacle avoidanceJournal of Micro-Bio Robotics2018141–24149 – reference: PressleyAElementary Differential Geometry20102LondonSpringer undergraduate mathematics series. Springer10.1007/978-1-84882-891-91191.53002 – reference: Ginesi, M., Meli, D., Roberti, A., Sansonetto, N., Fiorini, P.: Dynamic movement primitives: Volumetric obstacle avoidance using dynamic potential functions. Journal of Intelligent & Robotic Systems 101(4) (2021) – reference: Hsu, D., Sun, Zheng: Adaptively combining multiple sampling strategies for probabilistic roadmap planning. In: IEEE Conference on Robotics, Automation and Mechatronics, 2004., vol. 2, pp. 774–7792 (2004). https://doi.org/10.1109/RAMECH.2004.1438016 – reference: Kuffner, J.J., LaValle, S.M.: RRT-connect: An efficient approach to single-query path planning. In: Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), vol. 2, pp. 995–10012 (2000). https://doi.org/10.1109/ROBOT.2000.844730 – reference: RoyDAlgorithmic path planning of static robots in three dimensions using configuration space metricsRobotica2011292295315 – reference: BelkhoucheFBendjilaliBReactive path planning for 3-D autonomous vehiclesIEEE Trans. Control Syst. Technol.2012201249256 – reference: Kim, S., Sreenath, K., Bhattacharya, S., Kumar, V.: Trajectory Planning for Systems with Homotopy Class Constraints. In: Latest Advances in Robot Kinematics (ARK), Innsbruck, Austria, pp. 83–90 (2012) – reference: WuAHowJPGuaranteed infinite horizon avoidance of unpredictable, dynamically constrained obstaclesAuton. Robot.2012323227242 – reference: WangDWangPZhangXGuoXShuYTianXAn obstacle avoidance strategy for the wave glider based on the improved artificial potential field and collision prediction modelOcean Eng.2020206 – reference: Abbas, M.A., Milman, R., Eklund, J.M.: Obstacle avoidance in real time with nonlinear model predictive control of autonomous vehicles. In: 2014 IEEE 27th Canadian Conference on Electrical and Computer Engineering (CCECE), pp. 1–6 (2014). https://doi.org/10.1109/CCECE.2014.6901109 – reference: HavoutisIRamamoorthySMotion planning and reactive control on learnt skill manifoldsThe International Journal of Robotics Research2013329–1011201150 – reference: ChuKLeeMSunwooMLocal path planning for off-road autonomous driving with avoidance of static obstaclesIEEE Trans. Intell. Transp. Syst.201213415991616 – reference: Gao, Y., Lin, T., Borrelli, F., Tseng, E., Hrovat, D.: Predictive Control of Autonomous Ground Vehicles With Obstacle Avoidance on Slippery Roads. Dynamic Systems and Control Conference, vol. ASME 2010 Dynamic Systems and Control Conference, Volume 1, pp. 265–272 (2010). https://doi.org/10.1115/DSCC2010-4263. ASME – reference: Kavraki, L.E., Kolountzakis, M.N., Latombe, J.-.: Analysis of probabilistic roadmaps for path planning. IEEE Transactions on Robotics and Automation 14(1), 166–171 (1998). https://doi.org/10.1109/70.660866 – reference: KowalczykWRapid navigation function control for two-wheeled mobile robotsJournal of Intelligent & Robotic Systems2018933–4687697 – reference: BelkhoucheFReactive path planning in a dynamic environmentIEEE Trans. Rob.2009254902911 – reference: Dash, A.K., Chen, I.-M., Yeo, S.H., Yang, G.: Singularity-free path planning of parallel manipulators using clustering algorithm and line geometry. In: 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422), vol. 1, pp. 761–766 (2003) – reference: QinLYinQZhaYPengYDynamic detection of topological information from grid-based generalized voronoi diagramsMath. Probl. Eng.2013201311131322631296.68178 – reference: Diaz-Arango, G., Sarmiento-Reyes, A., Hernandez-Martinez, L., Vazquez-Leal, H., Lopez-Hernandez, D.D., Marin-Hernandez, A.: Path optimization for terrestrial robots using homotopy path planning method. In: 2015 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2824–2827 (2015) – reference: Oriolo, G.: Motion Planning 3 Artifical Potential Fields. Professor Oriolo’s notes for his class in Artificial Intelligence and Robotics. (2020). http://diag.uniroma1.it/oriolo/amr/slides/MotionPlanning3_Slides.pdf – reference: ShvalbNShohamMLiuGTrinkleJCMotion planning for a class of planar closed-chain manipulatorsThe International Journal of Robotics Research2007265457473 – reference: Jenkins, K.D.: The shortest path problem in the plane with obstacles: A graph modeling approach to producing finite search lists of homotopy classes. Master’s thesis, Naval Postgraduate School Monterey California (June 1991) – reference: KowalczykWKowalczykWPrzybylaMPrzybylaMKozlowskiKKozlowskiKSet-point control of mobile robot with obstacle detection and avoidance using navigation function - experimental verificationJournal of Intelligent & Robotic Systems2017853539552 – reference: RyuJCRyuJCParkFCParkFCKimYYKimYYMobile robot path planning algorithm by equivalent conduction heat flow topology optimizationStruct. Multidiscip. Optim.201245570371529134391274.70011 – reference: AtakaALamH-KAlthoeferKReactive magnetic-field-inspired navigation method for robots in unknown convex 3-D environmentsIEEE Robotics and Automation Letters20183435833590 – reference: HildebrandtA-CKlischatMWahrmannDWittmannRSygullaFSeiwaldPRixenDBuschmannTReal-time path planning in unknown environments for bipedal robotsIEEE Robotics and Automation Letters20172418561863 – reference: Quinlan, S.: Real-time modification of collision-free paths. ProQuest Dissertations Publishing (1995) – reference: HendersonMEMultiple parameter continuation: Computing implicitly defined k-manifoldsInt. J. Bifurcat. Chaos Appl. Sci. Eng.200212345147618948761044.37053 – reference: Siciliano, B.: Robotics Modelling, Planning and Control, 1st ed. 2009. edn. Advanced Textbooks in Control and Signal Processing. Springer, London (2009). https://doi.org/10.1007/978-1-84628-642-1 – reference: KalaRHomotopy conscious roadmap construction by fast sampling of narrow corridorsApplied Intelligence (Dordrecht, Netherlands)201645410891102 – reference: ElbanhawiMSimicMSampling-based robot motion planning: A reviewIEEE Access20142567710.1109/ACCESS.2014.2302442 – reference: Hernández, E., Carreras, M., Ridao, P.: A path planning algorithm for an AUV guided with homotopy classes. In: Proceedings of the Twenty-First International Conference on Automated Planning and Scheduling, vol. 21 (2011) – reference: VolpeRKhoslaPManipulator control with superquadric artificial potential functions: theory and experimentsIEEE Trans. Syst. Man Cybern.19902061423143610.1109/21.61211 – reference: Stentz, A.: Optimal and efficient path planning for partially-known environments. In: Proceedings of the 1994 IEEE International Conference on Robotics and Automation, pp. 3310–33174 (1994). https://doi.org/10.1109/ROBOT.1994.351061 – reference: SuhJGongJOhSFast sampling-based cost-aware path planning with nonmyopic extensions using cross entropyIEEE Trans. Rob.201733613131326 – reference: WangCMaoYSDuKJSimulation on local obstacle avoidance algorithm for unmanned surface vehicleInternational Journal of Simulation Modelling2016153460472 – reference: Koditschek, D.: Exact robot navigation by means of potential functions: Some topological considerations. In: Proceedings. 1987 IEEE International Conference on Robotics and Automation, vol. 4, pp. 1–6 (1987). https://doi.org/10.1109/ROBOT.1987.1088038 – reference: De FilippisLGuglieriGQuagliottiFPath planning strategies for UAVs in 3D environmentsJournal of Intelligent & Robotic Systems2012651247264 – reference: FarberMTopological complexity of motion planningDiscrete & Computational Geometry200329221122119572281038.68130 – reference: HernandezECarrerasMRidaoPA comparison of homotopic path planning algorithms for robotic applicationsRobot. Auton. Syst.2015644458 – reference: M.LaValle, S.: Rapidly-exploring random trees: A new tool for path planning. Technical report, Iowa State University, Ames, IA 50011 USA (June 1998) – reference: BłaszczykZCarrasquel-VeraJGTopological complexity and efficiency of motion planning algorithmsRevista Matemática Iberoamericana20183441679168438962451412.55002 – reference: CarpinSPillonettoGMotion planning using adaptive random walksIEEE Trans. Rob.2005211129136 – reference: Nicolaescu, L.I.: Lectures on the Geometry of Manifolds vol. 32, 2nd edn. Ringgold Inc, Portland (2008). http://search.proquest.com/docview/200118389/ – reference: WeiKRenBA method on dynamic path planning for robotic manipulator autonomous obstacle avoidance based on an improved RRT algorithmSensors (Basel, Switzerland)2018182571 – reference: Bohigas, O., Henderson, M.E., Ros, L., Porta, J.M.: A singularity-free path planner for closed-chain manipulators. In: 2012 IEEE International Conference on Robotics and Automation, pp. 2128–2134 (2012). https://doi.org/10.1109/ICRA.2012.6224899 – reference: Qureshi, A.H., Iqbal, K.F., Qamar, S.M., Islam, F., Ayaz, Y., Muhammad, N.: Potential guided directional-RRT* for accelerated motion planning in cluttered environments. In: 2013 IEEE International Conference on Mechatronics and Automation, pp. 519–524 (2013). https://doi.org/10.1109/ICMA.2013.6617971 – reference: KimmelRSethianJAComputing geodesic paths on manifoldsProceedings of the National Academy of Sciences - PNAS199895158431843516391350908.65049 – reference: MasehianEAmin-NaseriMRA voronoi diagram-visibility graph-potential field compound algorithm for robot path planningJ. Robot. Syst.2004216275300 – reference: Donald, B., Lynch, K.K.M.., Rus, D. (eds.): Algorithmic and Computational Robotics : New Directions 2000 WAFR, 1st edn. A K Peters/CRC Press, an imprint of Taylor and Francis, Boca Raton, FL (2001) – reference: Ademovic, A., Lacevic, B.: Path planning for robotic manipulators using expanded bubbles of free c-space. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), vol. 2016-, pp. 77–82 (2016). https://doi.org/10.1109/ICRA.2016.7487118 – reference: BevilacquaPFregoMFontanelliDPalopoliLReactive planning for assistive robotsIEEE Robotics and Automation Letters20183212761283 – reference: JailletLSimeonTPath deformation roadmaps: Compact graphs with useful cycles for motion planningThe International Journal of Robotics Research20082711–121175118810.1177/0278364908098411 – reference: ParkJ-MKimD-WYoonY-SKimHJYiK-SObstacle avoidance of autonomous vehicles based on model predictive controlProceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering20092231214991516 – reference: XuBXuBStilwellDJStilwellDJKurdilaAJKurdilaAJFast path re-planning based on fast marching and level setsJournal of Intelligent & Robotic Systems2013713303317 – reference: QureshiAHAyazYIntelligent bidirectional rapidly-exploring random trees for optimal motion planning in complex cluttered environmentsRobot. Auton. Syst.201568111 – reference: QureshiAHQureshiAHAyazYAyazYPotential functions based sampling heuristic for optimal path planningAuton. Robot.201640610791093 – reference: GregoireJČápMFrazzoliELocally-optimal multi-robot navigation under delaying disturbances using homotopy constraintsAuton. Robot.2018424895907 – reference: Kennedy, M., Thakur, D., Ani Hsieh, M., Bhattacharya, S., Kumar, V.: Optimal paths for polygonal robots in SE(2). Journal of Mechanisms and Robotics 10(2) (2018) – reference: LaValleSMBranickyMSLindemannSROn the relationship between classical grid search and probabilistic roadmapsThe International Journal of Robotics Research2004237–8673692 – reference: MunkresJRTopology20002Upper Saddle River, NJPrentice Hall0951.54001 – reference: KalaRHomotopic roadmap generation for robot motion planningJournal of Intelligent & Robotic Systems20168235555753508639 – reference: LinYSaripalliSSampling-based path planning for uav collision avoidanceIEEE Trans. Intell. Transp. Syst.2017181131793192 – reference: Simeon, T., Laumond, J.-P., Van Geem, C.V., Cortes, J.: Computer aided motion: Move3d within molog. In: Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164), vol. 2, pp. 1494–1499 (2001). https://doi.org/10.1109/ROBOT.2001.932822 – reference: Khosla, P., Volpe, R.: Superquadric artificial potentials for obstacle avoidance and approach. In: Proceedings. 1988 IEEE International Conference on Robotics and Automation, pp. 1778–17843 (1988). https://doi.org/10.1109/ROBOT.1988.12323 – reference: Stopp, A., Riethmuller, T.: Fast reactive path planning by 2d and 3d multi-layer spatial grids for mobile robot navigation. In: Proceedings of Tenth International Symposium on Intelligent Control, pp. 545–550 (1995) – reference: QuillenPMuñozJSubbaraoKPath planning to a reachable state using minimum control effort based navigation functionsJ. Astronaut. Sci.2019664554581 – reference: SavkinAVHoyMReactive and the shortest path navigation of a wheeled mobile robot in cluttered environmentsRobotica2013312323330 – reference: TrinkleJCMilgramRJComplete path planning for closed kinematic chains with spherical jointsThe International Journal of Robotics Research2002219773789 – reference: Vazquez-LealHMarin-HernandezAKhanYYıldırımAFilobello-NinoUCastaneda-SheissaRJimenez-FernandezVMExploring collision-free path planning by using homotopy continuation methodsAppl. Math. Comput.2013219147514753230325931366.70011 – reference: YoonYShinJKimHJParkYSastrySModel-predictive active steering and obstacle avoidance for autonomous ground vehiclesControl. Eng. Pract.2009177741750 – reference: Tanner, H.G., Kumar, A.: Towards decentralization of multi-robot navigation functions. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pp. 4132–4137 (2005) – reference: TuLWAn Introduction to Manifolds20102New YorkUniversitext. Springer10.1007/978-1-4419-7400-6 – reference: PortaJMJailletLBohigasORandomized path planning on manifolds based on higher-dimensional continuationThe International Journal of Robotics Research2012312201215 – reference: BerensonDSrinivasaSKuffnerJTask space regions: A framework for pose-constrained manipulation planningThe International Journal of Robotics Research2011301214351460 – reference: LaValleSMKuffnerJJRandomized kinodynamic planningThe International Journal of Robotics Research2001205378400 – reference: HossainMAFerdousIAutonomous robot path planning in dynamic environment using a new optimization technique inspired by bacterial foraging techniqueRobot. Auton. Syst.201564137141 – reference: KoditschekDERimonERobot navigation functions on manifolds with boundaryAdv. Appl. Math.199011441244210772560727.58003 – reference: BhattacharyaSPivtoraikoMA classification of configuration spaces of planar robot arms for a continuous inverse kinematics problemActa Appl. Math.2015139113316634005861321.70004 – reference: CockayneEJHallGWCPlane motion of a particle subject to curvature constraintsSIAM Journal on Control19751311972204333030305.53004 – reference: LiuYQiNYaoWZhaoJXuSCooperative path planning for aerial recovery of a UAV swarm using genetic algorithm and homotopic approachAppl. Sci.202010124154 – reference: KattepurAPurushotamanBRoboplanner: a pragmatic task planning framework for autonomous robotsCognitive Computation and Systems2020211222 – reference: Quinlan, S., Khatib, O.: Elastic bands: connecting path planning and control. In: [1993] Proceedings IEEE International Conference on Robotics and Automation, pp. 802–8072 (1993). https://doi.org/10.1109/ROBOT.1993.291936 – reference: KangGKimYBLeeYHOhHSYouWSChoiHRSampling-based motion planning of manipulator with goal-oriented samplingIntel. Serv. Robot.2019123265273 – reference: PaikrayHKDasPKPandaSOptimal path planning of multi-robot in dynamic environment using hybridization of meta-heuristic algorithmInternational journal of intelligent robotics and applications Online202264625667 – reference: Diaz-ArangoGVazquez-LealHHernandez-MartinezLManuel Jimenez-FernandezVHeredia-JimenezAAmbrosioRCHuerta-ChuaJDe Cos-CholulaHHernandez-MendezSMultiple-target homotopic quasi-complete path planning method for mobile robot using a piecewise linear approachSensors (Basel, Switzerland)202020113265 – reference: Dale, L.K., Amato, N.M.: Probabilistic roadmaps-putting it all together. In: Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164), vol. 2, pp. 1940–19472 (2001). https://doi.org/10.1109/ROBOT.2001.932892 – reference: Wilson, J.: Manifolds. Notes for graduate students via seminar by Dr.Jenny Wilson (2012). http://www.math.lsa.umich.edu/~low jchw/WOMPtalk-Manifolds.pdf – reference: BlochACamarinhaMColomboLJDynamic interpolation for obstacle avoidance on riemannian manifoldsInt. J. Control202194358860042177271480.93302 – reference: Kuwata, Y., Teo, J., Karaman, S., Fiore, G., Frazzoli, E., How, J.: Motion planning in complex environments using closed-loop prediction. In: AIAA Guidance, Navigation and Control Conference and Exhibit (2008). https://doi.org/10.2514/6.2008-7166.AIAA – reference: van den BergJOvermarsMPlanning time-minimal safe paths amidst unpredictably moving obstaclesThe International Journal of Robotics Research20082711–12127412941188.93030 – reference: LumelskyVJStepanovAAPath-planning strategies for a point mobile automaton moving amidst unknown obstacles of arbitrary shapeAlgorithmica198721–44034309183610643.68150 – reference: JailletLPortaJMPath planning under kinematic constraints by rapidly exploring manifoldsIEEE Trans. Rob.201329110511710.1109/TRO.2012.2222272 – reference: Stein, E.M.: Complex Analysis. Princeton lectures in analysis ; 2. Princeton University Press, Princeton, N.J (2003) – reference: GaoYGrayATsengHEBorrelliFA tube-based robust nonlinear predictive control approach to semiautonomous ground vehiclesVeh. Syst. Dyn.201452680282310.1080/00423114.2014.902537 – reference: Persson, P.-O.: Mesh generation for implicit geometries. Ph.D. dissertation, Massachusetts Institute of Technology (February 2005). http://persson.berkeley.edu/thesis/persson-thesis.pdf – reference: CampanaMLamirauxFLaumondJ-PA gradient-based path optimization method for motion planningAdv. Robot.20163017–1811261144 – reference: Qureshi, A.H., Mumtaz, S., Iqbal, K.F., Ali, B., Ayaz, Y., Ahmed, F., Muhammad, M.S., Hasan, O., Kim, W.Y., Ra, M.: Adaptive potential guided directional-RRT. In: 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 1887–1892 (2013). https://doi.org/10.1109/ROBIO.2013.6739744 – reference: TaoSTanJPath planning with obstacle avoidance based on normalized r -functionsJournal of Robotics20182018110 – reference: Diankov, R., Kuffner, J.: Randomized statistical path planning. In: 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1–6 (2007). https://doi.org/10.1109/IROS.2007.4399557 – reference: RasekhipourYFadakarIKhajepourAAutonomous driving motion planning with obstacles prioritization using lexicographic optimizationControl. Eng. Pract.201877235246 – reference: LiuYZhengZQinFHomotopy based optimal configuration space reduction for anytime robotic motion planningChin. J. Aeronaut.2021341364379 – volume: 13 start-page: 2623 issue: 10 year: 2020 ident: 300_CR43 publication-title: Energies (Basel) doi: 10.3390/en13102623 – ident: 300_CR144 doi: 10.1109/ROBOT.1994.351061 – ident: 300_CR23 doi: 10.1109/ICRA.2012.6224899 – volume: 2017 start-page: 1 year: 2017 ident: 300_CR32 publication-title: J. Adv. Transp. doi: 10.1155/2017/6716820 – volume: 45 start-page: 703 issue: 5 year: 2012 ident: 300_CR135 publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-011-0728-6 – volume: 11 start-page: 41 issue: 1 year: 2017 ident: 300_CR112 publication-title: Intel. Serv. Robot. doi: 10.1007/s11370-017-0236-7 – ident: 300_CR82 doi: 10.1109/IROS40897.2019.8967598 – volume: 40 start-page: 645 issue: 6 year: 2005 ident: 300_CR4 publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2005.01.006 – volume: 30 start-page: 846 issue: 7 year: 2011 ident: 300_CR69 publication-title: The International Journal of Robotics Research doi: 10.1177/0278364911406761 – volume: 38 start-page: 981 issue: 8 year: 2019 ident: 300_CR17 publication-title: The International Journal of Robotics Research doi: 10.1177/0278364919855422 – volume: 68 start-page: 1 year: 2015 ident: 300_CR128 publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2015.02.007 – volume: 31 start-page: 61 issue: 1 year: 2004 ident: 300_CR27 publication-title: Discrete & Computational Geometry doi: 10.1007/s00454-003-2949-y – volume: 17 start-page: 741 issue: 7 year: 2009 ident: 300_CR168 publication-title: Control. Eng. Pract. doi: 10.1016/j.conengprac.2008.12.001 – volume: 27 start-page: 1175 issue: 11–12 year: 2008 ident: 300_CR63 publication-title: The International Journal of Robotics Research doi: 10.1177/0278364908098411 – volume: 10 start-page: 4154 issue: 12 year: 2020 ident: 300_CR99 publication-title: Appl. Sci. doi: 10.3390/app10124154 – volume: 42 start-page: 895 issue: 4 year: 2018 ident: 300_CR51 publication-title: Auton. Robot. doi: 10.1007/s10514-017-9673-6 – volume: 11 start-page: 412 issue: 4 year: 1990 ident: 300_CR81 publication-title: Adv. Appl. Math. doi: 10.1016/0196-8858(90)90017-S – volume: 42 start-page: 801 issue: 4 year: 2018 ident: 300_CR6 publication-title: Auton. Robot. doi: 10.1007/s10514-017-9665-6 – volume: 93 start-page: 687 issue: 3–4 year: 2018 ident: 300_CR83 publication-title: Journal of Intelligent & Robotic Systems – ident: 300_CR153 doi: 10.1109/CDC.1987.272738 – ident: 300_CR126 doi: 10.1109/ICMA.2013.6617971 – volume: 34 start-page: 364 issue: 1 year: 2021 ident: 300_CR100 publication-title: Chin. J. Aeronaut. doi: 10.1016/j.cja.2020.09.036 – volume: 10 start-page: 628 issue: 6 year: 2016 ident: 300_CR9 publication-title: The International Journal of Robotics Research doi: 10.1177/027836499101000604 – volume-title: Visual Complex Analysis year: 1997 ident: 300_CR109 doi: 10.1093/oso/9780198534471.001.0001 – volume: 31 start-page: 323 issue: 2 year: 2013 ident: 300_CR136 publication-title: Robotica doi: 10.1017/S0263574712000331 – volume: 7 start-page: 181 issue: 2 year: 1991 ident: 300_CR41 publication-title: Robot. Auton. Syst. doi: 10.1016/0921-8890(91)90041-I – ident: 300_CR92 doi: 10.1007/978-1-4419-9982-5 – ident: 300_CR125 – volume: 2016 start-page: 1 year: 2016 ident: 300_CR164 publication-title: Math. Probl. Eng. – volume: 2013 start-page: 1 year: 2013 ident: 300_CR122 publication-title: Math. Probl. Eng. – volume: 2 start-page: 12 issue: 1 year: 2020 ident: 300_CR70 publication-title: Cognitive Computation and Systems doi: 10.1049/ccs.2019.0025 – volume: 77 start-page: 235 year: 2018 ident: 300_CR133 publication-title: Control. Eng. Pract. doi: 10.1016/j.conengprac.2018.04.014 – volume: 13 start-page: 197 issue: 1 year: 1975 ident: 300_CR31 publication-title: SIAM Journal on Control doi: 10.1137/0313012 – ident: 300_CR111 – ident: 300_CR25 doi: 10.1109/ROBOT.2000.844107 – volume: 5 start-page: 90 issue: 1 year: 1986 ident: 300_CR74 publication-title: The International Journal of Robotics Research doi: 10.1177/027836498600500106 – volume: 3 start-page: 3583 issue: 4 year: 2018 ident: 300_CR7 publication-title: IEEE Robotics and Automation Letters doi: 10.1109/LRA.2018.2853801 – ident: 300_CR47 doi: 10.1109/IROS.2006.282100 – volume: 42 start-page: 5177 issue: 12 year: 2015 ident: 300_CR106 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.02.033 – volume: 34 start-page: 1679 issue: 4 year: 2018 ident: 300_CR21 publication-title: Revista Matemática Iberoamericana doi: 10.4171/rmi/1039 – ident: 300_CR8 doi: 10.1109/ROBOT.2002.1013429 – volume: 33 start-page: 1313 issue: 6 year: 2017 ident: 300_CR146 publication-title: IEEE Trans. Rob. doi: 10.1109/TRO.2017.2738664 – volume: 21 start-page: 773 issue: 9 year: 2002 ident: 300_CR149 publication-title: The International Journal of Robotics Research doi: 10.1177/0278364902021009119 – volume: 18 start-page: 3179 issue: 11 year: 2017 ident: 300_CR97 publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2017.2673778 – volume: 2 start-page: 19 issue: 4 year: 1983 ident: 300_CR26 publication-title: The International Journal of Robotics Research doi: 10.1177/027836498300200402 – volume: 41 start-page: 199 issue: 2 year: 1999 ident: 300_CR138 publication-title: Fast marching methods. SIAM review doi: 10.1137/S0036144598347059 – volume: 27 start-page: 225 issue: 4 year: 1999 ident: 300_CR108 publication-title: Robot. Auton. Syst. doi: 10.1016/S0921-8890(99)00003-2 – volume: 94 start-page: 588 issue: 3 year: 2021 ident: 300_CR22 publication-title: Int. J. Control doi: 10.1080/00207179.2019.1603400 – ident: 300_CR114 – volume: 40 start-page: 1079 issue: 6 year: 2016 ident: 300_CR129 publication-title: Auton. Robot. doi: 10.1007/s10514-015-9518-0 – volume: 71 start-page: 303 issue: 3 year: 2013 ident: 300_CR165 publication-title: Journal of Intelligent & Robotic Systems doi: 10.1007/s10846-012-9794-2 – volume: 38 start-page: 48 year: 2012 ident: 300_CR3 publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2012.06.002 – volume: 13 start-page: 172988141665775 issue: 5 year: 2016 ident: 300_CR169 publication-title: Int. J. Adv. Rob. Syst. doi: 10.1177/1729881416657751 – volume: 2 start-page: 56 year: 2014 ident: 300_CR44 publication-title: IEEE Access doi: 10.1109/ACCESS.2014.2302442 – volume: 33 start-page: 273 issue: 3 year: 2012 ident: 300_CR19 publication-title: Auton. Robot. doi: 10.1007/s10514-012-9304-1 – volume: 29 start-page: 295 issue: 2 year: 2011 ident: 300_CR134 publication-title: Robotica doi: 10.1017/S0263574709990786 – ident: 300_CR131 – volume: 37 start-page: 1 issue: 1 year: 2003 ident: 300_CR39 publication-title: Journal of Intelligent & Robotic Systems doi: 10.1023/A:1023926519261 – volume: 45 start-page: 1089 issue: 4 year: 2016 ident: 300_CR66 publication-title: Applied Intelligence (Dordrecht, Netherlands) – ident: 300_CR15 doi: 10.7551/mitpress/9481.003.0007 – ident: 300_CR61 doi: 10.15607/RSS.2012.VIII.019 – volume: 12 start-page: 265 issue: 3 year: 2019 ident: 300_CR68 publication-title: Intel. Serv. Robot. doi: 10.1007/s11370-019-00281-y – ident: 300_CR75 doi: 10.1109/ROBOT.1988.12323 – ident: 300_CR142 doi: 10.1109/ROBOT.2001.932822 – ident: 300_CR1 doi: 10.1109/CCECE.2014.6901109 – ident: 300_CR33 doi: 10.1109/ROBOT.2001.932892 – volume: 8 start-page: 117203 year: 2020 ident: 300_CR98 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3004229 – volume: 2 start-page: 403 issue: 1–4 year: 1987 ident: 300_CR101 publication-title: Algorithmica doi: 10.1007/BF01840369 – ident: 300_CR16 – ident: 300_CR91 doi: 10.1109/IROS.2008.4651052 – volume-title: An Introduction to Manifolds year: 2010 ident: 300_CR150 doi: 10.1007/978-1-4419-7400-6 – volume: 31 start-page: 1101 issue: 5 year: 2015 ident: 300_CR117 publication-title: IEEE Trans. Rob. doi: 10.1109/TRO.2015.2459373 – ident: 300_CR36 doi: 10.1109/IROS.2007.4399557 – ident: 300_CR86 doi: 10.2514/6.2008-7166. – volume: 5 start-page: 6932 issue: 4 year: 2020 ident: 300_CR159 publication-title: IEEE Robotics and Automation Letters doi: 10.1109/LRA.2020.3026638 – ident: 300_CR34 doi: 10.1109/ROBOT.2003.1241685 – volume: 33 start-page: 113 issue: 1 year: 2014 ident: 300_CR20 publication-title: The International Journal of Robotics Research doi: 10.1177/0278364913507324 – ident: 300_CR130 doi: 10.1109/RTSI.2016.7740549 – volume: 29 start-page: 105 issue: 1 year: 2013 ident: 300_CR62 publication-title: IEEE Trans. Rob. doi: 10.1109/TRO.2012.2222272 – volume: 26 start-page: 635 issue: 4 year: 2010 ident: 300_CR64 publication-title: IEEE Trans. Rob. doi: 10.1109/TRO.2010.2049527 – volume: 15 start-page: 460 issue: 3 year: 2016 ident: 300_CR156 publication-title: International Journal of Simulation Modelling doi: 10.2507/IJSIMM15(3)6.347 – ident: 300_CR145 doi: 10.1109/ISIC.1995.525112 – volume: 90 start-page: 81 issue: 1–2 year: 2017 ident: 300_CR157 publication-title: Journal of Intelligent & Robotic Systems – volume: 96 start-page: 59 year: 2014 ident: 300_CR42 publication-title: Procedia Engineering doi: 10.1016/j.proeng.2014.12.098 – volume: 2018 start-page: 1 year: 2018 ident: 300_CR148 publication-title: Journal of Robotics doi: 10.1155/2018/5868915 – volume: 93 start-page: 1591 issue: 4 year: 1996 ident: 300_CR137 publication-title: Proceedings of the National Academy of Sciences - PNAS doi: 10.1073/pnas.93.4.1591 – volume: 12 start-page: 451 issue: 3 year: 2002 ident: 300_CR53 publication-title: Int. J. Bifurcat. Chaos Appl. Sci. Eng. doi: 10.1142/S0218127402004498 – ident: 300_CR161 – volume: 6 start-page: 625 issue: 4 year: 2022 ident: 300_CR115 publication-title: International journal of intelligent robotics and applications Online doi: 10.1007/s41315-022-00256-w – volume: 85 start-page: 539 issue: 3 year: 2017 ident: 300_CR84 publication-title: Journal of Intelligent & Robotic Systems doi: 10.1007/s10846-016-0388-2 – ident: 300_CR14 doi: 10.1609/aaai.v24i1.7735 – volume: 32 start-page: 1120 issue: 9–10 year: 2013 ident: 300_CR52 publication-title: The International Journal of Robotics Research doi: 10.1177/0278364913482016 – volume: 1 start-page: 469 year: 1992 ident: 300_CR60 publication-title: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems doi: 10.1109/IROS.1992.587377 – ident: 300_CR73 doi: 10.1115/1.4038980 – volume: 24 start-page: 327 issue: 4 year: 1990 ident: 300_CR95 publication-title: Computer graphics (New York, N.Y.) – volume: 26 start-page: 457 issue: 5 year: 2007 ident: 300_CR140 publication-title: The International Journal of Robotics Research doi: 10.1177/0278364907078094 – volume: 97 start-page: 217 year: 2017 ident: 300_CR166 publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2017.09.003 – volume: 21 start-page: 129 issue: 1 year: 2005 ident: 300_CR29 publication-title: IEEE Trans. Rob. doi: 10.1109/TRO.2004.833790 – ident: 300_CR124 doi: 10.1109/ROBOT.1993.291936 – volume: 18 start-page: 571 issue: 2 year: 2018 ident: 300_CR160 publication-title: Sensors (Basel, Switzerland) doi: 10.3390/s18020571 – volume: 20 start-page: 378 issue: 5 year: 2001 ident: 300_CR89 publication-title: The International Journal of Robotics Research doi: 10.1177/02783640122067453 – ident: 300_CR46 doi: 10.1109/ROBOT.1987.1087982 – volume: 25 start-page: 902 issue: 4 year: 2009 ident: 300_CR10 publication-title: IEEE Trans. Rob. doi: 10.1109/TRO.2009.2022441 – volume: 52 start-page: 802 issue: 6 year: 2014 ident: 300_CR49 publication-title: Veh. Syst. Dyn. doi: 10.1080/00423114.2014.902537 – volume: 30 start-page: 1435 issue: 12 year: 2011 ident: 300_CR12 publication-title: The International Journal of Robotics Research doi: 10.1177/0278364910396389 – ident: 300_CR77 doi: 10.1007/978-94-007-4620-6_11 – volume: 46 start-page: 329 issue: 2 year: 2004 ident: 300_CR119 publication-title: SIAM Rev. doi: 10.1137/S0036144503429121 – ident: 300_CR48 doi: 10.1115/DSCC2010-4263 – ident: 300_CR85 doi: 10.1109/ROBOT.2000.844730 – ident: 300_CR88 – volume: 25 start-page: 545 issue: 3 year: 2009 ident: 300_CR103 publication-title: Robotics and Computer-Integrated Manufacturing doi: 10.1016/j.rcim.2008.01.008 – volume: 95 start-page: 8431 issue: 15 year: 1998 ident: 300_CR79 publication-title: Proceedings of the National Academy of Sciences - PNAS doi: 10.1073/pnas.95.15.8431 – ident: 300_CR143 – volume: 13 start-page: 1599 issue: 4 year: 2012 ident: 300_CR30 publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2012.2198214 – ident: 300_CR76 doi: 10.1109/IROS40897.2019.8967728 – ident: 300_CR162 doi: 10.1109/ICCA.2014.6870943 – volume: 32 start-page: 227 issue: 3 year: 2012 ident: 300_CR163 publication-title: Auton. Robot. doi: 10.1007/s10514-011-9266-8 – ident: 300_CR55 doi: 10.1609/icaps.v21i1.13457 – volume: 82 start-page: 555 issue: 3 year: 2016 ident: 300_CR67 publication-title: Journal of Intelligent & Robotic Systems doi: 10.1007/s10846-015-0278-z – ident: 300_CR94 – ident: 300_CR113 doi: 10.4271/2005-01-2692 – volume-title: Introduction To Topological Manifolds year: 2011 ident: 300_CR93 – ident: 300_CR71 doi: 10.1109/70.660866 – volume: 20 start-page: 249 issue: 1 year: 2012 ident: 300_CR11 publication-title: IEEE Trans. Control Syst. Technol. – volume: 37 start-page: 779 issue: 7 year: 2018 ident: 300_CR104 publication-title: The International Journal of Robotics Research doi: 10.1177/0278364918779555 – volume: 20 start-page: 1423 issue: 6 year: 1990 ident: 300_CR154 publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/21.61211 – volume: 139 start-page: 133 issue: 1 year: 2015 ident: 300_CR18 publication-title: Acta Appl. Math. doi: 10.1007/s10440-014-9973-1 – volume: 29 start-page: 888 issue: 4 year: 2013 ident: 300_CR24 publication-title: IEEE Trans. Rob. doi: 10.1109/TRO.2013.2260679 – volume: 219 start-page: 7514 issue: 14 year: 2013 ident: 300_CR152 publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2013.01.038 – volume: 65 start-page: 247 issue: 1 year: 2012 ident: 300_CR35 publication-title: Journal of Intelligent & Robotic Systems doi: 10.1007/s10846-011-9568-2 – ident: 300_CR141 doi: 10.1007/978-1-84628-642-1 – volume: 38 start-page: 853 issue: 7 year: 2019 ident: 300_CR139 publication-title: The International journal of robotics research doi: 10.1177/0278364919846910 – ident: 300_CR50 doi: 10.1007/s10846-021-01344-y – volume: 20 start-page: 375 issue: 4 year: 2002 ident: 300_CR105 publication-title: Robotica doi: 10.1017/S0263574702004071 – volume: 64 start-page: 44 year: 2015 ident: 300_CR56 publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2014.10.021 – volume: 66 start-page: 554 issue: 4 year: 2019 ident: 300_CR123 publication-title: J. Astronaut. Sci. doi: 10.1007/s40295-019-00171-6 – ident: 300_CR147 – volume: 3 start-page: 1276 issue: 2 year: 2018 ident: 300_CR13 publication-title: IEEE Robotics and Automation Letters doi: 10.1109/LRA.2018.2795642 – volume: 89 start-page: 1401 issue: 5 year: 2017 ident: 300_CR5 publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-016-9074-6 – ident: 300_CR59 doi: 10.1109/RAMECH.2004.1438016 – volume: 2 start-page: 1856 issue: 4 year: 2017 ident: 300_CR57 publication-title: IEEE Robotics and Automation Letters doi: 10.1109/LRA.2017.2712650 – volume: 20 start-page: 967 issue: 6 year: 2004 ident: 300_CR87 publication-title: IEEE Trans. Rob. doi: 10.1109/TRO.2004.829459 – ident: 300_CR118 – ident: 300_CR127 doi: 10.1109/ROBIO.2013.6739744 – volume: 85 start-page: 210 year: 2020 ident: 300_CR96 publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2020.03.034 – ident: 300_CR80 doi: 10.1109/ROBOT.1987.1088038 – volume: 23 start-page: 673 issue: 7–8 year: 2004 ident: 300_CR90 publication-title: The International Journal of Robotics Research doi: 10.1177/0278364904045481 – volume-title: Topology year: 2000 ident: 300_CR107 – volume: 64 start-page: 137 year: 2015 ident: 300_CR58 publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2014.07.002 – volume: 206 year: 2020 ident: 300_CR158 publication-title: Ocean Eng. – volume: 35 start-page: 490 issue: 8 year: 2021 ident: 300_CR155 publication-title: Adv. Robot. doi: 10.1080/01691864.2021.1896381 – ident: 300_CR167 doi: 10.1109/HRI.2016.7451763 – volume: 20 start-page: 3265 issue: 11 year: 2020 ident: 300_CR38 publication-title: Sensors (Basel, Switzerland) doi: 10.3390/s20113265 – ident: 300_CR54 – ident: 300_CR110 – volume: 21 start-page: 275 issue: 6 year: 2004 ident: 300_CR102 publication-title: J. Robot. Syst. doi: 10.1002/rob.20014 – volume: 18 start-page: 1255 issue: 5 year: 2017 ident: 300_CR132 publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2016.2604240 – ident: 300_CR37 doi: 10.1109/ISCAS.2015.7169274 – ident: 300_CR2 doi: 10.1109/ICRA.2016.7487118 – ident: 300_CR40 – volume-title: Elementary Differential Geometry year: 2010 ident: 300_CR121 doi: 10.1007/978-1-84882-891-9 – volume: 14 start-page: 41 issue: 1–2 year: 2018 ident: 300_CR78 publication-title: Journal of Micro-Bio Robotics doi: 10.1007/s12213-018-0107-0 – ident: 300_CR65 – volume: 27 start-page: 1274 issue: 11–12 year: 2008 ident: 300_CR151 publication-title: The International Journal of Robotics Research doi: 10.1177/0278364908097581 – volume: 30 start-page: 1126 issue: 17–18 year: 2016 ident: 300_CR28 publication-title: Adv. Robot. doi: 10.1080/01691864.2016.1168317 – volume: 223 start-page: 1499 issue: 12 year: 2009 ident: 300_CR116 publication-title: Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering – volume: 29 start-page: 211 issue: 2 year: 2003 ident: 300_CR45 publication-title: Discrete & Computational Geometry doi: 10.1007/s00454-002-0760-9 – volume: 31 start-page: 201 issue: 2 year: 2012 ident: 300_CR120 publication-title: The International Journal of Robotics Research doi: 10.1177/0278364911432324 – volume: 12 start-page: 566 issue: 4 year: 1996 ident: 300_CR72 publication-title: IEEE Trans. Robot. Autom. doi: 10.1109/70.508439 |
SSID | ssj0002046646 ssib031263572 |
Score | 2.24314 |
Snippet | Autonomous robotic path planning in partially known environments, such as warehouse robotics, deals with static and dynamic constraints. Static constraints... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 810 |
SubjectTerms | Algorithms Artificial Intelligence Computer Science Control Design parameters Discretization Electronics and Microelectronics Homology Industrial robots Instrumentation Machines Manifolds Manufacturing Mechatronics Optimization Path planning Planning Processes Regular Paper Representations Robotics Tuning User Interfaces and Human Computer Interaction |
Title | Constraint-free discretized manifold-based path planner |
URI | https://link.springer.com/article/10.1007/s41315-023-00300-3 https://www.proquest.com/docview/2922080842 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2366-598X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002046646 issn: 2366-5971 databaseCode: AFBBN dateStart: 20170201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2366-598X dateEnd: 20241003 omitProxy: true ssIdentifier: ssj0002046646 issn: 2366-5971 databaseCode: BENPR dateStart: 20170201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFA66XbyIouJ0jh68abBJ2rQ9ySbWIThEHOwWzI8eRLa51Yt_ve-lqUNBeykkJdCXl5cvP773EXLOs7RicVVQKXRKE5bjRhODpYoxiN8BVPgMfA8TOZ4m97N0Fjbc1uFaZRsTfaC2C4N75Fe84BzQTZ7w6-U7RdUoPF0NEhrbpMs4eBIyxcu71p8ElqWBF_rqD90wmXqjNyclBSzNAo_Gs-kgnjOkKwuKrg_h6edctQGgv85M_VRU7pHdgCGjYdPp-2TLzQ8IXllZe8GHmlYr5yLk2yJF8dPZCJNcVIs3S3HSshHKEEdLlCtyq0MyLW-fb8Y0qCJQw7O4pjqFh-fWJS42gIeshXHINNdGpokWPK-ke4FhyJKKicTmsXSFYTqzWaGZtlIckc58MXfHJAK0lWWAgDILq7DUmdwhwIstFIjCxKJHLtr_V8sm-YX6TnPsraXAWspbS8HX_dZEKgyEtdp0W49ctmbbVP_d2sn_rZ2SHRR-by6W9EmnXn24M4AHtR54HxiQ7rAcjSbwHt1OHp--AG8Msxo |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV27TsMwFLVKGWBBIEA8CmSACSxiO3GSASEElJY-plbqFvAjA0JtaYsQfBTfyL1OQgUSbM2YRJZyc-x7_LjnEHLMozBjfpZQKVRIAxbjQhODqYrWyN-BVDgFvk5XNvrB_SAcVMhnWQuDxyrLMdEN1GakcY38nCecA7uJA345fqHoGoW7q6WFRg6Lln1_gynb9KJ5A__3hPP6be-6QQtXAap55M-oCuHisbGB9TXwCWMAx0xxpWUYKMHjTNpHgDELMiYCE_vSJpqpyESJYspIAe0ukeVACIFa_XH9rsSvYKjsUtShPrlNPhRvz_3tpKTA3VlRt-Oq9yB_MCyPFhS7GgyHP3PjnPD-2qN1qa--TtYKzupd5SDbIBU73CR4RGbqDCZmNJtY62F9L5ZEfljjoahGNno2FJOk8dD22BujPZKdbJH-QuK1TarD0dDuEA_YXRQB44oMzPpCq2OLhNI3cEMk2he75LT8_nSci22k37LKLlopRCt10Urh7VoZorToeNN0DpNdclaGbf7479b2_m_tiKw0ep122m52W_tkFU3n80MtNVKdTV7tAVCTmTp0ePDIw6IB-AVn2eww |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constraint-free+discretized+manifold-based+path+planner&rft.jtitle=International+journal+of+intelligent+robotics+and+applications+Online&rft.au=Radhakrishnan%2C+Sindhu&rft.au=Gueaieb%2C+Wail&rft.date=2023-12-01&rft.issn=2366-5971&rft.eissn=2366-598X&rft.volume=7&rft.issue=4&rft.spage=810&rft.epage=855&rft_id=info:doi/10.1007%2Fs41315-023-00300-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s41315_023_00300_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2366-5971&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2366-5971&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2366-5971&client=summon |