Energy forecasting models using different algorithm and modeling of hybrid renewable resources (HRE) for educational building: a comprehensive study
Forecasting energy has become crucial in modern power systems to ensure efficient operation. Enhanced forecasting tools enable accurate prediction of load and energy demand well in advance, ensuring system reliability. This study focuses on predicting the energy demands of educational institutions,...
Saved in:
| Published in | Electrical engineering Vol. 107; no. 5; pp. 6305 - 6328 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.05.2025
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0948-7921 1432-0487 |
| DOI | 10.1007/s00202-024-02847-1 |
Cover
| Abstract | Forecasting energy has become crucial in modern power systems to ensure efficient operation. Enhanced forecasting tools enable accurate prediction of load and energy demand well in advance, ensuring system reliability. This study focuses on predicting the energy demands of educational institutions, employing various models such as neural networks, support vector machines, ensemble methods, and machine learning algorithms. Using real-time energy data from an educational institute in Hyderabad, consisting of nearly 8760 data points (365*24), forecasting models were trained. The performance of each model was evaluated using R metrics including mean absolute error (MAE), mean absolute percentage error (MAPE), mean squared error (MSE), root-mean-squared error, and R-squared (
R
2
). Among the eight models developed, the random forest regression model exhibited superior accuracy with the lowest R metrics values. For the random forest regression model, the metrics were as follows: MSE 0.053, MAE 0.117, MAPE 0.0281, and
R
2
score 0.9995. This model was trained with four input features (hours, temperature, wind speed, and relative humidity) and one output (energy). Utilizing this model, energy predictions can be made for any day, hour, month, or year. Furthermore, the predicted energy data from the model were employed in the modeling of hybrid renewable energy sources (HRE) systems to satisfy the building’s power demands. A techno-economic feasibility analysis of the hybrid renewable energy (HRE) system was conducted, optimizing the PV and wind sources to 133 kW and 1 kW, respectively. This resulted in a minimum cost of energy (COE) of 0.009 USD and an 81% reduction in CO
2
emissions. |
|---|---|
| AbstractList | Forecasting energy has become crucial in modern power systems to ensure efficient operation. Enhanced forecasting tools enable accurate prediction of load and energy demand well in advance, ensuring system reliability. This study focuses on predicting the energy demands of educational institutions, employing various models such as neural networks, support vector machines, ensemble methods, and machine learning algorithms. Using real-time energy data from an educational institute in Hyderabad, consisting of nearly 8760 data points (365*24), forecasting models were trained. The performance of each model was evaluated using R metrics including mean absolute error (MAE), mean absolute percentage error (MAPE), mean squared error (MSE), root-mean-squared error, and R-squared (
R
2
). Among the eight models developed, the random forest regression model exhibited superior accuracy with the lowest R metrics values. For the random forest regression model, the metrics were as follows: MSE 0.053, MAE 0.117, MAPE 0.0281, and
R
2
score 0.9995. This model was trained with four input features (hours, temperature, wind speed, and relative humidity) and one output (energy). Utilizing this model, energy predictions can be made for any day, hour, month, or year. Furthermore, the predicted energy data from the model were employed in the modeling of hybrid renewable energy sources (HRE) systems to satisfy the building’s power demands. A techno-economic feasibility analysis of the hybrid renewable energy (HRE) system was conducted, optimizing the PV and wind sources to 133 kW and 1 kW, respectively. This resulted in a minimum cost of energy (COE) of 0.009 USD and an 81% reduction in CO
2
emissions. Forecasting energy has become crucial in modern power systems to ensure efficient operation. Enhanced forecasting tools enable accurate prediction of load and energy demand well in advance, ensuring system reliability. This study focuses on predicting the energy demands of educational institutions, employing various models such as neural networks, support vector machines, ensemble methods, and machine learning algorithms. Using real-time energy data from an educational institute in Hyderabad, consisting of nearly 8760 data points (365*24), forecasting models were trained. The performance of each model was evaluated using R metrics including mean absolute error (MAE), mean absolute percentage error (MAPE), mean squared error (MSE), root-mean-squared error, and R-squared (R2). Among the eight models developed, the random forest regression model exhibited superior accuracy with the lowest R metrics values. For the random forest regression model, the metrics were as follows: MSE 0.053, MAE 0.117, MAPE 0.0281, and R2 score 0.9995. This model was trained with four input features (hours, temperature, wind speed, and relative humidity) and one output (energy). Utilizing this model, energy predictions can be made for any day, hour, month, or year. Furthermore, the predicted energy data from the model were employed in the modeling of hybrid renewable energy sources (HRE) systems to satisfy the building’s power demands. A techno-economic feasibility analysis of the hybrid renewable energy (HRE) system was conducted, optimizing the PV and wind sources to 133 kW and 1 kW, respectively. This resulted in a minimum cost of energy (COE) of 0.009 USD and an 81% reduction in CO2 emissions. |
| Author | Thulasingam, Muthukumaran Periyanayagam, Ajay D. Vimal Raj |
| Author_xml | – sequence: 1 givenname: Muthukumaran orcidid: 0000-0002-6667-5997 surname: Thulasingam fullname: Thulasingam, Muthukumaran email: amtechhy@gmail.com, muthukumaran.t@ptuniv.edu.in organization: Department of EEE, Puducherry Technological University – sequence: 2 givenname: Ajay D. Vimal Raj surname: Periyanayagam fullname: Periyanayagam, Ajay D. Vimal Raj organization: Department of EEE, Puducherry Technological University |
| BookMark | eNp9kM9qGzEQxkVJoU7aF-hJ0Ety2GSk1Vq7uYXgNgFDobRnoT8je81acqTdBL9HH7hyN5BbDmI0w-_7mPnOyVmIAQn5yuCaAcibDMCBV8BFea2QFftAFkzUZSRaeUYW0Im2kh1nn8h5zjsAqJtOLMjfVcC0OVIfE1qdxz5s6D46HDKd8qlxvfeYMIxUD5uY-nG7pzq4GToB0dPt0aTe0ULhizYDll-OU7KY6eXDr9XVyZ2im6we-xj0QM3UD66Ib6mmNu4PCbcYcv-MNI-TO34mH70eMn55rRfkz_fV7_uHav3zx-P93bqyXMJYtcI7W0tnXLnRt0Z0tnUOGiG9BN81HphoGEjjW85Kazvpl7VxvPDG2GV9Qb7NvocUnybMo9qVtcuCWdW8aVi97CQUis-UTTHnhF4dUr_X6agYqFP6ak5flfTV__QVK6J6FuUChw2mN-t3VP8AQ3-MiQ |
| Cites_doi | 10.5194/gmd-15-5481-2022 10.1016/j.apenergy.2019.114243 10.1016/j.energy.2019.04.077 10.3390/en16052283 10.1002/er.6679 10.1016/j.rser.2012.02.049 10.1109/ipact52855.2021.9696911 10.1016/j.energy.2022.123856 10.4018/978-1-6684-6859-3.ch009 10.1002/ese3.71 10.1016/j.enpol.2020.111571 10.1016/j.rineng.2023.101296 10.1016/j.jclepro.2019.01.108 10.3390/en16031370 10.1016/j.energy.2022.125955 10.1016/j.apenergy.2017.08.228 10.1016/j.rser.2015.12.290 10.3390/pr11051382 10.1016/j.scs.2022.104015 10.1109/GLOBECOM48099.2022.10001558 10.3390/sym14010160 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s00202-024-02847-1 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Education |
| EISSN | 1432-0487 |
| EndPage | 6328 |
| ExternalDocumentID | 10_1007_s00202_024_02847_1 |
| GroupedDBID | -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29G 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO ABAKF ABBBX ABBRH ABBXA ABDBE ABDBF ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSTC ACUHS ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFGCZ AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BBWZM BDATZ BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L8X LAS LLZTM M4Y M7S MA- MK~ ML~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9P PF0 PHGZM PHGZT PQGLB PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~EX AAYXX AAYZH CITATION |
| ID | FETCH-LOGICAL-c270t-84fdc37dbd487f8b49c8dd0547f70f95f0145107bf82195fc97f63bd2d48bbc63 |
| IEDL.DBID | U2A |
| ISSN | 0948-7921 |
| IngestDate | Mon Oct 06 18:36:17 EDT 2025 Wed Oct 01 05:59:40 EDT 2025 Sat Oct 18 23:21:40 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Energy demand HRE R metrics HOMER Pro Energy forecasting |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c270t-84fdc37dbd487f8b49c8dd0547f70f95f0145107bf82195fc97f63bd2d48bbc63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6667-5997 |
| PQID | 3255136970 |
| PQPubID | 2044221 |
| PageCount | 24 |
| ParticipantIDs | proquest_journals_3255136970 crossref_primary_10_1007_s00202_024_02847_1 springer_journals_10_1007_s00202_024_02847_1 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20250500 2025-05-00 20250501 |
| PublicationDateYYYYMMDD | 2025-05-01 |
| PublicationDate_xml | – month: 5 year: 2025 text: 20250500 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationSubtitle | Archiv für Elektrotechnik |
| PublicationTitle | Electrical engineering |
| PublicationTitleAbbrev | Electr Eng |
| PublicationYear | 2025 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | S Muneer (2847_CR23) 2022; 1 H-X Zhao (2847_CR1) 2012; 16 S Thapar (2847_CR4) 2020; 143 T Adefarati (2847_CR31) 2017; 206 MM Samy (2847_CR18) 2022; 84 C Rao (2847_CR19) 2023; 263 2847_CR14 NJ Johannesen (2847_CR10) 2019; 218 2847_CR15 GP Herrera (2847_CR9) 2019; 179 2847_CR16 M Abumohsen (2847_CR21) 2023; 16 2847_CR17 P Jiang (2847_CR8) 2020; 260 2847_CR32 2847_CR11 2847_CR12 2847_CR13 B Wang (2847_CR6) 2023; 38 P-P Phyo (2847_CR22) 2022; 14 JC Nsangou (2847_CR20) 2022; 250 A Chauhan (2847_CR29) 2016; 59 HK Pujari (2847_CR30) 2021; 31 AA Alghamdi (2847_CR3) 2023; 16 L Olatomiwa (2847_CR27) 2015; 3 AK Shaikh (2847_CR5) 2023; 19 2847_CR25 TO Hodson (2847_CR26) 2022; 15 2847_CR28 NLM Jailani (2847_CR2) 2023; 11 J Devaraj (2847_CR7) 2021; 45 2847_CR24 |
| References_xml | – volume: 15 start-page: 5481 issue: 14 year: 2022 ident: 2847_CR26 publication-title: Geosci Model Develop doi: 10.5194/gmd-15-5481-2022 – volume: 260 start-page: 114243 year: 2020 ident: 2847_CR8 publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.114243 – volume: 179 start-page: 214 year: 2019 ident: 2847_CR9 publication-title: Energy doi: 10.1016/j.energy.2019.04.077 – volume: 1 start-page: 28 issue: 1 year: 2022 ident: 2847_CR23 publication-title: Int J Comput Innov Sci – ident: 2847_CR12 – ident: 2847_CR14 – volume: 16 start-page: 2283 issue: 5 year: 2023 ident: 2847_CR21 publication-title: Energies doi: 10.3390/en16052283 – ident: 2847_CR16 – volume: 45 start-page: 13489 issue: 9 year: 2021 ident: 2847_CR7 publication-title: Int J Energy Res doi: 10.1002/er.6679 – volume: 16 start-page: 3586 issue: 6 year: 2012 ident: 2847_CR1 publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2012.02.049 – ident: 2847_CR13 doi: 10.1109/ipact52855.2021.9696911 – volume: 250 start-page: 123856 year: 2022 ident: 2847_CR20 publication-title: Energy doi: 10.1016/j.energy.2022.123856 – ident: 2847_CR25 doi: 10.4018/978-1-6684-6859-3.ch009 – volume: 3 start-page: 271 year: 2015 ident: 2847_CR27 publication-title: Energy Sci Eng doi: 10.1002/ese3.71 – ident: 2847_CR28 – volume: 143 start-page: 111571 year: 2020 ident: 2847_CR4 publication-title: Energy Policy doi: 10.1016/j.enpol.2020.111571 – volume: 19 start-page: 101296 year: 2023 ident: 2847_CR5 publication-title: Results Eng doi: 10.1016/j.rineng.2023.101296 – volume: 218 start-page: 555 year: 2019 ident: 2847_CR10 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2019.01.108 – volume: 16 start-page: 1370 issue: 3 year: 2023 ident: 2847_CR3 publication-title: Energies doi: 10.3390/en16031370 – volume: 263 start-page: 125955 year: 2023 ident: 2847_CR19 publication-title: Energy doi: 10.1016/j.energy.2022.125955 – volume: 206 start-page: 911 year: 2017 ident: 2847_CR31 publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.08.228 – ident: 2847_CR15 – volume: 59 start-page: 388 year: 2016 ident: 2847_CR29 publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2015.12.290 – ident: 2847_CR17 – volume: 11 start-page: 1382 issue: 5 year: 2023 ident: 2847_CR2 publication-title: Processes doi: 10.3390/pr11051382 – volume: 84 start-page: 104015 year: 2022 ident: 2847_CR18 publication-title: Sustain Cities Soc doi: 10.1016/j.scs.2022.104015 – ident: 2847_CR32 – ident: 2847_CR24 doi: 10.1109/GLOBECOM48099.2022.10001558 – volume: 38 start-page: 100876 year: 2023 ident: 2847_CR6 publication-title: Sustain Comput Inf Syst – ident: 2847_CR11 – volume: 14 start-page: 160 issue: 1 year: 2022 ident: 2847_CR22 publication-title: Symmetry doi: 10.3390/sym14010160 – volume: 31 start-page: e13007 issue: 9 year: 2021 ident: 2847_CR30 publication-title: Int Trans Electric Energy Syst |
| SSID | ssj0003594 |
| Score | 2.3497422 |
| Snippet | Forecasting energy has become crucial in modern power systems to ensure efficient operation. Enhanced forecasting tools enable accurate prediction of load and... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 6305 |
| SubjectTerms | Algorithms Alternative energy sources Business metrics Data points Deep learning Economics and Management Education Electrical Engineering Electrical Machines and Networks Energy consumption Energy demand Energy Policy Energy resources Engineering Ensemble learning Errors Feasibility studies Forecasting Forecasting techniques Humidity HVAC Machine learning Neural networks Original Paper Photovoltaic cells Power Electronics Python Radiation Real time Regression models Relative humidity Renewable energy sources Renewable resources Research methodology Statistical analysis Support vector machines System reliability Time series Wind speed |
| Title | Energy forecasting models using different algorithm and modeling of hybrid renewable resources (HRE) for educational building: a comprehensive study |
| URI | https://link.springer.com/article/10.1007/s00202-024-02847-1 https://www.proquest.com/docview/3255136970 |
| Volume | 107 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1432-0487 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003594 issn: 0948-7921 databaseCode: AFBBN dateStart: 19120101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1432-0487 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003594 issn: 0948-7921 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1432-0487 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003594 issn: 0948-7921 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA-yXfQgfuJ0jhw8KBro2qZpvG3SORR3EAfzVJomcYJ2slbE_8M_2Je03VT04KG0kEcofen7SN7v_RA6gnUDbkVQIsG9EV_5inCmKTEAWJlooZU2eOebUTAc-1cTOqlAYXld7V4fSVpLvQC7mcjGJeBT4AKbSiDnaVLTzgtW8djtLeyvRy39IeQtIWEwXEFlfp_juztaxpg_jkWttxlsoPUqTMS9Uq-baEVlW2jtS_PAbfQRWdgehqhTpUluypex5bXJsSlmf8A190mBk6eH2fyxmD7jJJOlkBGYaTx9N4gtbPpavhkQFTyV2_k5Ph7eRidmdqzqIhB4I1HRaJ_jBJty9LmaliXw2Daq3UHjQXR3MSQVxwJJXeYUJPS1TD0mhYTMRYfC52koJcRxTDNHc6otla_DhA7BtlGdgiYDT0gX5IVIA28XNbJZpvYQTruBSoTUikLWmHAuQIb5PKQ-BIUBD1votP7U8UvZSiNeNE22iolBMbFVTNxtoXatjbj6rfLYcw0fTcCZ00JntYaWw3_Ptv8_8QO06hqeX1vY2EaNYv6qDiH4KEQHNXuDfn9k7pf311HHrr1PRBnVvA |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2hcgAO7Iiy-sABBEZtNsfcECoUuhwQleAUxbFNEdCiJgjBd_DBjJ2kLIIDh0iRMrISz2QW-c08gB20GwwrwqcSwxv1lKcoZ9qnpgFWxlpopU2_c6cbNHvexbV_XTSFpSXavTyStJ563OxmMhuHYkzBC30qxZpn0sMCxanA5PHZTasx9sCubwkQsXIJKeNOvWiW-X2V7wHpM8v8cTBq483pHPTKN81hJveHz5k4TN5-DHH876fMw2yRgJLj3GIWYEINFmHmy1jCJXhv2IZAgvmsSuLUAKOJZcxJiYHJ35KSVSUj8cPtcHSX9R9JPJC5kBEYatJ_Nb1gxEzMfDHtWXiXHxSkZLd52dgzqxNVwkvwjURB0H1EYmKA7iPVz8H1xI7AXYbeaePqpEkL9gaaOKyW0dDTMnGZFBJrIh0KjyehlJghMs1qmvvakgTXmNAhek1fJ2gjgSukg_JCJIG7ApXBcKBWgST1QMVCauWjumPOBcowj4e-h-lmwMMq7JcqjJ7yIR3ReByz3esI9zqyex3Vq7BRajkqftg0ch3DdBNwVqvCQam0z8d_r7b2P_FtmGpeddpR-7zbWodpx7AJW_jkBlSy0bPaxBQnE1uFRX8ANw3ygA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFA2iIPogfuJ0ah58UDRsa9Om8W3oxvwaIg72Vpom2QTtxloR_4c_2Ju03abogw-FQi-h9Ca59zbn3IPQMcwbCCvCIxLCG6GKKsKZ9oghwMpIC6204Tvfd_1Oj970vf4ci9-i3csjyZzTYLo0JVltLHVtSnwzWY5DIL7ABfsrgfpniZpGCTCje05zuhe7npVChBomIIw7jYI28_sY30PTLN_8cURqI097Ha0VKSNu5j7eQAsq2USrc40Et9Bny1L4MGSgKo5SA2XGVuMmxQbYPsClDkqGo5fBaPKcDV9xlMjcyBiMNB5-GPYWNj0u3w2hCu7yX_spPuk8tk7N6FiVgBB4I1FIal_gCBto-kQNczg8tk1rt1Gv3Xq67JBCb4HEDqtnJKBaxi6TQkIVowNBeRxICTkd06yuuaetrG-dCR3APufpGLzqu0I6YC9E7Ls7aDEZJWoX4bjhq0hIrTyoICPOBdgwygOPQoLo86CCzspPHY7zthrhtIGydUwIjgmtY8JGBVVLb4TFEktD1zHaND5n9Qo6Lz00e_z3aHv_Mz9Cyw9X7fDuunu7j1YcI_9r8Y5VtJhN3tQB5CSZOLTT7gtmbdnU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy+forecasting+models+using+different+algorithm+and+modeling+of+hybrid+renewable+resources+%28HRE%29+for+educational+building%3A+a+comprehensive+study&rft.jtitle=Electrical+engineering&rft.au=Thulasingam%2C+Muthukumaran&rft.au=Periyanayagam%2C+Ajay+D.+Vimal+Raj&rft.date=2025-05-01&rft.pub=Springer+Nature+B.V&rft.issn=0948-7921&rft.eissn=1432-0487&rft.volume=107&rft.issue=5&rft.spage=6305&rft.epage=6328&rft_id=info:doi/10.1007%2Fs00202-024-02847-1&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0948-7921&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0948-7921&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0948-7921&client=summon |