Optimization of louver fin geometries for miniature microchannel condenser by Taguchi and CFD method
In this work, optimization of louver fin geometries is performed to obtain better thermal hydraulic performance of multilouvered microchannel heat exchanger by CFD method. Five louver fin geometries are considered in this work namely fin pitch, fin height, louver pitch, louver angle and louver lengt...
Saved in:
| Published in | Sadhana (Bangalore) Vol. 49; no. 3; p. 216 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New Delhi
Springer India
11.07.2024
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0973-7677 0256-2499 0973-7677 |
| DOI | 10.1007/s12046-024-02558-0 |
Cover
| Abstract | In this work, optimization of louver fin geometries is performed to obtain better thermal hydraulic performance of multilouvered microchannel heat exchanger by CFD method. Five louver fin geometries are considered in this work namely fin pitch, fin height, louver pitch, louver angle and louver length. The air side performance is analyzed with the help of airside heat transfer coefficient and pressure drop. These parameters are determined using Colburn-j factor and f factor for Reynolds numbers range of 100–600. In this work, two factors are studied for the effect of individual and combined louver fin geometries. It is observed from the literature study that increase in Reynold number, increases the Colburn-j factor and hence increases the rate of heat transfer favorably. At the same time, increase in Reynold number, increase f factor in term increase the pressure drop which is not desirable. Hence, it is challenging to increase the heat transfer without increase the pressure drop characteristics for heat exchanger design. So, aim of this work is to maximize the heat transfer and minimize the pressure drop. To account for these two contradicting objectives, dimensionless number (JF factor) is considered to determine the thermal hydraulic performance for the heat exchanger and it accounts both Colburn-j factor and f factor simultaneously. Orthogonal array-based Taguchi analysis is performed to obtain optimized louver fin geometries. Taguchi-CFD analysis revealed that fin pitch is the most influencing parameter, that alone accounts for 94.33% of contribution ratio on JF factor. Taguchi-confirmation test showed that the enhancement of JF factor for optimal louver fin is 5.97% higher than that of the initial design parameter. Finally, CFD analysis is performed to compare the performance of optimal louver fin geometry with that of the default louver fin geometry. From this analysis, Colburn-j and JF factor of optimum fin geometry are found to be 24.42% and 18.23% higher than those of default fin geometry. Regression models are developed for optimum fin geometry to predict the Colburn-j, f and JF factor for the Reynolds numbers range of 100–850, whose adj. R
2
value is 99.05%. |
|---|---|
| AbstractList | In this work, optimization of louver fin geometries is performed to obtain better thermal hydraulic performance of multilouvered microchannel heat exchanger by CFD method. Five louver fin geometries are considered in this work namely fin pitch, fin height, louver pitch, louver angle and louver length. The air side performance is analyzed with the help of airside heat transfer coefficient and pressure drop. These parameters are determined using Colburn-j factor and f factor for Reynolds numbers range of 100–600. In this work, two factors are studied for the effect of individual and combined louver fin geometries. It is observed from the literature study that increase in Reynold number, increases the Colburn-j factor and hence increases the rate of heat transfer favorably. At the same time, increase in Reynold number, increase f factor in term increase the pressure drop which is not desirable. Hence, it is challenging to increase the heat transfer without increase the pressure drop characteristics for heat exchanger design. So, aim of this work is to maximize the heat transfer and minimize the pressure drop. To account for these two contradicting objectives, dimensionless number (JF factor) is considered to determine the thermal hydraulic performance for the heat exchanger and it accounts both Colburn-j factor and f factor simultaneously. Orthogonal array-based Taguchi analysis is performed to obtain optimized louver fin geometries. Taguchi-CFD analysis revealed that fin pitch is the most influencing parameter, that alone accounts for 94.33% of contribution ratio on JF factor. Taguchi-confirmation test showed that the enhancement of JF factor for optimal louver fin is 5.97% higher than that of the initial design parameter. Finally, CFD analysis is performed to compare the performance of optimal louver fin geometry with that of the default louver fin geometry. From this analysis, Colburn-j and JF factor of optimum fin geometry are found to be 24.42% and 18.23% higher than those of default fin geometry. Regression models are developed for optimum fin geometry to predict the Colburn-j, f and JF factor for the Reynolds numbers range of 100–850, whose adj. R2 value is 99.05%. In this work, optimization of louver fin geometries is performed to obtain better thermal hydraulic performance of multilouvered microchannel heat exchanger by CFD method. Five louver fin geometries are considered in this work namely fin pitch, fin height, louver pitch, louver angle and louver length. The air side performance is analyzed with the help of airside heat transfer coefficient and pressure drop. These parameters are determined using Colburn-j factor and f factor for Reynolds numbers range of 100–600. In this work, two factors are studied for the effect of individual and combined louver fin geometries. It is observed from the literature study that increase in Reynold number, increases the Colburn-j factor and hence increases the rate of heat transfer favorably. At the same time, increase in Reynold number, increase f factor in term increase the pressure drop which is not desirable. Hence, it is challenging to increase the heat transfer without increase the pressure drop characteristics for heat exchanger design. So, aim of this work is to maximize the heat transfer and minimize the pressure drop. To account for these two contradicting objectives, dimensionless number (JF factor) is considered to determine the thermal hydraulic performance for the heat exchanger and it accounts both Colburn-j factor and f factor simultaneously. Orthogonal array-based Taguchi analysis is performed to obtain optimized louver fin geometries. Taguchi-CFD analysis revealed that fin pitch is the most influencing parameter, that alone accounts for 94.33% of contribution ratio on JF factor. Taguchi-confirmation test showed that the enhancement of JF factor for optimal louver fin is 5.97% higher than that of the initial design parameter. Finally, CFD analysis is performed to compare the performance of optimal louver fin geometry with that of the default louver fin geometry. From this analysis, Colburn-j and JF factor of optimum fin geometry are found to be 24.42% and 18.23% higher than those of default fin geometry. Regression models are developed for optimum fin geometry to predict the Colburn-j, f and JF factor for the Reynolds numbers range of 100–850, whose adj. R 2 value is 99.05%. |
| ArticleNumber | 216 |
| Author | Senthilkumar, T S Kumar, S Satheesh Kumaraguruparan, G |
| Author_xml | – sequence: 1 givenname: S Satheesh surname: Kumar fullname: Kumar, S Satheesh organization: Department of Mechanical Engineering, M. Kumarasamy College of Engineering – sequence: 2 givenname: G surname: Kumaraguruparan fullname: Kumaraguruparan, G email: gkgmech@tce.edu organization: Department of Mechatronics Engineering, Thiagarajar College of Engineering – sequence: 3 givenname: T S surname: Senthilkumar fullname: Senthilkumar, T S organization: Department of Mechanical Engineering, K. Ramakrishnan College of Technology |
| BookMark | eNp9kLFOwzAQhi1UJNrCCzBZYg7Yjh0nIyoUkCp1KbPlJOfWVWMXO0EqT48hSDAxnO6G_7uzvxmaOO8AoWtKbikh8i5SRniREcZTCVFm5AxNSSXzTBZSTv7MF2gW454QJkmZT1G7Pva2sx-6t95hb_DBD-8QsLEOb8F30AcLERsfcGed1f0QIE1N8M1OOwcH3HjXgouJqU94o7dDs7NYuxYvlg848TvfXqJzow8Rrn76HL0uHzeL52y1fnpZ3K-yJr2mz7TgusoNkNQKLgRpuAbWUqhpbUrKS5lXdUFozrWohRZtpWlVV9LQAsqC63yObsa9x-DfBoi92vshuHRS5UzIZIYxmVJsTKVPxBjAqGOwnQ4nRYn6sqlGmyrZVN82FUlQPkIxhd0Wwu_qf6hPCSB6Aw |
| Cites_doi | 10.1016/j.applthermaleng.2011.06.014 10.1016/j.applthermaleng.2016.03.033 10.1016/j.ijthermalsci.2006.04.010 10.1016/j.ijthermalsci.2018.03.002 10.1016/S0017-9310(01)00079-5 10.1016/j.ijrefrig.2014.05.026 10.1016/j.applthermaleng.2014.04.022 10.1016/j.applthermaleng.2012.03.003 10.1115/1.3000609 10.1016/0894-1777(89)90018-6 10.1016/j.applthermaleng.2015.05.018 10.1016/j.applthermaleng.2017.07.119 10.1115/1.4026955 10.1016/j.applthermaleng.2005.11.019 10.1016/j.applthermaleng.2015.12.107 10.1016/j.expthermflusci.2009.01.003 10.1016/j.ijheatmasstransfer.2014.12.044 10.1016/j.ijheatmasstransfer.2017.12.127 10.1016/j.ijheatmasstransfer.2010.04.002 10.1016/j.aej.2015.08.003 10.1016/j.ijrefrig.2018.12.030 10.1016/0894-1777(88)90032-5 10.1080/01457632.2017.1312881 10.1080/01457632.2016.1200382 10.1016/j.applthermaleng.2015.07.059 10.1016/S0140-7007(01)00025-1 10.1016/j.enconman.2017.09.066 10.1016/j.enconman.2006.11.023 10.1080/23744731.2016.1203240 10.2514/1.9123 10.1016/S0017-9310(00)00297-0 10.1016/0017-9310(96)00116-0 10.1016/j.applthermaleng.2017.07.082 |
| ContentType | Journal Article |
| Copyright | Indian Academy of Sciences 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Indian Academy of Sciences 2024. |
| Copyright_xml | – notice: Indian Academy of Sciences 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Indian Academy of Sciences 2024. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AEUYN AFKRA ARAPS BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S P5Z P62 PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.1007/s12046-024-02558-0 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | CrossRef Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Technology Collection |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 0973-7677 |
| ExternalDocumentID | 10_1007_s12046_024_02558_0 |
| GrantInformation_xml | – fundername: Department of Science and Technology - IDP - Government of India grantid: F. No: IDP/IND/11/2015 |
| GroupedDBID | -5B -5G -BR -EM -~C -~X .86 .VR 06D 0R~ 0VY 123 1N0 203 29P 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2WC 2~H 30V 4.4 406 408 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABDBF ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABLLD ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFLOW AFQWF AFWTZ AFZKB AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD AYJHY B-. BA0 BGNMA CS3 CSCUP DDRTE DNIVK DPUIP E3Z EAD EAP EBLON EBS EIOEI EJD EOJEC ESBYG ESX FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GROUPED_DOAJ HG5 HG6 HMJXF HRMNR I-F IJ- IKXTQ IWAJR IXD I~X I~Z J-C J0Z JBSCW JZLTJ KOV KQ8 LLZTM M4Y MA- MK~ NF0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OBODZ OK1 P19 P2P P9P PF0 PT4 PT5 QOK QOS R89 R9I RAB RHV RNS ROL RPX RSV S16 S27 S3B SAP SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TR2 TSG TSK TSV TUS U2A UG4 UOJIU UTJUX VC2 W48 WK8 XSB YLTOR Z45 Z7R Z7S Z7X Z7Z Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR _50 ~8M ~A9 ~EX AAPKM AAYXX ABDBE ABRTQ AFDZB AFOHR AHPBZ ATHPR CITATION OVT 8FE 8FG ABJCF AEUYN AFKRA ARAPS BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S P62 PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| ID | FETCH-LOGICAL-c270t-a54a93fe04a964550c4ae2d1eb1bf8148739b60134a5b5a5d9a19b97f16e864a3 |
| IEDL.DBID | BENPR |
| ISSN | 0973-7677 0256-2499 |
| IngestDate | Tue Oct 07 06:09:45 EDT 2025 Wed Oct 01 04:21:07 EDT 2025 Fri Feb 21 02:39:29 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | multilouvered microchannel heat exchanger airside heat transfer coefficient optimization thermal hydraulic performance Louver fin Taguchi method |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c270t-a54a93fe04a964550c4ae2d1eb1bf8148739b60134a5b5a5d9a19b97f16e864a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3257025227 |
| PQPubID | 2043821 |
| ParticipantIDs | proquest_journals_3257025227 crossref_primary_10_1007_s12046_024_02558_0 springer_journals_10_1007_s12046_024_02558_0 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-07-11 |
| PublicationDateYYYYMMDD | 2024-07-11 |
| PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-11 day: 11 |
| PublicationDecade | 2020 |
| PublicationPlace | New Delhi |
| PublicationPlace_xml | – name: New Delhi – name: Dordrecht |
| PublicationSubtitle | Published by the Indian Academy of Sciences |
| PublicationTitle | Sadhana (Bangalore) |
| PublicationTitleAbbrev | Sādhanā |
| PublicationYear | 2024 |
| Publisher | Springer India Springer Nature B.V |
| Publisher_xml | – name: Springer India – name: Springer Nature B.V |
| References | Vaisi, Esmaeilpour, Taherian (CR8) 2011; 31 Malapure, Mitra, Bhattacharya (CR15) 2007; 46 Čarija, Franković, Perčić, Čavrak (CR28) 2014; 45 Deng (CR20) 2017; 153 Karthik, Kumaresan, Velraj (CR10) 2015; 54 Shinde, Lin (CR11) 2016; 23 Sadeghianjahromi, Kheradmand, Nemati (CR23) 2018; 129 Dong, Chen, Chen, Zhang, Zhou (CR6) 2007; 48 Ryu, Lee (CR14) 2015; 83 Erbay, Uğurlubilek, Altun, Doğan (CR17) 2017; 38 Tafti, Zhang (CR27) 2001; 44 Ryu, Yook, Lee (CR30) 2014; 68 Saleem, Kim (CR19) 2017; 125 Kang, Cho, Kim, Jacobi (CR24) 2014; 1 Kim, Yun, Lee (CR5) 2004; 18 Kim, Bullard (CR2) 2002; 25 Liang, Liu, Li, Chen (CR9) 2015; 87 Dogan, Altun, Ugurlubilek, Tosun, Sarıçay, Erbay (CR13) 2015; 91 T’Joen, Jacobi, De Paepe (CR7) 2009; 33 Park, Jacobi (CR34) 2008 Okbaz, Pınarbaşı, Olcay, Aksoy (CR21) 2018; 121 Li, Wang (CR12) 2010; 53 Hsieh, Jang (CR16) 2012; 42 Qasem, Al-Ghamdi, Zubair (CR33) 2019; 99 Asadi, Sunden, Xie (CR18) 2017; 39 CR25 Aoki, Shinagawa, Suga (CR4) 1989; 2 Zhang, Tafti (CR26) 2001; 44 Achaichia, Cowell (CR3) 1988; 1 Hsieh, Jang (CR22) 2006; 26 Chang, Wang (CR29) 1997; 40 Dezan, Salviano, Yanagihara (CR31) 2016; 101 Wang, Liu, Yang, Wu, He (CR35) 2016; 103 Yadav, Giri, Momale (CR32) 2017; 125 Kays, London (CR1) 1950; 72 CT Hsieh (2558_CR22) 2006; 26 VP Malapure (2558_CR15) 2007; 46 DK Tafti (2558_CR27) 2001; 44 NAA Qasem (2558_CR33) 2019; 99 W Li (2558_CR12) 2010; 53 X Zhang (2558_CR26) 2001; 44 J Dong (2558_CR6) 2007; 48 P Karthik (2558_CR10) 2015; 54 H Aoki (2558_CR4) 1989; 2 A Okbaz (2558_CR21) 2018; 121 C T’Joen (2558_CR7) 2009; 33 Z Čarija (2558_CR28) 2014; 45 J Deng (2558_CR20) 2017; 153 MH Kim (2558_CR2) 2002; 25 A Sadeghianjahromi (2558_CR23) 2018; 129 A Achaichia (2558_CR3) 1988; 1 M Asadi (2558_CR18) 2017; 39 DJ Dezan (2558_CR31) 2016; 101 LB Erbay (2558_CR17) 2017; 38 JH Kim (2558_CR5) 2004; 18 B Dogan (2558_CR13) 2015; 91 P Shinde (2558_CR11) 2016; 23 W Kays (2558_CR1) 1950; 72 HC Kang (2558_CR24) 2014; 1 A Vaisi (2558_CR8) 2011; 31 YY Liang (2558_CR9) 2015; 87 YG Park (2558_CR34) 2008 K Ryu (2558_CR14) 2015; 83 A Saleem (2558_CR19) 2017; 125 2558_CR25 H Wang (2558_CR35) 2016; 103 YJ Chang (2558_CR29) 1997; 40 CT Hsieh (2558_CR16) 2012; 42 MS Yadav (2558_CR32) 2017; 125 K Ryu (2558_CR30) 2014; 68 |
| References_xml | – volume: 31 start-page: 3337 year: 2011 end-page: 3346 ident: CR8 article-title: Experimental investigation of geometry effects on the performance of a compact louvered heat exchanger publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2011.06.014 – volume: 103 start-page: 128 year: 2016 end-page: 138 ident: CR35 article-title: Parametric study and optimization of H-type finned tube heat exchangers using Taguchi method publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.03.033 – volume: 46 start-page: 199 year: 2007 end-page: 211 ident: CR15 article-title: Numerical investigation of fluid flow and heat transfer over louvered fins in compact heat exchanger publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2006.04.010 – volume: 129 start-page: 135 year: 2018 end-page: 144 ident: CR23 article-title: Developed correlations for heat transfer and flow friction characteristics of louvered finned tube heat exchangers publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2018.03.002 – volume: 44 start-page: 4195 year: 2001 end-page: 4210 ident: CR27 article-title: Geometry effects on flow transition in multilouvered fins—onset, propagation, and characteristic frequencies publication-title: Int. J. Heat Mass Transf. doi: 10.1016/S0017-9310(01)00079-5 – volume: 45 start-page: 160 year: 2014 end-page: 167 ident: CR28 article-title: Heat transfer analysis of fin-and-tube heat exchangers with flat and louvered fin geometries publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2014.05.026 – volume: 68 start-page: 76 year: 2014 end-page: 79 ident: CR30 article-title: Optimal design of a corrugated louvered fin publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2014.04.022 – volume: 42 start-page: 101 year: 2012 end-page: 110 ident: CR16 article-title: Parametric study and optimization of louver finned-tube heat exchangers by Taguchi method publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2012.03.003 – year: 2008 ident: CR34 article-title: Air-side heat transfer and friction correlations for flat-tube louver-fin heat exchangers publication-title: J. Heat Transf. doi: 10.1115/1.3000609 – volume: 2 start-page: 293 year: 1989 end-page: 300 ident: CR4 article-title: An experimental study of the local heat transfer characteristics in automotive louvered fins publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/0894-1777(89)90018-6 – volume: 87 start-page: 305 year: 2015 end-page: 315 ident: CR9 article-title: Experimental and simulation study on the air side thermal hydraulic performance of automotive heat exchangers publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.05.018 – volume: 125 start-page: 1426 year: 2017 end-page: 1436 ident: CR32 article-title: Sizing analysis of louvered fin flat tube compact heat exchanger by genetic algorithm publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.07.119 – volume: 1 start-page: 1 year: 2014 ident: CR24 article-title: Air-side heat transfer performance of louver fin and multitube heat exchanger for direct methanol fuel cell cooling application publication-title: J. Fuel Cell Sci. Technol doi: 10.1115/1.4026955 – volume: 26 start-page: 1629 year: 2006 end-page: 1639 ident: CR22 article-title: 3-D thermal-hydraulic analysis for louver fin heat exchangers with variable louver angle publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2005.11.019 – volume: 101 start-page: 576 year: 2016 end-page: 591 ident: CR31 article-title: Heat transfer enhancement and optimization of flat-tube multilouvered fin compact heat exchangers with delta-winglet vortex generators publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.12.107 – volume: 33 start-page: 664 year: 2009 end-page: 674 ident: CR7 article-title: Flow visualisation in inclined louvered fins publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/j.expthermflusci.2009.01.003 – volume: 83 start-page: 604 year: 2015 end-page: 612 ident: CR14 article-title: Generalized heat-transfer and fluid-flow correlations for corrugated louvered fins publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2014.12.044 – volume: 121 start-page: 153 year: 2018 end-page: 169 ident: CR21 article-title: An experimental, computational and flow visualization study on the air-side thermal and hydraulic performance of louvered fin and round tube heat exchangers publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2017.12.127 – volume: 53 start-page: 2955 year: 2010 end-page: 2962 ident: CR12 article-title: Heat transfer and pressure drop correlations for compact heat exchangers with multi-region louver fins publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2010.04.002 – ident: CR25 – volume: 54 start-page: 905 year: 2015 end-page: 915 ident: CR10 article-title: Experimental and parametric studies of a louvered fin and flat tube compact heat exchanger using computational fluid dynamics publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2015.08.003 – volume: 99 start-page: 479 year: 2019 end-page: 489 ident: CR33 article-title: An assessment of optimal airside heat transfer per unit friction power characteristics of compact heat exchangers publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2018.12.030 – volume: 1 start-page: 147 year: 1988 end-page: 157 ident: CR3 article-title: Heat transfer and pressure drop characteristics of flat tube and louvered plate fin surfaces publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/0894-1777(88)90032-5 – volume: 39 start-page: 436 year: 2017 end-page: 448 ident: CR18 article-title: Constructal optimization of louver fin channels subjected to heat transfer rate maximization and pressure loss minimization publication-title: Heat Transf. Eng. doi: 10.1080/01457632.2017.1312881 – volume: 38 start-page: 627 year: 2017 end-page: 640 ident: CR17 article-title: Numerical investigation of the air-side thermal hydraulic performance of a louvered-fin and flat-tube heat exchanger at low Reynolds numbers publication-title: Heat Transf. Eng. doi: 10.1080/01457632.2016.1200382 – volume: 91 start-page: 270 year: 2015 end-page: 278 ident: CR13 article-title: An experimental comparison of two multi-louvered fin heat exchangers with different numbers of fin rows publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.07.059 – volume: 72 start-page: 1075 year: 1950 end-page: 1097 ident: CR1 article-title: Heat transfer and flow friction characteristics of some compact heat exchanger surfaces publication-title: Trans. AsME. – volume: 25 start-page: 390 year: 2002 end-page: 400 ident: CR2 article-title: Air-side thermal hydraulic performance of multi-louvered fin aluminum heat exchangers publication-title: Int. J. Refrig. doi: 10.1016/S0140-7007(01)00025-1 – volume: 153 start-page: 504 year: 2017 end-page: 514 ident: CR20 article-title: Improved correlations of the thermal-hydraulic performance of large size multi-louvered fin arrays for condensers of high power electronic component cooling by numerical simulation publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2017.09.066 – volume: 48 start-page: 1506 year: 2007 end-page: 1515 ident: CR6 article-title: Heat transfer and pressure drop correlations for the multi-louvered fin compact heat exchangers publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2006.11.023 – volume: 23 start-page: 192 year: 2016 end-page: 210 ident: CR11 article-title: A heat transfer and friction factor correlation for low air-side Reynolds number applications of compact heat exchangers (1535-RP) publication-title: Sci. Technol. Built Environ. doi: 10.1080/23744731.2016.1203240 – volume: 18 start-page: 58 year: 2004 end-page: 64 ident: CR5 article-title: Heat-Transfer and friction characteristics for the louver-fin heat exchanger publication-title: J. Thermophys. Heat Transf. doi: 10.2514/1.9123 – volume: 44 start-page: 2461 year: 2001 end-page: 2473 ident: CR26 article-title: Classification and effects of thermal wakes on heat transfer in multilouvered fins publication-title: Int. J. Heat Mass Transf. doi: 10.1016/S0017-9310(00)00297-0 – volume: 40 start-page: 533 year: 1997 end-page: 544 ident: CR29 article-title: A generalized heat transfer correlation for Iouver fin geometry publication-title: Int. J. Heat Mass Transf. doi: 10.1016/0017-9310(96)00116-0 – volume: 125 start-page: 780 year: 2017 end-page: 789 ident: CR19 article-title: Air-side thermal hydraulic performance of microchannel heat exchangers with different in configurations publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.07.082 – volume: 25 start-page: 390 year: 2002 ident: 2558_CR2 publication-title: Int. J. Refrig. doi: 10.1016/S0140-7007(01)00025-1 – volume: 1 start-page: 147 year: 1988 ident: 2558_CR3 publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/0894-1777(88)90032-5 – volume: 31 start-page: 3337 year: 2011 ident: 2558_CR8 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2011.06.014 – volume: 53 start-page: 2955 year: 2010 ident: 2558_CR12 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2010.04.002 – volume: 42 start-page: 101 year: 2012 ident: 2558_CR16 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2012.03.003 – volume: 40 start-page: 533 year: 1997 ident: 2558_CR29 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/0017-9310(96)00116-0 – volume: 68 start-page: 76 year: 2014 ident: 2558_CR30 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2014.04.022 – volume: 121 start-page: 153 year: 2018 ident: 2558_CR21 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2017.12.127 – volume: 33 start-page: 664 year: 2009 ident: 2558_CR7 publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/j.expthermflusci.2009.01.003 – year: 2008 ident: 2558_CR34 publication-title: J. Heat Transf. doi: 10.1115/1.3000609 – volume: 44 start-page: 2461 year: 2001 ident: 2558_CR26 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/S0017-9310(00)00297-0 – volume: 91 start-page: 270 year: 2015 ident: 2558_CR13 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.07.059 – volume: 39 start-page: 436 year: 2017 ident: 2558_CR18 publication-title: Heat Transf. Eng. doi: 10.1080/01457632.2017.1312881 – volume: 18 start-page: 58 year: 2004 ident: 2558_CR5 publication-title: J. Thermophys. Heat Transf. doi: 10.2514/1.9123 – volume: 54 start-page: 905 year: 2015 ident: 2558_CR10 publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2015.08.003 – volume: 103 start-page: 128 year: 2016 ident: 2558_CR35 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.03.033 – volume: 83 start-page: 604 year: 2015 ident: 2558_CR14 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2014.12.044 – volume: 46 start-page: 199 year: 2007 ident: 2558_CR15 publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2006.04.010 – volume: 48 start-page: 1506 year: 2007 ident: 2558_CR6 publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2006.11.023 – volume: 45 start-page: 160 year: 2014 ident: 2558_CR28 publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2014.05.026 – volume: 101 start-page: 576 year: 2016 ident: 2558_CR31 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.12.107 – volume: 38 start-page: 627 year: 2017 ident: 2558_CR17 publication-title: Heat Transf. Eng. doi: 10.1080/01457632.2016.1200382 – volume: 129 start-page: 135 year: 2018 ident: 2558_CR23 publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2018.03.002 – volume: 87 start-page: 305 year: 2015 ident: 2558_CR9 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.05.018 – volume: 26 start-page: 1629 year: 2006 ident: 2558_CR22 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2005.11.019 – volume: 125 start-page: 780 year: 2017 ident: 2558_CR19 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.07.082 – volume: 2 start-page: 293 year: 1989 ident: 2558_CR4 publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/0894-1777(89)90018-6 – volume: 125 start-page: 1426 year: 2017 ident: 2558_CR32 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.07.119 – volume: 99 start-page: 479 year: 2019 ident: 2558_CR33 publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2018.12.030 – volume: 44 start-page: 4195 year: 2001 ident: 2558_CR27 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/S0017-9310(01)00079-5 – volume: 23 start-page: 192 year: 2016 ident: 2558_CR11 publication-title: Sci. Technol. Built Environ. doi: 10.1080/23744731.2016.1203240 – volume: 153 start-page: 504 year: 2017 ident: 2558_CR20 publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2017.09.066 – volume: 72 start-page: 1075 year: 1950 ident: 2558_CR1 publication-title: Trans. AsME. – volume: 1 start-page: 1 year: 2014 ident: 2558_CR24 publication-title: J. Fuel Cell Sci. Technol doi: 10.1115/1.4026955 – ident: 2558_CR25 |
| SSID | ssj0027083 |
| Score | 2.3422384 |
| Snippet | In this work, optimization of louver fin geometries is performed to obtain better thermal hydraulic performance of multilouvered microchannel heat exchanger by... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 216 |
| SubjectTerms | Computational fluid dynamics Cooling Design Design parameters Dimensionless numbers Engineering Genetic algorithms Geometry Heat exchangers Heat transfer Heat transfer coefficients Investigations Microchannels Numerical analysis Optimization Orthogonal arrays Pressure drop Regression models Reynolds number Simulation Taguchi methods |
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BS8MwFA4yL3oQNxWnU3LwoGigaZO2OY7pGIJ62WC38tKmQ3DtsNvBf-9Ll1IVPXhqIWkP773kfR_J-x4hVwASB9ADKrCi2pkEpkCmzEjBI-AcIm0LnJ-ew8lMPM7l3BWFVc1t9-ZIst6p22I3H7kcw5zCLA6OGRL1XWnlvDCKZ_6wpVmIKlx5zO_ffU9BLa78cRRaZ5jxITlw0JAOt77skh1T9Mj-F8HAHum6pVjRa6cXfXNEshdc9ktXT0nLnL6VGwxQmr8WdGHKZd0zq6KITqkVEqmVPPEttc2ywF5zociJcfvBYKT6g05hYRukUCgyOhrf022P6WMyGz9MRxPmmiewFC2wZiAFqCA3Hj5CW7qcCjB-xnFv1nmMJCgKlEY2FgiQWoLMFHClVZTz0MShgOCEdIqyMKeERnGaasxjnkozIYRVrAviXCHV0J4EHvfJbWPPZLXVyEhaNWRr_QStn9TWT7w-GTQmT9x6qZLANtPzEQtGfXLXuKEd_vtvZ_-bfk72_DoSIsb5gHTW7xtzgahirS_rIPoEYxHEkQ priority: 102 providerName: Springer Nature |
| Title | Optimization of louver fin geometries for miniature microchannel condenser by Taguchi and CFD method |
| URI | https://link.springer.com/article/10.1007/s12046-024-02558-0 https://www.proquest.com/docview/3257025227 |
| Volume | 49 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 0973-7677 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0027083 issn: 0973-7677 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 0973-7677 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0027083 issn: 0973-7677 databaseCode: KQ8 dateStart: 19780701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 0973-7677 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0027083 issn: 0973-7677 databaseCode: ABDBF dateStart: 20060601 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 0973-7677 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0027083 issn: 0973-7677 databaseCode: ADMLS dateStart: 20060601 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 0973-7677 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0027083 issn: 0973-7677 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 0973-7677 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0027083 issn: 0973-7677 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9tAEB4S-9JLiPsgTlOzhx5akqV67FraQyl2YiW0xA0lhvQkZvUIgUZKYvuQf98ZaYVooT1JsLCgmd2Z-bQ73wfwHlHTAHnAhEyqnWuUBnUmC638CH0fI8sNzpfL6cVKfb3RNzuw7Hph-FplFxObQJ3XGf8j_xSy3FpA1UL05eFRsmoUn652EhropBXyzw3F2C4MA2bGGsBwvlhe_eghmNcSc1KilwQ8jGujaZvpAsKKknKW5Do7lt6fqaqvP_86Mm0yUbIPe66EFLPW5yPYKaqXMHKbdC0-OCbpj68g_04B4d51Woq6FL_qLS1dUd5V4rao7xs1rbWgulUwxUjD8UlvGctoIV-AEYSWKTDRMhX2WVzjLUunCKxycZqciVZ9-jWsksX16YV0sgoyo-_fSNQKTVgWHj2m3NScKSyC3KeobcuY4FEUGks4LVSorUadG_SNNVHpT4t4qjB8A4OqrooDEFGcZZYynGeyXCnFXHZhXBoCIdbT6MdjOO4smD607Blpz5PM9k7J3mlj79Qbw1Fn5NTtpHXa-30MJ53h--F_z3b4_9newoug8XVEmegIBpunbfGO6ouNncBunJxPYDibn80Tfp7__LaYuKVEo6tg9htsNdBX |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwED6V9mG8oA2GKAzmB5CYwCJO7CZ-mBB0qzq2dQh10t6yc-JMSCwZayvUP8dv45w4ioYEb3uKJUt-OJ_v7ot93wfwGlHRBO2Ajhypdq6Qa1QZt0qKGIXA2LgG59PZaHouv1yoix78bnth3LPKNibWgTqvMveP_EPk5NZCqhbijzc_uVONcrerrYQGemmFfL-mGPONHcd2_Ysg3GL_6ID2-00YTg7n4yn3KgM8C-NgyVFJ1FFhA_qMXI9vJtGGuaAgZoqE0EIcaUOwJZKojEKVaxTa6LgQI5uMJEa07gMYyEhqAn-Dz4ezr986yBc0RKBUWHACOtq37TTNeyFhU045kru6PuHB3dTY1bt_XdHWmW-yCY98yco-NT62BT1bPoYtHxQW7K1nrt57AvkZBaBr39nJqoL9qFZ0VFjxvWRXtrqu1bsWjOpk5ihNak5RGmVOtgvdgxtG6JwCIR0LZtZsjldOqoVhmbPx5IA1atfbcH4vBn4K_bIq7TNgcZJlhjJqoLNcSum486Kk0AR6TKBQJEN411owvWnYOtKOl9nZOyV7p7W902AIO62RU39yF2nnZ0N43xq-m_73as__v9oubEznpyfpydHs-AU8DOt9j7kQO9Bf3q7sS6ptluaVdyAGl_fts38Aq6oH5A |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELUQSAgGRAuIQgEPDCCIWid2Eo9VS1S-CkMrdYvO-aiQaFLRdODfc86HUhAMTInkJMPz2fdO8XtHyCWAwAGcAWlpU-1QgCFBBEYkOHOAMXCUFjg_j-zhhD9MxXRNxZ-fdq9-SRaaBu3SlGSdRRh3auGbiXWdgfnF0JzYNbBo3-LaKAEjemL26pILGUYplfn9ve_pqOaYP36L5tnG2yd7JU2kvWJeG2QjSppkd808sEka5bJc0qvSO_r6gIQvuAXMS20lTWP6nq4wWGn8ltBZlM7z_llLikyValOR3NUT7wLdOAv0kReKQOBWhIFJ1Scdw0w3S6GQhLTvDWjRb_qQTLy7cX9olI0UjAARyAwQHKQVR1282FrGHHCIzJDhPq1iFwsix5IKKzOLg1ACRCiBSSWdmNmRa3OwjshmkibRMaGOGwQKc1pXBiHnXLvXWW4ssexQXQHMbZGbCk9_Ufhl-LUzskbfR_T9HH2_2yLtCnK_XDtL39KN9UzkhU6L3FbTUA___bWT_z1-QbZfB57_dD96PCU7ppY1aMNM1iab2ccqOkOykanzPJ6-AH50y7c |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+louver+fin+geometries+for+miniature+microchannel+condenser+by+Taguchi+and+CFD+method&rft.jtitle=Sadhana+%28Bangalore%29&rft.au=Kumar%2C+S+Satheesh&rft.au=Kumaraguruparan%2C+G&rft.au=Senthilkumar%2C+T+S&rft.date=2024-07-11&rft.pub=Springer+Nature+B.V&rft.issn=0256-2499&rft.eissn=0973-7677&rft.volume=49&rft.issue=3&rft.spage=216&rft_id=info:doi/10.1007%2Fs12046-024-02558-0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0973-7677&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0973-7677&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0973-7677&client=summon |