A Comparison of the Bayesian and Non-Bayesian Approaches for the Periodic AR Models Based on the SMSN Innovations

We consider here a periodic autoregressive model with scale mixtures of skew-normal innovations. The class of scale mixtures of skew-normal distributions is a general and quite flexible class of error distributions, which is often used for statistical procedures of analyzing symmetrical and asymmetr...

Full description

Saved in:
Bibliographic Details
Published inIranian journal of science (Online) Vol. 46; no. 2; pp. 615 - 630
Main Authors Manouchehri, T, Nematollahi, A R
Format Journal Article
LanguageEnglish
Published Shiraz Springer Nature B.V 01.04.2022
Subjects
Online AccessGet full text
ISSN2731-8095
2731-8109
DOI10.1007/s40995-022-01266-w

Cover

Abstract We consider here a periodic autoregressive model with scale mixtures of skew-normal innovations. The class of scale mixtures of skew-normal distributions is a general and quite flexible class of error distributions, which is often used for statistical procedures of analyzing symmetrical and asymmetrical data. Our aim is to compare some well-known parameter estimation methods of periodic autoregressive time series with scale mixtures of skew-normal error terms. The maximum likelihood, maximum a posterior, and Bayesian estimation methods are then developed by using the expectation–conditional maximization algorithms and the Gibbs sampling algorithm. The numerical results obtained by means of simulation studies are reported to examine and compare the proposed methods. A prior sensitivity analysis is also developed to study the effect of changes in the priors. Moreover, a web-based shiny app called “PAR(1) Model Analysis” is developed here, for modeling, estimation, and prediction in the periodic autoregressive time series using the proposed technique. Finally, the proposed methods are applied to some quarterly UK macroeconomic variables.
AbstractList We consider here a periodic autoregressive model with scale mixtures of skew-normal innovations. The class of scale mixtures of skew-normal distributions is a general and quite flexible class of error distributions, which is often used for statistical procedures of analyzing symmetrical and asymmetrical data. Our aim is to compare some well-known parameter estimation methods of periodic autoregressive time series with scale mixtures of skew-normal error terms. The maximum likelihood, maximum a posterior, and Bayesian estimation methods are then developed by using the expectation–conditional maximization algorithms and the Gibbs sampling algorithm. The numerical results obtained by means of simulation studies are reported to examine and compare the proposed methods. A prior sensitivity analysis is also developed to study the effect of changes in the priors. Moreover, a web-based shiny app called “PAR(1) Model Analysis” is developed here, for modeling, estimation, and prediction in the periodic autoregressive time series using the proposed technique. Finally, the proposed methods are applied to some quarterly UK macroeconomic variables.
Author Manouchehri, T
Nematollahi, A R
Author_xml – sequence: 1
  givenname: T
  surname: Manouchehri
  fullname: Manouchehri, T
– sequence: 2
  givenname: A
  surname: Nematollahi
  middlename: R
  fullname: Nematollahi, A R
BookMark eNo9jktPwzAQhC1UJErpH-BkibNhbcdOfAwVj0ptQRTOlWtv1FTFTuMUxL8nPE-72tn5Zk7JIMSAhJxzuOQA-VXKwBjFQAgGXGjN3o_IUOSSs4KDGfztYNQJGae0BQApuDGyGJJ9SSfxtbFtnWKgsaLdBum1_cBU20Bt8HQRA_s_lE3TRus2mGgV2-_nR2zr6GtHyyc6jx53qfcn9LTnfenL-XJBpyHEN9vVMaQzclzZXcLx7xyRl9ub58k9mz3cTSfljDmRQ8cK58G4PNMKcoWZtoVQymktUBrg3ljlZOGBK-jVNTcaC2F1tZYmqywKIUfk4ofbN94fMHWrbTy0oY9cCa2E5iDByE-5012h
ContentType Journal Article
Copyright Shiraz University 2022.
Copyright_xml – notice: Shiraz University 2022.
DBID 7SC
7SP
7TB
7U5
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
DOI 10.1007/s40995-022-01266-w
DatabaseName Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2731-8109
EndPage 630
GroupedDBID 0R~
406
7SC
7SP
7TB
7U5
8FD
AACDK
AAJBT
AASML
AATNV
ABAKF
ABBRH
ABDBE
ABFSG
ABRTQ
ACAOD
ACPIV
ACSTC
ACZOJ
AEFQL
AEMSY
AESKC
AEZWR
AFBBN
AFDZB
AFHIU
AGQEE
AHWEU
AIGIU
AIXLP
ALMA_UNASSIGNED_HOLDINGS
ATHPR
DPUIP
EBLON
EBS
FIGPU
FR3
H8D
JQ2
JZLTJ
KR7
L7M
L~C
L~D
NPVJJ
PT4
RSV
SJYHP
SOJ
ID FETCH-LOGICAL-c270t-8cd09c7465075e46a8255c662e3901d9a5c38d01505e4b196e82a6fb394fae223
ISSN 2731-8095
IngestDate Thu Sep 18 00:00:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c270t-8cd09c7465075e46a8255c662e3901d9a5c38d01505e4b196e82a6fb394fae223
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2652610309
PQPubID 1966378
PageCount 16
ParticipantIDs proquest_journals_2652610309
PublicationCentury 2000
PublicationDate 20220401
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 20220401
  day: 01
PublicationDecade 2020
PublicationPlace Shiraz
PublicationPlace_xml – name: Shiraz
PublicationTitle Iranian journal of science (Online)
PublicationYear 2022
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
SSID ssj0003219938
Score 2.2097337
Snippet We consider here a periodic autoregressive model with scale mixtures of skew-normal innovations. The class of scale mixtures of skew-normal distributions is a...
SourceID proquest
SourceType Aggregation Database
StartPage 615
SubjectTerms Algorithms
Autoregressive models
Bayesian analysis
Innovations
Mathematical models
Mixtures
Parameter estimation
Sensitivity analysis
Skewed distributions
Time series
Title A Comparison of the Bayesian and Non-Bayesian Approaches for the Periodic AR Models Based on the SMSN Innovations
URI https://www.proquest.com/docview/2652610309
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2731-8109
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003219938
  issn: 2731-8095
  databaseCode: AFBBN
  dateStart: 20160301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZZ-rKX0e7CLm3RwxgbRcWRbdl-dLuFdFtNSVroW5AlmQaGvdYJY_sV-8k9utgWyxjbXkyQHMnO-XLuRweh11RQmWUqJIEMJIl4nBFOVUoUaB8iFUEVmnY-5wWbXUUfr-Pr0einl7W0WZfH4sdv60r-h6owBnTVVbL_QNl-URiAz0BfuAKF4fpXNM7t37lrI2iD_fy7MoWR2iNeNDXpB3J3fLhq-9zCC3jKRq7EUT43XdG-tPD9FnRQG0I4WpwvCmAhXePU1ldlz0DKrZwb36m0XY3QL0eYOpd33Wxg8xtb2t7nZhf60FgNRtNdGPjU3HdEgA075K_4jkidZa1jH32hjOZloCRNQBjafprHyhubBJnPjJ0_cuXZxJazsknsCWlmgzlb_N-mfLRgtJrCc511AhoI-TZIuy7CP8sXy4v30-Xns-LTm6-3RPch0_F615TlAdqhICeCMdrJpycnRe-3C6lOeTSNDrt3crVYpiJza-ctGW8Ul8td9MhZHDi38NlDI1U_RnuOp7f4rTt4_N0TdJvjAU-4qTBAAHfwwYAn7OMJD3jCgCdzc4cnnM-xxRM2eMKwnp7XeMIenp6iq-mHy9MZcS05iKBJsCapkEEmkgj0-iRWEeMpmKSCMaq070xmPBZhKrUXDWZL4O4qpZxVZZhFFVegij5D47qp1XOEqypKeMKAT1SwkOQl3EJDFXAWySiK5Qu03_1wS4fkdklZDCa_Dgu-_PP0K_RwwOg-Gq_vNuoA1Md1eegoeg-Dsm-v
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Comparison+of+the+Bayesian+and+Non-Bayesian+Approaches+for+the+Periodic+AR+Models+Based+on+the+SMSN+Innovations&rft.jtitle=Iranian+journal+of+science+%28Online%29&rft.au=Manouchehri%2C+T&rft.au=Nematollahi%2C+A+R&rft.date=2022-04-01&rft.pub=Springer+Nature+B.V&rft.issn=2731-8095&rft.eissn=2731-8109&rft.volume=46&rft.issue=2&rft.spage=615&rft.epage=630&rft_id=info:doi/10.1007%2Fs40995-022-01266-w&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2731-8095&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2731-8095&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2731-8095&client=summon