Optimization of louver fin geometries for miniature microchannel condenser by Taguchi and CFD method

In this work, optimization of louver fin geometries is performed to obtain better thermal hydraulic performance of multilouvered microchannel heat exchanger by CFD method. Five louver fin geometries are considered in this work namely fin pitch, fin height, louver pitch, louver angle and louver lengt...

Full description

Saved in:
Bibliographic Details
Published inSadhana (Bangalore) Vol. 49; no. 3; p. 216
Main Authors Kumar, S Satheesh, Kumaraguruparan, G, Senthilkumar, T S
Format Journal Article
LanguageEnglish
Published New Delhi Springer India 11.07.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0973-7677
0256-2499
0973-7677
DOI10.1007/s12046-024-02558-0

Cover

Abstract In this work, optimization of louver fin geometries is performed to obtain better thermal hydraulic performance of multilouvered microchannel heat exchanger by CFD method. Five louver fin geometries are considered in this work namely fin pitch, fin height, louver pitch, louver angle and louver length. The air side performance is analyzed with the help of airside heat transfer coefficient and pressure drop. These parameters are determined using Colburn-j factor and f factor for Reynolds numbers range of 100–600. In this work, two factors are studied for the effect of individual and combined louver fin geometries. It is observed from the literature study that increase in Reynold number, increases the Colburn-j factor and hence increases the rate of heat transfer favorably. At the same time, increase in Reynold number, increase f factor in term increase the pressure drop which is not desirable. Hence, it is challenging to increase the heat transfer without increase the pressure drop characteristics for heat exchanger design. So, aim of this work is to maximize the heat transfer and minimize the pressure drop. To account for these two contradicting objectives, dimensionless number (JF factor) is considered to determine the thermal hydraulic performance for the heat exchanger and it accounts both Colburn-j factor and f factor simultaneously. Orthogonal array-based Taguchi analysis is performed to obtain optimized louver fin geometries. Taguchi-CFD analysis revealed that fin pitch is the most influencing parameter, that alone accounts for 94.33% of contribution ratio on JF factor. Taguchi-confirmation test showed that the enhancement of JF factor for optimal louver fin is 5.97% higher than that of the initial design parameter. Finally, CFD analysis is performed to compare the performance of optimal louver fin geometry with that of the default louver fin geometry. From this analysis, Colburn-j and JF factor of optimum fin geometry are found to be 24.42% and 18.23% higher than those of default fin geometry. Regression models are developed for optimum fin geometry to predict the Colburn-j, f and JF factor for the Reynolds numbers range of 100–850, whose adj. R 2 value is 99.05%.
AbstractList In this work, optimization of louver fin geometries is performed to obtain better thermal hydraulic performance of multilouvered microchannel heat exchanger by CFD method. Five louver fin geometries are considered in this work namely fin pitch, fin height, louver pitch, louver angle and louver length. The air side performance is analyzed with the help of airside heat transfer coefficient and pressure drop. These parameters are determined using Colburn-j factor and f factor for Reynolds numbers range of 100–600. In this work, two factors are studied for the effect of individual and combined louver fin geometries. It is observed from the literature study that increase in Reynold number, increases the Colburn-j factor and hence increases the rate of heat transfer favorably. At the same time, increase in Reynold number, increase f factor in term increase the pressure drop which is not desirable. Hence, it is challenging to increase the heat transfer without increase the pressure drop characteristics for heat exchanger design. So, aim of this work is to maximize the heat transfer and minimize the pressure drop. To account for these two contradicting objectives, dimensionless number (JF factor) is considered to determine the thermal hydraulic performance for the heat exchanger and it accounts both Colburn-j factor and f factor simultaneously. Orthogonal array-based Taguchi analysis is performed to obtain optimized louver fin geometries. Taguchi-CFD analysis revealed that fin pitch is the most influencing parameter, that alone accounts for 94.33% of contribution ratio on JF factor. Taguchi-confirmation test showed that the enhancement of JF factor for optimal louver fin is 5.97% higher than that of the initial design parameter. Finally, CFD analysis is performed to compare the performance of optimal louver fin geometry with that of the default louver fin geometry. From this analysis, Colburn-j and JF factor of optimum fin geometry are found to be 24.42% and 18.23% higher than those of default fin geometry. Regression models are developed for optimum fin geometry to predict the Colburn-j, f and JF factor for the Reynolds numbers range of 100–850, whose adj. R2 value is 99.05%.
In this work, optimization of louver fin geometries is performed to obtain better thermal hydraulic performance of multilouvered microchannel heat exchanger by CFD method. Five louver fin geometries are considered in this work namely fin pitch, fin height, louver pitch, louver angle and louver length. The air side performance is analyzed with the help of airside heat transfer coefficient and pressure drop. These parameters are determined using Colburn-j factor and f factor for Reynolds numbers range of 100–600. In this work, two factors are studied for the effect of individual and combined louver fin geometries. It is observed from the literature study that increase in Reynold number, increases the Colburn-j factor and hence increases the rate of heat transfer favorably. At the same time, increase in Reynold number, increase f factor in term increase the pressure drop which is not desirable. Hence, it is challenging to increase the heat transfer without increase the pressure drop characteristics for heat exchanger design. So, aim of this work is to maximize the heat transfer and minimize the pressure drop. To account for these two contradicting objectives, dimensionless number (JF factor) is considered to determine the thermal hydraulic performance for the heat exchanger and it accounts both Colburn-j factor and f factor simultaneously. Orthogonal array-based Taguchi analysis is performed to obtain optimized louver fin geometries. Taguchi-CFD analysis revealed that fin pitch is the most influencing parameter, that alone accounts for 94.33% of contribution ratio on JF factor. Taguchi-confirmation test showed that the enhancement of JF factor for optimal louver fin is 5.97% higher than that of the initial design parameter. Finally, CFD analysis is performed to compare the performance of optimal louver fin geometry with that of the default louver fin geometry. From this analysis, Colburn-j and JF factor of optimum fin geometry are found to be 24.42% and 18.23% higher than those of default fin geometry. Regression models are developed for optimum fin geometry to predict the Colburn-j, f and JF factor for the Reynolds numbers range of 100–850, whose adj. R 2 value is 99.05%.
ArticleNumber 216
Author Senthilkumar, T S
Kumar, S Satheesh
Kumaraguruparan, G
Author_xml – sequence: 1
  givenname: S Satheesh
  surname: Kumar
  fullname: Kumar, S Satheesh
  organization: Department of Mechanical Engineering, M. Kumarasamy College of Engineering
– sequence: 2
  givenname: G
  surname: Kumaraguruparan
  fullname: Kumaraguruparan, G
  email: gkgmech@tce.edu
  organization: Department of Mechatronics Engineering, Thiagarajar College of Engineering
– sequence: 3
  givenname: T S
  surname: Senthilkumar
  fullname: Senthilkumar, T S
  organization: Department of Mechanical Engineering, K. Ramakrishnan College of Technology
BookMark eNp9kLFOwzAQhi1UJNrCCzBZYg7Yjh0nIyoUkCp1KbPlJOfWVWMXO0EqT48hSDAxnO6G_7uzvxmaOO8AoWtKbikh8i5SRniREcZTCVFm5AxNSSXzTBZSTv7MF2gW454QJkmZT1G7Pva2sx-6t95hb_DBD-8QsLEOb8F30AcLERsfcGed1f0QIE1N8M1OOwcH3HjXgouJqU94o7dDs7NYuxYvlg848TvfXqJzow8Rrn76HL0uHzeL52y1fnpZ3K-yJr2mz7TgusoNkNQKLgRpuAbWUqhpbUrKS5lXdUFozrWohRZtpWlVV9LQAsqC63yObsa9x-DfBoi92vshuHRS5UzIZIYxmVJsTKVPxBjAqGOwnQ4nRYn6sqlGmyrZVN82FUlQPkIxhd0Wwu_qf6hPCSB6Aw
Cites_doi 10.1016/j.applthermaleng.2011.06.014
10.1016/j.applthermaleng.2016.03.033
10.1016/j.ijthermalsci.2006.04.010
10.1016/j.ijthermalsci.2018.03.002
10.1016/S0017-9310(01)00079-5
10.1016/j.ijrefrig.2014.05.026
10.1016/j.applthermaleng.2014.04.022
10.1016/j.applthermaleng.2012.03.003
10.1115/1.3000609
10.1016/0894-1777(89)90018-6
10.1016/j.applthermaleng.2015.05.018
10.1016/j.applthermaleng.2017.07.119
10.1115/1.4026955
10.1016/j.applthermaleng.2005.11.019
10.1016/j.applthermaleng.2015.12.107
10.1016/j.expthermflusci.2009.01.003
10.1016/j.ijheatmasstransfer.2014.12.044
10.1016/j.ijheatmasstransfer.2017.12.127
10.1016/j.ijheatmasstransfer.2010.04.002
10.1016/j.aej.2015.08.003
10.1016/j.ijrefrig.2018.12.030
10.1016/0894-1777(88)90032-5
10.1080/01457632.2017.1312881
10.1080/01457632.2016.1200382
10.1016/j.applthermaleng.2015.07.059
10.1016/S0140-7007(01)00025-1
10.1016/j.enconman.2017.09.066
10.1016/j.enconman.2006.11.023
10.1080/23744731.2016.1203240
10.2514/1.9123
10.1016/S0017-9310(00)00297-0
10.1016/0017-9310(96)00116-0
10.1016/j.applthermaleng.2017.07.082
ContentType Journal Article
Copyright Indian Academy of Sciences 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Indian Academy of Sciences 2024.
Copyright_xml – notice: Indian Academy of Sciences 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Indian Academy of Sciences 2024.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AEUYN
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
P5Z
P62
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s12046-024-02558-0
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Technology Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 0973-7677
ExternalDocumentID 10_1007_s12046_024_02558_0
GrantInformation_xml – fundername: Department of Science and Technology - IDP - Government of India
  grantid: F. No: IDP/IND/11/2015
GroupedDBID -5B
-5G
-BR
-EM
-~C
-~X
.86
.VR
06D
0R~
0VY
123
1N0
203
29P
29~
2J2
2JN
2JY
2KG
2KM
2LR
2WC
2~H
30V
4.4
406
408
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABDBF
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABLLD
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFLOW
AFQWF
AFWTZ
AFZKB
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AYJHY
B-.
BA0
BGNMA
CS3
CSCUP
DDRTE
DNIVK
DPUIP
E3Z
EAD
EAP
EBLON
EBS
EIOEI
EJD
EOJEC
ESBYG
ESX
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GROUPED_DOAJ
HG5
HG6
HMJXF
HRMNR
I-F
IJ-
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KOV
KQ8
LLZTM
M4Y
MA-
MK~
NF0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OBODZ
OK1
P19
P2P
P9P
PF0
PT4
PT5
QOK
QOS
R89
R9I
RAB
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TR2
TSG
TSK
TSV
TUS
U2A
UG4
UOJIU
UTJUX
VC2
W48
WK8
XSB
YLTOR
Z45
Z7R
Z7S
Z7X
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
_50
~8M
~A9
~EX
AAPKM
AAYXX
ABDBE
ABRTQ
AFDZB
AFOHR
AHPBZ
ATHPR
CITATION
OVT
8FE
8FG
ABJCF
AEUYN
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
P62
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-c270t-a54a93fe04a964550c4ae2d1eb1bf8148739b60134a5b5a5d9a19b97f16e864a3
IEDL.DBID BENPR
ISSN 0973-7677
0256-2499
IngestDate Tue Oct 07 06:09:45 EDT 2025
Wed Oct 01 04:21:07 EDT 2025
Fri Feb 21 02:39:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords multilouvered microchannel heat exchanger
airside heat transfer coefficient
optimization
thermal hydraulic performance
Louver fin
Taguchi method
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-a54a93fe04a964550c4ae2d1eb1bf8148739b60134a5b5a5d9a19b97f16e864a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3257025227
PQPubID 2043821
ParticipantIDs proquest_journals_3257025227
crossref_primary_10_1007_s12046_024_02558_0
springer_journals_10_1007_s12046_024_02558_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-11
PublicationDateYYYYMMDD 2024-07-11
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-11
  day: 11
PublicationDecade 2020
PublicationPlace New Delhi
PublicationPlace_xml – name: New Delhi
– name: Dordrecht
PublicationSubtitle Published by the Indian Academy of Sciences
PublicationTitle Sadhana (Bangalore)
PublicationTitleAbbrev Sādhanā
PublicationYear 2024
Publisher Springer India
Springer Nature B.V
Publisher_xml – name: Springer India
– name: Springer Nature B.V
References Vaisi, Esmaeilpour, Taherian (CR8) 2011; 31
Malapure, Mitra, Bhattacharya (CR15) 2007; 46
Čarija, Franković, Perčić, Čavrak (CR28) 2014; 45
Deng (CR20) 2017; 153
Karthik, Kumaresan, Velraj (CR10) 2015; 54
Shinde, Lin (CR11) 2016; 23
Sadeghianjahromi, Kheradmand, Nemati (CR23) 2018; 129
Dong, Chen, Chen, Zhang, Zhou (CR6) 2007; 48
Ryu, Lee (CR14) 2015; 83
Erbay, Uğurlubilek, Altun, Doğan (CR17) 2017; 38
Tafti, Zhang (CR27) 2001; 44
Ryu, Yook, Lee (CR30) 2014; 68
Saleem, Kim (CR19) 2017; 125
Kang, Cho, Kim, Jacobi (CR24) 2014; 1
Kim, Yun, Lee (CR5) 2004; 18
Kim, Bullard (CR2) 2002; 25
Liang, Liu, Li, Chen (CR9) 2015; 87
Dogan, Altun, Ugurlubilek, Tosun, Sarıçay, Erbay (CR13) 2015; 91
T’Joen, Jacobi, De Paepe (CR7) 2009; 33
Park, Jacobi (CR34) 2008
Okbaz, Pınarbaşı, Olcay, Aksoy (CR21) 2018; 121
Li, Wang (CR12) 2010; 53
Hsieh, Jang (CR16) 2012; 42
Qasem, Al-Ghamdi, Zubair (CR33) 2019; 99
Asadi, Sunden, Xie (CR18) 2017; 39
CR25
Aoki, Shinagawa, Suga (CR4) 1989; 2
Zhang, Tafti (CR26) 2001; 44
Achaichia, Cowell (CR3) 1988; 1
Hsieh, Jang (CR22) 2006; 26
Chang, Wang (CR29) 1997; 40
Dezan, Salviano, Yanagihara (CR31) 2016; 101
Wang, Liu, Yang, Wu, He (CR35) 2016; 103
Yadav, Giri, Momale (CR32) 2017; 125
Kays, London (CR1) 1950; 72
CT Hsieh (2558_CR22) 2006; 26
VP Malapure (2558_CR15) 2007; 46
DK Tafti (2558_CR27) 2001; 44
NAA Qasem (2558_CR33) 2019; 99
W Li (2558_CR12) 2010; 53
X Zhang (2558_CR26) 2001; 44
J Dong (2558_CR6) 2007; 48
P Karthik (2558_CR10) 2015; 54
H Aoki (2558_CR4) 1989; 2
A Okbaz (2558_CR21) 2018; 121
C T’Joen (2558_CR7) 2009; 33
Z Čarija (2558_CR28) 2014; 45
J Deng (2558_CR20) 2017; 153
MH Kim (2558_CR2) 2002; 25
A Sadeghianjahromi (2558_CR23) 2018; 129
A Achaichia (2558_CR3) 1988; 1
M Asadi (2558_CR18) 2017; 39
DJ Dezan (2558_CR31) 2016; 101
LB Erbay (2558_CR17) 2017; 38
JH Kim (2558_CR5) 2004; 18
B Dogan (2558_CR13) 2015; 91
P Shinde (2558_CR11) 2016; 23
W Kays (2558_CR1) 1950; 72
HC Kang (2558_CR24) 2014; 1
A Vaisi (2558_CR8) 2011; 31
YY Liang (2558_CR9) 2015; 87
YG Park (2558_CR34) 2008
K Ryu (2558_CR14) 2015; 83
A Saleem (2558_CR19) 2017; 125
2558_CR25
H Wang (2558_CR35) 2016; 103
YJ Chang (2558_CR29) 1997; 40
CT Hsieh (2558_CR16) 2012; 42
MS Yadav (2558_CR32) 2017; 125
K Ryu (2558_CR30) 2014; 68
References_xml – volume: 31
  start-page: 3337
  year: 2011
  end-page: 3346
  ident: CR8
  article-title: Experimental investigation of geometry effects on the performance of a compact louvered heat exchanger
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2011.06.014
– volume: 103
  start-page: 128
  year: 2016
  end-page: 138
  ident: CR35
  article-title: Parametric study and optimization of H-type finned tube heat exchangers using Taguchi method
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.03.033
– volume: 46
  start-page: 199
  year: 2007
  end-page: 211
  ident: CR15
  article-title: Numerical investigation of fluid flow and heat transfer over louvered fins in compact heat exchanger
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2006.04.010
– volume: 129
  start-page: 135
  year: 2018
  end-page: 144
  ident: CR23
  article-title: Developed correlations for heat transfer and flow friction characteristics of louvered finned tube heat exchangers
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2018.03.002
– volume: 44
  start-page: 4195
  year: 2001
  end-page: 4210
  ident: CR27
  article-title: Geometry effects on flow transition in multilouvered fins—onset, propagation, and characteristic frequencies
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/S0017-9310(01)00079-5
– volume: 45
  start-page: 160
  year: 2014
  end-page: 167
  ident: CR28
  article-title: Heat transfer analysis of fin-and-tube heat exchangers with flat and louvered fin geometries
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2014.05.026
– volume: 68
  start-page: 76
  year: 2014
  end-page: 79
  ident: CR30
  article-title: Optimal design of a corrugated louvered fin
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2014.04.022
– volume: 42
  start-page: 101
  year: 2012
  end-page: 110
  ident: CR16
  article-title: Parametric study and optimization of louver finned-tube heat exchangers by Taguchi method
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2012.03.003
– year: 2008
  ident: CR34
  article-title: Air-side heat transfer and friction correlations for flat-tube louver-fin heat exchangers
  publication-title: J. Heat Transf.
  doi: 10.1115/1.3000609
– volume: 2
  start-page: 293
  year: 1989
  end-page: 300
  ident: CR4
  article-title: An experimental study of the local heat transfer characteristics in automotive louvered fins
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/0894-1777(89)90018-6
– volume: 87
  start-page: 305
  year: 2015
  end-page: 315
  ident: CR9
  article-title: Experimental and simulation study on the air side thermal hydraulic performance of automotive heat exchangers
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.05.018
– volume: 125
  start-page: 1426
  year: 2017
  end-page: 1436
  ident: CR32
  article-title: Sizing analysis of louvered fin flat tube compact heat exchanger by genetic algorithm
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.07.119
– volume: 1
  start-page: 1
  year: 2014
  ident: CR24
  article-title: Air-side heat transfer performance of louver fin and multitube heat exchanger for direct methanol fuel cell cooling application
  publication-title: J. Fuel Cell Sci. Technol
  doi: 10.1115/1.4026955
– volume: 26
  start-page: 1629
  year: 2006
  end-page: 1639
  ident: CR22
  article-title: 3-D thermal-hydraulic analysis for louver fin heat exchangers with variable louver angle
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2005.11.019
– volume: 101
  start-page: 576
  year: 2016
  end-page: 591
  ident: CR31
  article-title: Heat transfer enhancement and optimization of flat-tube multilouvered fin compact heat exchangers with delta-winglet vortex generators
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.12.107
– volume: 33
  start-page: 664
  year: 2009
  end-page: 674
  ident: CR7
  article-title: Flow visualisation in inclined louvered fins
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2009.01.003
– volume: 83
  start-page: 604
  year: 2015
  end-page: 612
  ident: CR14
  article-title: Generalized heat-transfer and fluid-flow correlations for corrugated louvered fins
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2014.12.044
– volume: 121
  start-page: 153
  year: 2018
  end-page: 169
  ident: CR21
  article-title: An experimental, computational and flow visualization study on the air-side thermal and hydraulic performance of louvered fin and round tube heat exchangers
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2017.12.127
– volume: 53
  start-page: 2955
  year: 2010
  end-page: 2962
  ident: CR12
  article-title: Heat transfer and pressure drop correlations for compact heat exchangers with multi-region louver fins
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2010.04.002
– ident: CR25
– volume: 54
  start-page: 905
  year: 2015
  end-page: 915
  ident: CR10
  article-title: Experimental and parametric studies of a louvered fin and flat tube compact heat exchanger using computational fluid dynamics
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2015.08.003
– volume: 99
  start-page: 479
  year: 2019
  end-page: 489
  ident: CR33
  article-title: An assessment of optimal airside heat transfer per unit friction power characteristics of compact heat exchangers
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2018.12.030
– volume: 1
  start-page: 147
  year: 1988
  end-page: 157
  ident: CR3
  article-title: Heat transfer and pressure drop characteristics of flat tube and louvered plate fin surfaces
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/0894-1777(88)90032-5
– volume: 39
  start-page: 436
  year: 2017
  end-page: 448
  ident: CR18
  article-title: Constructal optimization of louver fin channels subjected to heat transfer rate maximization and pressure loss minimization
  publication-title: Heat Transf. Eng.
  doi: 10.1080/01457632.2017.1312881
– volume: 38
  start-page: 627
  year: 2017
  end-page: 640
  ident: CR17
  article-title: Numerical investigation of the air-side thermal hydraulic performance of a louvered-fin and flat-tube heat exchanger at low Reynolds numbers
  publication-title: Heat Transf. Eng.
  doi: 10.1080/01457632.2016.1200382
– volume: 91
  start-page: 270
  year: 2015
  end-page: 278
  ident: CR13
  article-title: An experimental comparison of two multi-louvered fin heat exchangers with different numbers of fin rows
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.07.059
– volume: 72
  start-page: 1075
  year: 1950
  end-page: 1097
  ident: CR1
  article-title: Heat transfer and flow friction characteristics of some compact heat exchanger surfaces
  publication-title: Trans. AsME.
– volume: 25
  start-page: 390
  year: 2002
  end-page: 400
  ident: CR2
  article-title: Air-side thermal hydraulic performance of multi-louvered fin aluminum heat exchangers
  publication-title: Int. J. Refrig.
  doi: 10.1016/S0140-7007(01)00025-1
– volume: 153
  start-page: 504
  year: 2017
  end-page: 514
  ident: CR20
  article-title: Improved correlations of the thermal-hydraulic performance of large size multi-louvered fin arrays for condensers of high power electronic component cooling by numerical simulation
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2017.09.066
– volume: 48
  start-page: 1506
  year: 2007
  end-page: 1515
  ident: CR6
  article-title: Heat transfer and pressure drop correlations for the multi-louvered fin compact heat exchangers
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2006.11.023
– volume: 23
  start-page: 192
  year: 2016
  end-page: 210
  ident: CR11
  article-title: A heat transfer and friction factor correlation for low air-side Reynolds number applications of compact heat exchangers (1535-RP)
  publication-title: Sci. Technol. Built Environ.
  doi: 10.1080/23744731.2016.1203240
– volume: 18
  start-page: 58
  year: 2004
  end-page: 64
  ident: CR5
  article-title: Heat-Transfer and friction characteristics for the louver-fin heat exchanger
  publication-title: J. Thermophys. Heat Transf.
  doi: 10.2514/1.9123
– volume: 44
  start-page: 2461
  year: 2001
  end-page: 2473
  ident: CR26
  article-title: Classification and effects of thermal wakes on heat transfer in multilouvered fins
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/S0017-9310(00)00297-0
– volume: 40
  start-page: 533
  year: 1997
  end-page: 544
  ident: CR29
  article-title: A generalized heat transfer correlation for Iouver fin geometry
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/0017-9310(96)00116-0
– volume: 125
  start-page: 780
  year: 2017
  end-page: 789
  ident: CR19
  article-title: Air-side thermal hydraulic performance of microchannel heat exchangers with different in configurations
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.07.082
– volume: 25
  start-page: 390
  year: 2002
  ident: 2558_CR2
  publication-title: Int. J. Refrig.
  doi: 10.1016/S0140-7007(01)00025-1
– volume: 1
  start-page: 147
  year: 1988
  ident: 2558_CR3
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/0894-1777(88)90032-5
– volume: 31
  start-page: 3337
  year: 2011
  ident: 2558_CR8
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2011.06.014
– volume: 53
  start-page: 2955
  year: 2010
  ident: 2558_CR12
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2010.04.002
– volume: 42
  start-page: 101
  year: 2012
  ident: 2558_CR16
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2012.03.003
– volume: 40
  start-page: 533
  year: 1997
  ident: 2558_CR29
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/0017-9310(96)00116-0
– volume: 68
  start-page: 76
  year: 2014
  ident: 2558_CR30
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2014.04.022
– volume: 121
  start-page: 153
  year: 2018
  ident: 2558_CR21
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2017.12.127
– volume: 33
  start-page: 664
  year: 2009
  ident: 2558_CR7
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2009.01.003
– year: 2008
  ident: 2558_CR34
  publication-title: J. Heat Transf.
  doi: 10.1115/1.3000609
– volume: 44
  start-page: 2461
  year: 2001
  ident: 2558_CR26
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/S0017-9310(00)00297-0
– volume: 91
  start-page: 270
  year: 2015
  ident: 2558_CR13
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.07.059
– volume: 39
  start-page: 436
  year: 2017
  ident: 2558_CR18
  publication-title: Heat Transf. Eng.
  doi: 10.1080/01457632.2017.1312881
– volume: 18
  start-page: 58
  year: 2004
  ident: 2558_CR5
  publication-title: J. Thermophys. Heat Transf.
  doi: 10.2514/1.9123
– volume: 54
  start-page: 905
  year: 2015
  ident: 2558_CR10
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2015.08.003
– volume: 103
  start-page: 128
  year: 2016
  ident: 2558_CR35
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.03.033
– volume: 83
  start-page: 604
  year: 2015
  ident: 2558_CR14
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2014.12.044
– volume: 46
  start-page: 199
  year: 2007
  ident: 2558_CR15
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2006.04.010
– volume: 48
  start-page: 1506
  year: 2007
  ident: 2558_CR6
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2006.11.023
– volume: 45
  start-page: 160
  year: 2014
  ident: 2558_CR28
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2014.05.026
– volume: 101
  start-page: 576
  year: 2016
  ident: 2558_CR31
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.12.107
– volume: 38
  start-page: 627
  year: 2017
  ident: 2558_CR17
  publication-title: Heat Transf. Eng.
  doi: 10.1080/01457632.2016.1200382
– volume: 129
  start-page: 135
  year: 2018
  ident: 2558_CR23
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2018.03.002
– volume: 87
  start-page: 305
  year: 2015
  ident: 2558_CR9
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.05.018
– volume: 26
  start-page: 1629
  year: 2006
  ident: 2558_CR22
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2005.11.019
– volume: 125
  start-page: 780
  year: 2017
  ident: 2558_CR19
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.07.082
– volume: 2
  start-page: 293
  year: 1989
  ident: 2558_CR4
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/0894-1777(89)90018-6
– volume: 125
  start-page: 1426
  year: 2017
  ident: 2558_CR32
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.07.119
– volume: 99
  start-page: 479
  year: 2019
  ident: 2558_CR33
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2018.12.030
– volume: 44
  start-page: 4195
  year: 2001
  ident: 2558_CR27
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/S0017-9310(01)00079-5
– volume: 23
  start-page: 192
  year: 2016
  ident: 2558_CR11
  publication-title: Sci. Technol. Built Environ.
  doi: 10.1080/23744731.2016.1203240
– volume: 153
  start-page: 504
  year: 2017
  ident: 2558_CR20
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2017.09.066
– volume: 72
  start-page: 1075
  year: 1950
  ident: 2558_CR1
  publication-title: Trans. AsME.
– volume: 1
  start-page: 1
  year: 2014
  ident: 2558_CR24
  publication-title: J. Fuel Cell Sci. Technol
  doi: 10.1115/1.4026955
– ident: 2558_CR25
SSID ssj0027083
Score 2.3422384
Snippet In this work, optimization of louver fin geometries is performed to obtain better thermal hydraulic performance of multilouvered microchannel heat exchanger by...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 216
SubjectTerms Computational fluid dynamics
Cooling
Design
Design parameters
Dimensionless numbers
Engineering
Genetic algorithms
Geometry
Heat exchangers
Heat transfer
Heat transfer coefficients
Investigations
Microchannels
Numerical analysis
Optimization
Orthogonal arrays
Pressure drop
Regression models
Reynolds number
Simulation
Taguchi methods
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BS8MwFA4yL3oQNxWnU3LwoGigaZO2OY7pGIJ62WC38tKmQ3DtsNvBf-9Ll1IVPXhqIWkP773kfR_J-x4hVwASB9ADKrCi2pkEpkCmzEjBI-AcIm0LnJ-ew8lMPM7l3BWFVc1t9-ZIst6p22I3H7kcw5zCLA6OGRL1XWnlvDCKZ_6wpVmIKlx5zO_ffU9BLa78cRRaZ5jxITlw0JAOt77skh1T9Mj-F8HAHum6pVjRa6cXfXNEshdc9ktXT0nLnL6VGwxQmr8WdGHKZd0zq6KITqkVEqmVPPEttc2ywF5zociJcfvBYKT6g05hYRukUCgyOhrf022P6WMyGz9MRxPmmiewFC2wZiAFqCA3Hj5CW7qcCjB-xnFv1nmMJCgKlEY2FgiQWoLMFHClVZTz0MShgOCEdIqyMKeERnGaasxjnkozIYRVrAviXCHV0J4EHvfJbWPPZLXVyEhaNWRr_QStn9TWT7w-GTQmT9x6qZLANtPzEQtGfXLXuKEd_vtvZ_-bfk72_DoSIsb5gHTW7xtzgahirS_rIPoEYxHEkQ
  priority: 102
  providerName: Springer Nature
Title Optimization of louver fin geometries for miniature microchannel condenser by Taguchi and CFD method
URI https://link.springer.com/article/10.1007/s12046-024-02558-0
https://www.proquest.com/docview/3257025227
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 0973-7677
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0027083
  issn: 0973-7677
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 0973-7677
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0027083
  issn: 0973-7677
  databaseCode: KQ8
  dateStart: 19780701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 0973-7677
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0027083
  issn: 0973-7677
  databaseCode: ABDBF
  dateStart: 20060601
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 0973-7677
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0027083
  issn: 0973-7677
  databaseCode: ADMLS
  dateStart: 20060601
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 0973-7677
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0027083
  issn: 0973-7677
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 0973-7677
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0027083
  issn: 0973-7677
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9tAEB4S-9JLiPsgTlOzhx5akqV67FraQyl2YiW0xA0lhvQkZvUIgUZKYvuQf98ZaYVooT1JsLCgmd2Z-bQ73wfwHlHTAHnAhEyqnWuUBnUmC638CH0fI8sNzpfL6cVKfb3RNzuw7Hph-FplFxObQJ3XGf8j_xSy3FpA1UL05eFRsmoUn652EhropBXyzw3F2C4MA2bGGsBwvlhe_eghmNcSc1KilwQ8jGujaZvpAsKKknKW5Do7lt6fqaqvP_86Mm0yUbIPe66EFLPW5yPYKaqXMHKbdC0-OCbpj68g_04B4d51Woq6FL_qLS1dUd5V4rao7xs1rbWgulUwxUjD8UlvGctoIV-AEYSWKTDRMhX2WVzjLUunCKxycZqciVZ9-jWsksX16YV0sgoyo-_fSNQKTVgWHj2m3NScKSyC3KeobcuY4FEUGks4LVSorUadG_SNNVHpT4t4qjB8A4OqrooDEFGcZZYynGeyXCnFXHZhXBoCIdbT6MdjOO4smD607Blpz5PM9k7J3mlj79Qbw1Fn5NTtpHXa-30MJ53h--F_z3b4_9newoug8XVEmegIBpunbfGO6ouNncBunJxPYDibn80Tfp7__LaYuKVEo6tg9htsNdBX
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwED6V9mG8oA2GKAzmB5CYwCJO7CZ-mBB0qzq2dQh10t6yc-JMSCwZayvUP8dv45w4ioYEb3uKJUt-OJ_v7ot93wfwGlHRBO2Ajhypdq6Qa1QZt0qKGIXA2LgG59PZaHouv1yoix78bnth3LPKNibWgTqvMveP_EPk5NZCqhbijzc_uVONcrerrYQGemmFfL-mGPONHcd2_Ysg3GL_6ID2-00YTg7n4yn3KgM8C-NgyVFJ1FFhA_qMXI9vJtGGuaAgZoqE0EIcaUOwJZKojEKVaxTa6LgQI5uMJEa07gMYyEhqAn-Dz4ezr986yBc0RKBUWHACOtq37TTNeyFhU045kru6PuHB3dTY1bt_XdHWmW-yCY98yco-NT62BT1bPoYtHxQW7K1nrt57AvkZBaBr39nJqoL9qFZ0VFjxvWRXtrqu1bsWjOpk5ihNak5RGmVOtgvdgxtG6JwCIR0LZtZsjldOqoVhmbPx5IA1atfbcH4vBn4K_bIq7TNgcZJlhjJqoLNcSum486Kk0AR6TKBQJEN411owvWnYOtKOl9nZOyV7p7W902AIO62RU39yF2nnZ0N43xq-m_73as__v9oubEznpyfpydHs-AU8DOt9j7kQO9Bf3q7sS6ptluaVdyAGl_fts38Aq6oH5A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELUQSAgGRAuIQgEPDCCIWid2Eo9VS1S-CkMrdYvO-aiQaFLRdODfc86HUhAMTInkJMPz2fdO8XtHyCWAwAGcAWlpU-1QgCFBBEYkOHOAMXCUFjg_j-zhhD9MxXRNxZ-fdq9-SRaaBu3SlGSdRRh3auGbiXWdgfnF0JzYNbBo3-LaKAEjemL26pILGUYplfn9ve_pqOaYP36L5tnG2yd7JU2kvWJeG2QjSppkd808sEka5bJc0qvSO_r6gIQvuAXMS20lTWP6nq4wWGn8ltBZlM7z_llLikyValOR3NUT7wLdOAv0kReKQOBWhIFJ1Scdw0w3S6GQhLTvDWjRb_qQTLy7cX9olI0UjAARyAwQHKQVR1282FrGHHCIzJDhPq1iFwsix5IKKzOLg1ACRCiBSSWdmNmRa3OwjshmkibRMaGOGwQKc1pXBiHnXLvXWW4ssexQXQHMbZGbCk9_Ufhl-LUzskbfR_T9HH2_2yLtCnK_XDtL39KN9UzkhU6L3FbTUA___bWT_z1-QbZfB57_dD96PCU7ppY1aMNM1iab2ccqOkOykanzPJ6-AH50y7c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+louver+fin+geometries+for+miniature+microchannel+condenser+by+Taguchi+and+CFD+method&rft.jtitle=Sadhana+%28Bangalore%29&rft.au=Kumar%2C+S+Satheesh&rft.au=Kumaraguruparan%2C+G&rft.au=Senthilkumar%2C+T+S&rft.date=2024-07-11&rft.pub=Springer+Nature+B.V&rft.issn=0256-2499&rft.eissn=0973-7677&rft.volume=49&rft.issue=3&rft.spage=216&rft_id=info:doi/10.1007%2Fs12046-024-02558-0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0973-7677&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0973-7677&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0973-7677&client=summon