Deep reinforcement learning-based optimal deployment of IoT machine learning jobs in fog computing architecture

By increasing the number and variety of areas where IoT technology is being applied, the challenges regarding the design and deployment of IoT applications and services have recently become the subject of many studies. Many IoT applications are machine learning jobs that collect and analyze sensor m...

Full description

Saved in:
Bibliographic Details
Published inComputing Vol. 107; no. 1; p. 15
Main Authors Bushehrian, Omid, Moazeni, Amir
Format Journal Article
LanguageEnglish
Published Vienna Springer Vienna 01.01.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0010-485X
1436-5057
DOI10.1007/s00607-024-01353-3

Cover

Abstract By increasing the number and variety of areas where IoT technology is being applied, the challenges regarding the design and deployment of IoT applications and services have recently become the subject of many studies. Many IoT applications are machine learning jobs that collect and analyze sensor measurements in smart cities, farms, or industrial areas to meet the end-user requirements. These machine-learning jobs consist of distributed tasks that work collaboratively to build models in a federated manner. Though some challenges regarding the deployment and scheduling of IoT applications have been studied before, the problem of determining the optimal number and the coverage of distributed tasks of an IoT machine learning job has not been addressed previously. This paper proposes a two-phased method for adaptive task creation and deployment of IoT machine learning jobs over a heterogeneous multi-layer fog computing architecture. In the first phase, the optimal number of tasks and their respective sensor coverage is determined using a Deep Reinforcement Learning (DRL) based method and subsequently, in the second phase, the tasks are deployed over the heterogeneous multi-layer fog computing architecture using a greedy deployment method. The task creation and deployment problem is formulated as a three-objective optimization problem: 1) minimizing the deployment latency 2) minimizing the deployment cost and, 3) minimizing the evaluation loss of the machine learning job when trained in a federated manner over the edge/fog/cloud nodes. A Deep Deterministic Policy Gradient (DDPG) algorithm is used to solve the online IoT machine learning job deployment optimization problem adaptively and efficiently. The experimental results obtained by the deployment of several IoT machine learning jobs with disparate profiles over the heterogeneous fog test-bed showed that the proposed two-phased DRL-based method could outperform the Edge-IoT and Cloud-IoT baseline methods by improving the total deployment score up to 32%.
AbstractList By increasing the number and variety of areas where IoT technology is being applied, the challenges regarding the design and deployment of IoT applications and services have recently become the subject of many studies. Many IoT applications are machine learning jobs that collect and analyze sensor measurements in smart cities, farms, or industrial areas to meet the end-user requirements. These machine-learning jobs consist of distributed tasks that work collaboratively to build models in a federated manner. Though some challenges regarding the deployment and scheduling of IoT applications have been studied before, the problem of determining the optimal number and the coverage of distributed tasks of an IoT machine learning job has not been addressed previously. This paper proposes a two-phased method for adaptive task creation and deployment of IoT machine learning jobs over a heterogeneous multi-layer fog computing architecture. In the first phase, the optimal number of tasks and their respective sensor coverage is determined using a Deep Reinforcement Learning (DRL) based method and subsequently, in the second phase, the tasks are deployed over the heterogeneous multi-layer fog computing architecture using a greedy deployment method. The task creation and deployment problem is formulated as a three-objective optimization problem: 1) minimizing the deployment latency 2) minimizing the deployment cost and, 3) minimizing the evaluation loss of the machine learning job when trained in a federated manner over the edge/fog/cloud nodes. A Deep Deterministic Policy Gradient (DDPG) algorithm is used to solve the online IoT machine learning job deployment optimization problem adaptively and efficiently. The experimental results obtained by the deployment of several IoT machine learning jobs with disparate profiles over the heterogeneous fog test-bed showed that the proposed two-phased DRL-based method could outperform the Edge-IoT and Cloud-IoT baseline methods by improving the total deployment score up to 32%.
ArticleNumber 15
Author Moazeni, Amir
Bushehrian, Omid
Author_xml – sequence: 1
  givenname: Omid
  surname: Bushehrian
  fullname: Bushehrian, Omid
  email: bushehrian@sutech.ac.ir
  organization: Department of Computer Engineering and Information Technology, Shiraz University of Technology
– sequence: 2
  givenname: Amir
  surname: Moazeni
  fullname: Moazeni, Amir
  organization: Department of Computer Engineering and Information Technology, Shiraz University of Technology
BookMark eNp9kE1LAzEQhoMo2Fb_gKeA5-hks8mmR6lfhYKXCt5Cmp3ULW2yJruH_nu3rejN08DwvO8wz5ichxiQkBsOdxygus8ACioGRcmACymYOCMjXgrFJMjqnIwAOLBSy49LMs55AwCF0NMRiY-ILU3YBB-Twx2Gjm7RptCENVvZjDWNbdfs7JbW2G7j_khET-dxSXfWfTYBfwN0E1eZNoH6uKYu7tq-O2xtGrAOXdcnvCIX3m4zXv_MCXl_flrOXtni7WU-e1gwV1TQMe250t5PRaELqZ3X6KwH76yVpZJl5SpeKShRT1e1VFIXALKEWlYerFL1SkzI7am3TfGrx9yZTexTGE4aMQgCzpWYDlRxolyKOSf0pk3Dr2lvOJiDWHMSawax5ijWiCEkTqE8wGGN6a_6n9Q3gY1-Uw
Cites_doi 10.1109/MCC.2017.27
10.24432/C5RK5G
10.1109/TCC.2022.3143153
10.1109/JSAC.2021.3118352
10.1109/JIOT.2017.2701408
10.1109/TPDS.2021.3132422
10.1109/CoDIT.2019.8820627
10.1002/spe.2986
10.48550/arXiv.1602.05629
10.1007/s11036-018-1177-x
10.1109/COMST.2018.2846401
10.48550/arXiv.2007.14390
10.1016/j.icte.2021.06.004
10.1109/JIOT.2021.3100755
10.1109/TPDS.2020.3014896
10.1108/IJICC-03-2020-0021
10.1145/3377454
10.1016/j.icte.2021.05.004
10.1016/j.jksuci.2022.12.006
10.1109/MCOM.001.2200223
10.1016/j.eswa.2022.117012
10.1109/JIOT.2023.3331722
10.1016/j.future.2023.12.004
10.48550/arXiv.2204.12580
10.3390/s21051666
10.1007/s10115-022-01664-x
10.1109/JSAC.2020.2986615
10.22360/SpringSim.2020.CNS.003
10.1016/j.future.2022.01.012
10.1109/ISTEL.2016.7881904
10.1109/TMC.2020.2970698
10.1109/TMC.2021.3123165
10.1109/JIOT.2019.2958185
10.1016/j.future.2021.05.026
10.1109/SmartCloud.2018.00041
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Jan 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Jan 2025
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s00607-024-01353-3
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1436-5057
ExternalDocumentID 10_1007_s00607_024_01353_3
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BKOMP
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAS
LLZTM
M0C
M0N
M2O
M4Y
MA-
MK~
ML~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8U
Z8W
Z92
ZL0
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFKWF
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c270t-8f168ff9328258cf8ecaf0fcaa546547c717604e89bd5658200540d57f0a66db3
IEDL.DBID AGYKE
ISSN 0010-485X
IngestDate Sat Aug 16 19:51:14 EDT 2025
Wed Oct 01 03:16:59 EDT 2025
Fri Feb 21 02:37:49 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Fog computing
Deep reinforcement learning
90C59
Federated learning
IoT application deployment
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-8f168ff9328258cf8ecaf0fcaa546547c717604e89bd5658200540d57f0a66db3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3135011639
PQPubID 48322
ParticipantIDs proquest_journals_3135011639
crossref_primary_10_1007_s00607_024_01353_3
springer_journals_10_1007_s00607_024_01353_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250100
2025-01-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 1
  year: 2025
  text: 20250100
PublicationDecade 2020
PublicationPlace Vienna
PublicationPlace_xml – name: Vienna
– name: Wien
PublicationTitle Computing
PublicationTitleAbbrev Computing
PublicationYear 2025
Publisher Springer Vienna
Springer Nature B.V
Publisher_xml – name: Springer Vienna
– name: Springer Nature B.V
References L Huang (1353_CR27) 2022; 27
W Zhang (1353_CR4) 2021; 39
J Verbraeken (1353_CR19) 2020; 53
1353_CR9
M Ghobaei-Arani (1353_CR24) 2022; 200
X Xiong (1353_CR29) 2020; 38
1353_CR7
1353_CR20
R Zhou (1353_CR25) 2022; 11
S Mirzaie (1353_CR8) 2023; 55
1353_CR28
AA Cook (1353_CR5) 2020; 7
Q Mao (1353_CR18) 2018; 20
M Goudarzi (1353_CR1) 2022; 55
S Pallewatta (1353_CR21) 2022; 131
M Goudarzi (1353_CR10) 2021; 22
S Deng (1353_CR3) 2021; 20
A Brogi (1353_CR13) 2017; 4
J Wang (1353_CR17) 2020; 32
M Abd Elaziz (1353_CR22) 2021; 124
1353_CR32
M Salimian (1353_CR23) 2021; 51
1353_CR31
H Sabireen (1353_CR2) 2021; 7
1353_CR12
1353_CR34
SI Popoola (1353_CR6) 2021; 9
J Liu (1353_CR11) 2022; 64
1353_CR33
1353_CR36
1353_CR35
1353_CR16
1353_CR38
LF Bittencourt (1353_CR14) 2017; 4
1353_CR15
1353_CR39
S Chen (1353_CR37) 2019
MK Pandit (1353_CR26) 2020; 13
M Zare (1353_CR30) 2023; 35
References_xml – volume: 4
  start-page: 26
  issue: 2
  year: 2017
  ident: 1353_CR14
  publication-title: IEEE Cloud Comput
  doi: 10.1109/MCC.2017.27
– year: 2019
  ident: 1353_CR37
  doi: 10.24432/C5RK5G
– volume: 11
  start-page: 1514
  issue: 2
  year: 2022
  ident: 1353_CR25
  publication-title: IEEE Trans Cloud Comput
  doi: 10.1109/TCC.2022.3143153
– volume: 39
  start-page: 3688
  issue: 12
  year: 2021
  ident: 1353_CR4
  publication-title: IEEE J Sel Areas Commun
  doi: 10.1109/JSAC.2021.3118352
– volume: 4
  start-page: 1185
  issue: 5
  year: 2017
  ident: 1353_CR13
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2017.2701408
– ident: 1353_CR31
  doi: 10.1109/TPDS.2021.3132422
– ident: 1353_CR9
  doi: 10.1109/CoDIT.2019.8820627
– volume: 51
  start-page: 1745
  issue: 8
  year: 2021
  ident: 1353_CR23
  publication-title: Software: Pract Experience
  doi: 10.1002/spe.2986
– ident: 1353_CR12
  doi: 10.48550/arXiv.1602.05629
– volume: 27
  start-page: 1123
  year: 2022
  ident: 1353_CR27
  publication-title: Mob Networks Appl
  doi: 10.1007/s11036-018-1177-x
– volume: 20
  start-page: 2595
  issue: 4
  year: 2018
  ident: 1353_CR18
  publication-title: IEEE Commun Surveys Tutorials
  doi: 10.1109/COMST.2018.2846401
– ident: 1353_CR36
  doi: 10.48550/arXiv.2007.14390
– ident: 1353_CR20
  doi: 10.1016/j.icte.2021.06.004
– volume: 9
  start-page: 3930
  issue: 5
  year: 2021
  ident: 1353_CR6
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2021.3100755
– volume: 32
  start-page: 242
  issue: 1
  year: 2020
  ident: 1353_CR17
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/TPDS.2020.3014896
– volume: 13
  start-page: 261
  issue: 3
  year: 2020
  ident: 1353_CR26
  publication-title: Int J Intell Comput Cybernetics
  doi: 10.1108/IJICC-03-2020-0021
– ident: 1353_CR16
– ident: 1353_CR35
– volume: 53
  start-page: 1
  issue: 2
  year: 2020
  ident: 1353_CR19
  publication-title: ACM-CSUR
  doi: 10.1145/3377454
– volume: 7
  start-page: 162
  issue: 2
  year: 2021
  ident: 1353_CR2
  publication-title: Ict Express
  doi: 10.1016/j.icte.2021.05.004
– volume: 35
  start-page: 368
  issue: 1
  year: 2023
  ident: 1353_CR30
  publication-title: Journal King Saud University - Computer Inform Sciences
  doi: 10.1016/j.jksuci.2022.12.006
– ident: 1353_CR32
  doi: 10.1109/MCOM.001.2200223
– volume: 200
  start-page: 117012
  year: 2022
  ident: 1353_CR24
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.117012
– ident: 1353_CR34
  doi: 10.1109/JIOT.2023.3331722
– ident: 1353_CR33
  doi: 10.1016/j.future.2023.12.004
– volume: 55
  start-page: 1
  year: 2022
  ident: 1353_CR1
  publication-title: ACM-CSUR
  doi: 10.48550/arXiv.2204.12580
– ident: 1353_CR28
  doi: 10.3390/s21051666
– volume: 64
  start-page: 885
  year: 2022
  ident: 1353_CR11
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-022-01664-x
– volume: 38
  start-page: 1133
  issue: 6
  year: 2020
  ident: 1353_CR29
  publication-title: IEEE J Sel Areas Commun
  doi: 10.1109/JSAC.2020.2986615
– ident: 1353_CR7
  doi: 10.22360/SpringSim.2020.CNS.003
– volume: 131
  start-page: 121
  year: 2022
  ident: 1353_CR21
  publication-title: Future Generation Comput Syst
  doi: 10.1016/j.future.2022.01.012
– ident: 1353_CR15
  doi: 10.1109/ISTEL.2016.7881904
– ident: 1353_CR38
– volume: 20
  start-page: 1907
  issue: 5
  year: 2021
  ident: 1353_CR3
  publication-title: IEEE Trans Mob Comput
  doi: 10.1109/TMC.2020.2970698
– volume: 22
  start-page: 2491
  issue: 5
  year: 2021
  ident: 1353_CR10
  publication-title: IEEE Trans Mob Comput
  doi: 10.1109/TMC.2021.3123165
– volume: 7
  start-page: 6481
  issue: 7
  year: 2020
  ident: 1353_CR5
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2019.2958185
– volume: 124
  start-page: 142
  year: 2021
  ident: 1353_CR22
  publication-title: Future Generation Comput Syst
  doi: 10.1016/j.future.2021.05.026
– ident: 1353_CR39
  doi: 10.1109/SmartCloud.2018.00041
– volume: 55
  start-page: 23
  issue: 1
  year: 2023
  ident: 1353_CR8
  publication-title: Ad Hoc & Sensor Wireless Networks
SSID ssj0002389
Score 2.3783119
Snippet By increasing the number and variety of areas where IoT technology is being applied, the challenges regarding the design and deployment of IoT applications and...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 15
SubjectTerms Algorithms
Artificial Intelligence
Cloud computing
Computer Appl. in Administrative Data Processing
Computer Communication Networks
Computer Science
Deep learning
Edge computing
Industrial areas
Information Systems Applications (incl.Internet)
Internet of Things
Machine learning
Multilayers
Optimization
Regular Paper
Software Engineering
Task scheduling
User requirements
Title Deep reinforcement learning-based optimal deployment of IoT machine learning jobs in fog computing architecture
URI https://link.springer.com/article/10.1007/s00607-024-01353-3
https://www.proquest.com/docview/3135011639
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1436-5057
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002389
  issn: 0010-485X
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1436-5057
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002389
  issn: 0010-485X
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1436-5057
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002389
  issn: 0010-485X
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BWWDgjSiUygMbuEoaO3HGCloKqExUKlNkxzYC1KZqysKvx3YeQAUDq2M7iR933_l83wGcx4oTGfkSM8UjbHYixUKGHFsqM0KoZtKFi40ewuGY3E3opAwKy6vb7pVL0knqOtjNUodE2OgUY_4GNMDBOmxQa6A0YKN383TfryWwUUMF7DUyhjA6KYNlfu_lp0L6QpkrjlGnbwY7MK6-tLhm8tZ5X4pO-rFC4vjfX9mF7RKAol6xYvZgTc32YadK7oDKvb4PW6Oa0DU_gOxaqTlaKMezmrojRVQmnHjGVhNKlBnhMzU9S2VzCLsamUa32SOaugubqm6AXjORo5cZ0tkzSt2bbel3n8YhjAf9x6shLnM14LQbeUvMtB8yrQ0aNCYnSzVTKdeeTjm32dZJlBqzMfSIYrGQBkOyrsOKkkba42EoRXAEjVk2U8eAvID7pkSbphGhcSx4QCJrmFHlh0KKJlxUE5bMC0qOpCZfdiObmJFN3MgmQRNa1Zwm5fbMk8C3_lQDReMmXFZT9PX4795O_lf9FDa7Nl-wO7JpQWO5eFdnBsQsRbtcs21YH3d7nw7c6Js
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BGYCBRwFRKOCBDYySxkmcsYJCSx9TK5UpsmMbASJBtF349dhukkIFQ1fHdhI_7r7z-b4DuIwkIyJ0BaaShVjvRB9zETBsqMwI8RUVNlysPwjaI_I49sd5UNikuO1euCStpC6D3Qx1SIi1TtHmr-d72FuHDeJSSiqw0Xx46rZKCazV0Bz2ahlDqD_Og2X-7uW3QlqgzCXHqNU397swKr50fs3k7WY25TfJ1xKJ46q_sgc7OQBFzfmK2Yc1mVZht0jugPK9XoXtfknoOjmA7E7KD_QpLc9qYo8UUZ5w4hkbTShQpoXPu-5ZSJND2NbIFOpkQ_RuL2zKsgF6zfgEvaRIZc8osW82pT99Gocwum8Nb9s4z9WAk0boTDFVbkCV0mhQm5w0UVQmTDkqYcxkWydhos3GwCGSRlxoDEkbFisKP1QOCwLBvSOopFkqjwE5HnN1idJNQ-JHEWceCY1h5ks34ILX4KqYsPhjTskRl-TLdmRjPbKxHdnYq0G9mNM4356T2HONP1VD0agG18UULR7_39vJatUvYLM97PfiXmfQPYWthskdbI9v6lCZfs7kmQY0U36er99vrjzqow
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgSAgOPAaI8cyBG0Rr17RNjxMwbbzEgUm7VWmTTCCtnbby_3GythsIDlzTJJXiOP4cx58BriIlmAxdSbkSIUVN9GkiA0ENlRljvubSpos9vwT9IXsY-aOVLH772r0KSS5yGgxLU1a0p1K368Q3QyMSUrQv6Ap7vke9ddhgaKuN-zXsdOuzGA3SAgDjacO4PyrTZn6f47tpWuLNHyFSa3l6e7BTQkbSXch4H9ZU1oTdqhwDKbWzCdvPNQXr_ADyO6WmZKYsM2pqLwFJWSJiTI3tkiTH42KCM0tlqv7aHrkmg_yNTOwTS1UPIB95MifvGdH5mKT2z6Z1NQpxCMPe_dttn5bVFWjaCZ2Ccu0GXGvEb-gk8lRzlQrt6FQIUx-dhSk6eoHDFI8SiaiPdyy6k36oHREEMvGOoJHlmToG4njCxRaNQ0PmR1EiPBYaV8pXbpDIpAXX1cLG0wWJRlzTJVsxxCiG2Ioh9lpwVq19XCrUPPZcEwFF8Bi14KaSx_Lz37Od_K_7JWy-3vXip8HL4ylsdUyxX3vfcgaNYvapzhGBFMmF3WRfqOPR9Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+reinforcement+learning-based+optimal+deployment+of+IoT+machine+learning+jobs+in+fog+computing+architecture&rft.jtitle=Computing&rft.au=Bushehrian%2C+Omid&rft.au=Moazeni%2C+Amir&rft.date=2025-01-01&rft.pub=Springer+Vienna&rft.issn=0010-485X&rft.eissn=1436-5057&rft.volume=107&rft.issue=1&rft_id=info:doi/10.1007%2Fs00607-024-01353-3&rft.externalDocID=10_1007_s00607_024_01353_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-485X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-485X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-485X&client=summon