Deep reinforcement learning-based optimal deployment of IoT machine learning jobs in fog computing architecture
By increasing the number and variety of areas where IoT technology is being applied, the challenges regarding the design and deployment of IoT applications and services have recently become the subject of many studies. Many IoT applications are machine learning jobs that collect and analyze sensor m...
Saved in:
Published in | Computing Vol. 107; no. 1; p. 15 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Vienna
Springer Vienna
01.01.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0010-485X 1436-5057 |
DOI | 10.1007/s00607-024-01353-3 |
Cover
Abstract | By increasing the number and variety of areas where IoT technology is being applied, the challenges regarding the design and deployment of IoT applications and services have recently become the subject of many studies. Many IoT applications are machine learning jobs that collect and analyze sensor measurements in smart cities, farms, or industrial areas to meet the end-user requirements. These machine-learning jobs consist of distributed tasks that work collaboratively to build models in a federated manner. Though some challenges regarding the deployment and scheduling of IoT applications have been studied before, the problem of determining the optimal number and the coverage of distributed tasks of an IoT machine learning job has not been addressed previously. This paper proposes a two-phased method for adaptive task creation and deployment of IoT machine learning jobs over a heterogeneous multi-layer fog computing architecture. In the first phase, the optimal number of tasks and their respective sensor coverage is determined using a Deep Reinforcement Learning (DRL) based method and subsequently, in the second phase, the tasks are deployed over the heterogeneous multi-layer fog computing architecture using a greedy deployment method. The task creation and deployment problem is formulated as a three-objective optimization problem: 1) minimizing the deployment latency 2) minimizing the deployment cost and, 3) minimizing the evaluation loss of the machine learning job when trained in a federated manner over the edge/fog/cloud nodes. A Deep Deterministic Policy Gradient (DDPG) algorithm is used to solve the online IoT machine learning job deployment optimization problem adaptively and efficiently. The experimental results obtained by the deployment of several IoT machine learning jobs with disparate profiles over the heterogeneous fog test-bed showed that the proposed two-phased DRL-based method could outperform the Edge-IoT and Cloud-IoT baseline methods by improving the total deployment score up to 32%. |
---|---|
AbstractList | By increasing the number and variety of areas where IoT technology is being applied, the challenges regarding the design and deployment of IoT applications and services have recently become the subject of many studies. Many IoT applications are machine learning jobs that collect and analyze sensor measurements in smart cities, farms, or industrial areas to meet the end-user requirements. These machine-learning jobs consist of distributed tasks that work collaboratively to build models in a federated manner. Though some challenges regarding the deployment and scheduling of IoT applications have been studied before, the problem of determining the optimal number and the coverage of distributed tasks of an IoT machine learning job has not been addressed previously. This paper proposes a two-phased method for adaptive task creation and deployment of IoT machine learning jobs over a heterogeneous multi-layer fog computing architecture. In the first phase, the optimal number of tasks and their respective sensor coverage is determined using a Deep Reinforcement Learning (DRL) based method and subsequently, in the second phase, the tasks are deployed over the heterogeneous multi-layer fog computing architecture using a greedy deployment method. The task creation and deployment problem is formulated as a three-objective optimization problem: 1) minimizing the deployment latency 2) minimizing the deployment cost and, 3) minimizing the evaluation loss of the machine learning job when trained in a federated manner over the edge/fog/cloud nodes. A Deep Deterministic Policy Gradient (DDPG) algorithm is used to solve the online IoT machine learning job deployment optimization problem adaptively and efficiently. The experimental results obtained by the deployment of several IoT machine learning jobs with disparate profiles over the heterogeneous fog test-bed showed that the proposed two-phased DRL-based method could outperform the Edge-IoT and Cloud-IoT baseline methods by improving the total deployment score up to 32%. |
ArticleNumber | 15 |
Author | Moazeni, Amir Bushehrian, Omid |
Author_xml | – sequence: 1 givenname: Omid surname: Bushehrian fullname: Bushehrian, Omid email: bushehrian@sutech.ac.ir organization: Department of Computer Engineering and Information Technology, Shiraz University of Technology – sequence: 2 givenname: Amir surname: Moazeni fullname: Moazeni, Amir organization: Department of Computer Engineering and Information Technology, Shiraz University of Technology |
BookMark | eNp9kE1LAzEQhoMo2Fb_gKeA5-hks8mmR6lfhYKXCt5Cmp3ULW2yJruH_nu3rejN08DwvO8wz5ichxiQkBsOdxygus8ACioGRcmACymYOCMjXgrFJMjqnIwAOLBSy49LMs55AwCF0NMRiY-ILU3YBB-Twx2Gjm7RptCENVvZjDWNbdfs7JbW2G7j_khET-dxSXfWfTYBfwN0E1eZNoH6uKYu7tq-O2xtGrAOXdcnvCIX3m4zXv_MCXl_flrOXtni7WU-e1gwV1TQMe250t5PRaELqZ3X6KwH76yVpZJl5SpeKShRT1e1VFIXALKEWlYerFL1SkzI7am3TfGrx9yZTexTGE4aMQgCzpWYDlRxolyKOSf0pk3Dr2lvOJiDWHMSawax5ijWiCEkTqE8wGGN6a_6n9Q3gY1-Uw |
Cites_doi | 10.1109/MCC.2017.27 10.24432/C5RK5G 10.1109/TCC.2022.3143153 10.1109/JSAC.2021.3118352 10.1109/JIOT.2017.2701408 10.1109/TPDS.2021.3132422 10.1109/CoDIT.2019.8820627 10.1002/spe.2986 10.48550/arXiv.1602.05629 10.1007/s11036-018-1177-x 10.1109/COMST.2018.2846401 10.48550/arXiv.2007.14390 10.1016/j.icte.2021.06.004 10.1109/JIOT.2021.3100755 10.1109/TPDS.2020.3014896 10.1108/IJICC-03-2020-0021 10.1145/3377454 10.1016/j.icte.2021.05.004 10.1016/j.jksuci.2022.12.006 10.1109/MCOM.001.2200223 10.1016/j.eswa.2022.117012 10.1109/JIOT.2023.3331722 10.1016/j.future.2023.12.004 10.48550/arXiv.2204.12580 10.3390/s21051666 10.1007/s10115-022-01664-x 10.1109/JSAC.2020.2986615 10.22360/SpringSim.2020.CNS.003 10.1016/j.future.2022.01.012 10.1109/ISTEL.2016.7881904 10.1109/TMC.2020.2970698 10.1109/TMC.2021.3123165 10.1109/JIOT.2019.2958185 10.1016/j.future.2021.05.026 10.1109/SmartCloud.2018.00041 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Jan 2025 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Jan 2025 |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1007/s00607-024-01353-3 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Computer Science |
EISSN | 1436-5057 |
ExternalDocumentID | 10_1007_s00607_024_01353_3 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BKOMP BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EAD EAP EBA EBLON EBR EBS EBU ECS EDO EIOEI EJD EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW LAS LLZTM M0C M0N M2O M4Y MA- MK~ ML~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS QWB R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TH9 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Z Z81 Z83 Z88 Z8M Z8N Z8R Z8T Z8U Z8W Z92 ZL0 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFKWF AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c270t-8f168ff9328258cf8ecaf0fcaa546547c717604e89bd5658200540d57f0a66db3 |
IEDL.DBID | AGYKE |
ISSN | 0010-485X |
IngestDate | Sat Aug 16 19:51:14 EDT 2025 Wed Oct 01 03:16:59 EDT 2025 Fri Feb 21 02:37:49 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Fog computing Deep reinforcement learning 90C59 Federated learning IoT application deployment |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c270t-8f168ff9328258cf8ecaf0fcaa546547c717604e89bd5658200540d57f0a66db3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3135011639 |
PQPubID | 48322 |
ParticipantIDs | proquest_journals_3135011639 crossref_primary_10_1007_s00607_024_01353_3 springer_journals_10_1007_s00607_024_01353_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20250100 2025-01-00 20250101 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 1 year: 2025 text: 20250100 |
PublicationDecade | 2020 |
PublicationPlace | Vienna |
PublicationPlace_xml | – name: Vienna – name: Wien |
PublicationTitle | Computing |
PublicationTitleAbbrev | Computing |
PublicationYear | 2025 |
Publisher | Springer Vienna Springer Nature B.V |
Publisher_xml | – name: Springer Vienna – name: Springer Nature B.V |
References | L Huang (1353_CR27) 2022; 27 W Zhang (1353_CR4) 2021; 39 J Verbraeken (1353_CR19) 2020; 53 1353_CR9 M Ghobaei-Arani (1353_CR24) 2022; 200 X Xiong (1353_CR29) 2020; 38 1353_CR7 1353_CR20 R Zhou (1353_CR25) 2022; 11 S Mirzaie (1353_CR8) 2023; 55 1353_CR28 AA Cook (1353_CR5) 2020; 7 Q Mao (1353_CR18) 2018; 20 M Goudarzi (1353_CR1) 2022; 55 S Pallewatta (1353_CR21) 2022; 131 M Goudarzi (1353_CR10) 2021; 22 S Deng (1353_CR3) 2021; 20 A Brogi (1353_CR13) 2017; 4 J Wang (1353_CR17) 2020; 32 M Abd Elaziz (1353_CR22) 2021; 124 1353_CR32 M Salimian (1353_CR23) 2021; 51 1353_CR31 H Sabireen (1353_CR2) 2021; 7 1353_CR12 1353_CR34 SI Popoola (1353_CR6) 2021; 9 J Liu (1353_CR11) 2022; 64 1353_CR33 1353_CR36 1353_CR35 1353_CR16 1353_CR38 LF Bittencourt (1353_CR14) 2017; 4 1353_CR15 1353_CR39 S Chen (1353_CR37) 2019 MK Pandit (1353_CR26) 2020; 13 M Zare (1353_CR30) 2023; 35 |
References_xml | – volume: 4 start-page: 26 issue: 2 year: 2017 ident: 1353_CR14 publication-title: IEEE Cloud Comput doi: 10.1109/MCC.2017.27 – year: 2019 ident: 1353_CR37 doi: 10.24432/C5RK5G – volume: 11 start-page: 1514 issue: 2 year: 2022 ident: 1353_CR25 publication-title: IEEE Trans Cloud Comput doi: 10.1109/TCC.2022.3143153 – volume: 39 start-page: 3688 issue: 12 year: 2021 ident: 1353_CR4 publication-title: IEEE J Sel Areas Commun doi: 10.1109/JSAC.2021.3118352 – volume: 4 start-page: 1185 issue: 5 year: 2017 ident: 1353_CR13 publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2017.2701408 – ident: 1353_CR31 doi: 10.1109/TPDS.2021.3132422 – ident: 1353_CR9 doi: 10.1109/CoDIT.2019.8820627 – volume: 51 start-page: 1745 issue: 8 year: 2021 ident: 1353_CR23 publication-title: Software: Pract Experience doi: 10.1002/spe.2986 – ident: 1353_CR12 doi: 10.48550/arXiv.1602.05629 – volume: 27 start-page: 1123 year: 2022 ident: 1353_CR27 publication-title: Mob Networks Appl doi: 10.1007/s11036-018-1177-x – volume: 20 start-page: 2595 issue: 4 year: 2018 ident: 1353_CR18 publication-title: IEEE Commun Surveys Tutorials doi: 10.1109/COMST.2018.2846401 – ident: 1353_CR36 doi: 10.48550/arXiv.2007.14390 – ident: 1353_CR20 doi: 10.1016/j.icte.2021.06.004 – volume: 9 start-page: 3930 issue: 5 year: 2021 ident: 1353_CR6 publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2021.3100755 – volume: 32 start-page: 242 issue: 1 year: 2020 ident: 1353_CR17 publication-title: IEEE Trans Parallel Distrib Syst doi: 10.1109/TPDS.2020.3014896 – volume: 13 start-page: 261 issue: 3 year: 2020 ident: 1353_CR26 publication-title: Int J Intell Comput Cybernetics doi: 10.1108/IJICC-03-2020-0021 – ident: 1353_CR16 – ident: 1353_CR35 – volume: 53 start-page: 1 issue: 2 year: 2020 ident: 1353_CR19 publication-title: ACM-CSUR doi: 10.1145/3377454 – volume: 7 start-page: 162 issue: 2 year: 2021 ident: 1353_CR2 publication-title: Ict Express doi: 10.1016/j.icte.2021.05.004 – volume: 35 start-page: 368 issue: 1 year: 2023 ident: 1353_CR30 publication-title: Journal King Saud University - Computer Inform Sciences doi: 10.1016/j.jksuci.2022.12.006 – ident: 1353_CR32 doi: 10.1109/MCOM.001.2200223 – volume: 200 start-page: 117012 year: 2022 ident: 1353_CR24 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.117012 – ident: 1353_CR34 doi: 10.1109/JIOT.2023.3331722 – ident: 1353_CR33 doi: 10.1016/j.future.2023.12.004 – volume: 55 start-page: 1 year: 2022 ident: 1353_CR1 publication-title: ACM-CSUR doi: 10.48550/arXiv.2204.12580 – ident: 1353_CR28 doi: 10.3390/s21051666 – volume: 64 start-page: 885 year: 2022 ident: 1353_CR11 publication-title: Knowl Inf Syst doi: 10.1007/s10115-022-01664-x – volume: 38 start-page: 1133 issue: 6 year: 2020 ident: 1353_CR29 publication-title: IEEE J Sel Areas Commun doi: 10.1109/JSAC.2020.2986615 – ident: 1353_CR7 doi: 10.22360/SpringSim.2020.CNS.003 – volume: 131 start-page: 121 year: 2022 ident: 1353_CR21 publication-title: Future Generation Comput Syst doi: 10.1016/j.future.2022.01.012 – ident: 1353_CR15 doi: 10.1109/ISTEL.2016.7881904 – ident: 1353_CR38 – volume: 20 start-page: 1907 issue: 5 year: 2021 ident: 1353_CR3 publication-title: IEEE Trans Mob Comput doi: 10.1109/TMC.2020.2970698 – volume: 22 start-page: 2491 issue: 5 year: 2021 ident: 1353_CR10 publication-title: IEEE Trans Mob Comput doi: 10.1109/TMC.2021.3123165 – volume: 7 start-page: 6481 issue: 7 year: 2020 ident: 1353_CR5 publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2019.2958185 – volume: 124 start-page: 142 year: 2021 ident: 1353_CR22 publication-title: Future Generation Comput Syst doi: 10.1016/j.future.2021.05.026 – ident: 1353_CR39 doi: 10.1109/SmartCloud.2018.00041 – volume: 55 start-page: 23 issue: 1 year: 2023 ident: 1353_CR8 publication-title: Ad Hoc & Sensor Wireless Networks |
SSID | ssj0002389 |
Score | 2.3783119 |
Snippet | By increasing the number and variety of areas where IoT technology is being applied, the challenges regarding the design and deployment of IoT applications and... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 15 |
SubjectTerms | Algorithms Artificial Intelligence Cloud computing Computer Appl. in Administrative Data Processing Computer Communication Networks Computer Science Deep learning Edge computing Industrial areas Information Systems Applications (incl.Internet) Internet of Things Machine learning Multilayers Optimization Regular Paper Software Engineering Task scheduling User requirements |
Title | Deep reinforcement learning-based optimal deployment of IoT machine learning jobs in fog computing architecture |
URI | https://link.springer.com/article/10.1007/s00607-024-01353-3 https://www.proquest.com/docview/3135011639 |
Volume | 107 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1436-5057 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002389 issn: 0010-485X databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1436-5057 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002389 issn: 0010-485X databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1436-5057 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002389 issn: 0010-485X databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BWWDgjSiUygMbuEoaO3HGCloKqExUKlNkxzYC1KZqysKvx3YeQAUDq2M7iR933_l83wGcx4oTGfkSM8UjbHYixUKGHFsqM0KoZtKFi40ewuGY3E3opAwKy6vb7pVL0knqOtjNUodE2OgUY_4GNMDBOmxQa6A0YKN383TfryWwUUMF7DUyhjA6KYNlfu_lp0L6QpkrjlGnbwY7MK6-tLhm8tZ5X4pO-rFC4vjfX9mF7RKAol6xYvZgTc32YadK7oDKvb4PW6Oa0DU_gOxaqTlaKMezmrojRVQmnHjGVhNKlBnhMzU9S2VzCLsamUa32SOaugubqm6AXjORo5cZ0tkzSt2bbel3n8YhjAf9x6shLnM14LQbeUvMtB8yrQ0aNCYnSzVTKdeeTjm32dZJlBqzMfSIYrGQBkOyrsOKkkba42EoRXAEjVk2U8eAvID7pkSbphGhcSx4QCJrmFHlh0KKJlxUE5bMC0qOpCZfdiObmJFN3MgmQRNa1Zwm5fbMk8C3_lQDReMmXFZT9PX4795O_lf9FDa7Nl-wO7JpQWO5eFdnBsQsRbtcs21YH3d7nw7c6Js |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BGYCBRwFRKOCBDYySxkmcsYJCSx9TK5UpsmMbASJBtF349dhukkIFQ1fHdhI_7r7z-b4DuIwkIyJ0BaaShVjvRB9zETBsqMwI8RUVNlysPwjaI_I49sd5UNikuO1euCStpC6D3Qx1SIi1TtHmr-d72FuHDeJSSiqw0Xx46rZKCazV0Bz2ahlDqD_Og2X-7uW3QlqgzCXHqNU397swKr50fs3k7WY25TfJ1xKJ46q_sgc7OQBFzfmK2Yc1mVZht0jugPK9XoXtfknoOjmA7E7KD_QpLc9qYo8UUZ5w4hkbTShQpoXPu-5ZSJND2NbIFOpkQ_RuL2zKsgF6zfgEvaRIZc8osW82pT99Gocwum8Nb9s4z9WAk0boTDFVbkCV0mhQm5w0UVQmTDkqYcxkWydhos3GwCGSRlxoDEkbFisKP1QOCwLBvSOopFkqjwE5HnN1idJNQ-JHEWceCY1h5ks34ILX4KqYsPhjTskRl-TLdmRjPbKxHdnYq0G9mNM4356T2HONP1VD0agG18UULR7_39vJatUvYLM97PfiXmfQPYWthskdbI9v6lCZfs7kmQY0U36er99vrjzqow |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgSAgOPAaI8cyBG0Rr17RNjxMwbbzEgUm7VWmTTCCtnbby_3GythsIDlzTJJXiOP4cx58BriIlmAxdSbkSIUVN9GkiA0ENlRljvubSpos9vwT9IXsY-aOVLH772r0KSS5yGgxLU1a0p1K368Q3QyMSUrQv6Ap7vke9ddhgaKuN-zXsdOuzGA3SAgDjacO4PyrTZn6f47tpWuLNHyFSa3l6e7BTQkbSXch4H9ZU1oTdqhwDKbWzCdvPNQXr_ADyO6WmZKYsM2pqLwFJWSJiTI3tkiTH42KCM0tlqv7aHrkmg_yNTOwTS1UPIB95MifvGdH5mKT2z6Z1NQpxCMPe_dttn5bVFWjaCZ2Ccu0GXGvEb-gk8lRzlQrt6FQIUx-dhSk6eoHDFI8SiaiPdyy6k36oHREEMvGOoJHlmToG4njCxRaNQ0PmR1EiPBYaV8pXbpDIpAXX1cLG0wWJRlzTJVsxxCiG2Ioh9lpwVq19XCrUPPZcEwFF8Bi14KaSx_Lz37Od_K_7JWy-3vXip8HL4ylsdUyxX3vfcgaNYvapzhGBFMmF3WRfqOPR9Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+reinforcement+learning-based+optimal+deployment+of+IoT+machine+learning+jobs+in+fog+computing+architecture&rft.jtitle=Computing&rft.au=Bushehrian%2C+Omid&rft.au=Moazeni%2C+Amir&rft.date=2025-01-01&rft.pub=Springer+Vienna&rft.issn=0010-485X&rft.eissn=1436-5057&rft.volume=107&rft.issue=1&rft_id=info:doi/10.1007%2Fs00607-024-01353-3&rft.externalDocID=10_1007_s00607_024_01353_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-485X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-485X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-485X&client=summon |