A Comparison of the Bayesian and Non-Bayesian Approaches for the Periodic AR Models Based on the SMSN Innovations
We consider here a periodic autoregressive model with scale mixtures of skew-normal innovations. The class of scale mixtures of skew-normal distributions is a general and quite flexible class of error distributions, which is often used for statistical procedures of analyzing symmetrical and asymmetr...
Saved in:
| Published in | Iranian journal of science (Online) Vol. 46; no. 2; pp. 615 - 630 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Shiraz
Springer Nature B.V
01.04.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2731-8095 2731-8109 |
| DOI | 10.1007/s40995-022-01266-w |
Cover
| Abstract | We consider here a periodic autoregressive model with scale mixtures of skew-normal innovations. The class of scale mixtures of skew-normal distributions is a general and quite flexible class of error distributions, which is often used for statistical procedures of analyzing symmetrical and asymmetrical data. Our aim is to compare some well-known parameter estimation methods of periodic autoregressive time series with scale mixtures of skew-normal error terms. The maximum likelihood, maximum a posterior, and Bayesian estimation methods are then developed by using the expectation–conditional maximization algorithms and the Gibbs sampling algorithm. The numerical results obtained by means of simulation studies are reported to examine and compare the proposed methods. A prior sensitivity analysis is also developed to study the effect of changes in the priors. Moreover, a web-based shiny app called “PAR(1) Model Analysis” is developed here, for modeling, estimation, and prediction in the periodic autoregressive time series using the proposed technique. Finally, the proposed methods are applied to some quarterly UK macroeconomic variables. |
|---|---|
| AbstractList | We consider here a periodic autoregressive model with scale mixtures of skew-normal innovations. The class of scale mixtures of skew-normal distributions is a general and quite flexible class of error distributions, which is often used for statistical procedures of analyzing symmetrical and asymmetrical data. Our aim is to compare some well-known parameter estimation methods of periodic autoregressive time series with scale mixtures of skew-normal error terms. The maximum likelihood, maximum a posterior, and Bayesian estimation methods are then developed by using the expectation–conditional maximization algorithms and the Gibbs sampling algorithm. The numerical results obtained by means of simulation studies are reported to examine and compare the proposed methods. A prior sensitivity analysis is also developed to study the effect of changes in the priors. Moreover, a web-based shiny app called “PAR(1) Model Analysis” is developed here, for modeling, estimation, and prediction in the periodic autoregressive time series using the proposed technique. Finally, the proposed methods are applied to some quarterly UK macroeconomic variables. |
| Author | Manouchehri, T Nematollahi, A R |
| Author_xml | – sequence: 1 givenname: T surname: Manouchehri fullname: Manouchehri, T – sequence: 2 givenname: A surname: Nematollahi middlename: R fullname: Nematollahi, A R |
| BookMark | eNo9jktPwzAQhC1UJErpH-BkibNhbcdOfAwVj0ptQRTOlWtv1FTFTuMUxL8nPE-72tn5Zk7JIMSAhJxzuOQA-VXKwBjFQAgGXGjN3o_IUOSSs4KDGfztYNQJGae0BQApuDGyGJJ9SSfxtbFtnWKgsaLdBum1_cBU20Bt8HQRA_s_lE3TRus2mGgV2-_nR2zr6GtHyyc6jx53qfcn9LTnfenL-XJBpyHEN9vVMaQzclzZXcLx7xyRl9ub58k9mz3cTSfljDmRQ8cK58G4PNMKcoWZtoVQymktUBrg3ljlZOGBK-jVNTcaC2F1tZYmqywKIUfk4ofbN94fMHWrbTy0oY9cCa2E5iDByE-5012h |
| ContentType | Journal Article |
| Copyright | Shiraz University 2022. |
| Copyright_xml | – notice: Shiraz University 2022. |
| DBID | 7SC 7SP 7TB 7U5 8FD FR3 H8D JQ2 KR7 L7M L~C L~D |
| DOI | 10.1007/s40995-022-01266-w |
| DatabaseName | Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Aerospace Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | Aerospace Database Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2731-8109 |
| EndPage | 630 |
| GroupedDBID | 0R~ 406 7SC 7SP 7TB 7U5 8FD AACDK AAJBT AASML AATNV ABAKF ABBRH ABDBE ABFSG ABRTQ ACAOD ACPIV ACSTC ACZOJ AEFQL AEMSY AESKC AEZWR AFBBN AFDZB AFHIU AGQEE AHWEU AIGIU AIXLP ALMA_UNASSIGNED_HOLDINGS ATHPR DPUIP EBLON EBS FIGPU FR3 H8D JQ2 JZLTJ KR7 L7M L~C L~D NPVJJ PT4 RSV SJYHP SOJ |
| ID | FETCH-LOGICAL-c270t-8cd09c7465075e46a8255c662e3901d9a5c38d01505e4b196e82a6fb394fae223 |
| ISSN | 2731-8095 |
| IngestDate | Thu Sep 18 00:00:18 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c270t-8cd09c7465075e46a8255c662e3901d9a5c38d01505e4b196e82a6fb394fae223 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2652610309 |
| PQPubID | 1966378 |
| PageCount | 16 |
| ParticipantIDs | proquest_journals_2652610309 |
| PublicationCentury | 2000 |
| PublicationDate | 20220401 |
| PublicationDateYYYYMMDD | 2022-04-01 |
| PublicationDate_xml | – month: 04 year: 2022 text: 20220401 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Shiraz |
| PublicationPlace_xml | – name: Shiraz |
| PublicationTitle | Iranian journal of science (Online) |
| PublicationYear | 2022 |
| Publisher | Springer Nature B.V |
| Publisher_xml | – name: Springer Nature B.V |
| SSID | ssj0003219938 |
| Score | 2.2097337 |
| Snippet | We consider here a periodic autoregressive model with scale mixtures of skew-normal innovations. The class of scale mixtures of skew-normal distributions is a... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| StartPage | 615 |
| SubjectTerms | Algorithms Autoregressive models Bayesian analysis Innovations Mathematical models Mixtures Parameter estimation Sensitivity analysis Skewed distributions Time series |
| Title | A Comparison of the Bayesian and Non-Bayesian Approaches for the Periodic AR Models Based on the SMSN Innovations |
| URI | https://www.proquest.com/docview/2652610309 |
| Volume | 46 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2731-8109 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003219938 issn: 2731-8095 databaseCode: AFBBN dateStart: 20160301 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZZ-rKX0e7CLm3RwxgbRcWRbdl-dLuFdFtNSVroW5AlmQaGvdYJY_sV-8k9utgWyxjbXkyQHMnO-XLuRweh11RQmWUqJIEMJIl4nBFOVUoUaB8iFUEVmnY-5wWbXUUfr-Pr0einl7W0WZfH4sdv60r-h6owBnTVVbL_QNl-URiAz0BfuAKF4fpXNM7t37lrI2iD_fy7MoWR2iNeNDXpB3J3fLhq-9zCC3jKRq7EUT43XdG-tPD9FnRQG0I4WpwvCmAhXePU1ldlz0DKrZwb36m0XY3QL0eYOpd33Wxg8xtb2t7nZhf60FgNRtNdGPjU3HdEgA075K_4jkidZa1jH32hjOZloCRNQBjafprHyhubBJnPjJ0_cuXZxJazsknsCWlmgzlb_N-mfLRgtJrCc511AhoI-TZIuy7CP8sXy4v30-Xns-LTm6-3RPch0_F615TlAdqhICeCMdrJpycnRe-3C6lOeTSNDrt3crVYpiJza-ctGW8Ul8td9MhZHDi38NlDI1U_RnuOp7f4rTt4_N0TdJvjAU-4qTBAAHfwwYAn7OMJD3jCgCdzc4cnnM-xxRM2eMKwnp7XeMIenp6iq-mHy9MZcS05iKBJsCapkEEmkgj0-iRWEeMpmKSCMaq070xmPBZhKrUXDWZL4O4qpZxVZZhFFVegij5D47qp1XOEqypKeMKAT1SwkOQl3EJDFXAWySiK5Qu03_1wS4fkdklZDCa_Dgu-_PP0K_RwwOg-Gq_vNuoA1Md1eegoeg-Dsm-v |
| linkProvider | Library Specific Holdings |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Comparison+of+the+Bayesian+and+Non-Bayesian+Approaches+for+the+Periodic+AR+Models+Based+on+the+SMSN+Innovations&rft.jtitle=Iranian+journal+of+science+%28Online%29&rft.au=Manouchehri%2C+T&rft.au=Nematollahi%2C+A+R&rft.date=2022-04-01&rft.pub=Springer+Nature+B.V&rft.issn=2731-8095&rft.eissn=2731-8109&rft.volume=46&rft.issue=2&rft.spage=615&rft.epage=630&rft_id=info:doi/10.1007%2Fs40995-022-01266-w&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2731-8095&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2731-8095&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2731-8095&client=summon |