Energy forecasting models using different algorithm and modeling of hybrid renewable resources (HRE) for educational building: a comprehensive study

Forecasting energy has become crucial in modern power systems to ensure efficient operation. Enhanced forecasting tools enable accurate prediction of load and energy demand well in advance, ensuring system reliability. This study focuses on predicting the energy demands of educational institutions,...

Full description

Saved in:
Bibliographic Details
Published inElectrical engineering Vol. 107; no. 5; pp. 6305 - 6328
Main Authors Thulasingam, Muthukumaran, Periyanayagam, Ajay D. Vimal Raj
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.05.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0948-7921
1432-0487
DOI10.1007/s00202-024-02847-1

Cover

Abstract Forecasting energy has become crucial in modern power systems to ensure efficient operation. Enhanced forecasting tools enable accurate prediction of load and energy demand well in advance, ensuring system reliability. This study focuses on predicting the energy demands of educational institutions, employing various models such as neural networks, support vector machines, ensemble methods, and machine learning algorithms. Using real-time energy data from an educational institute in Hyderabad, consisting of nearly 8760 data points (365*24), forecasting models were trained. The performance of each model was evaluated using R metrics including mean absolute error (MAE), mean absolute percentage error (MAPE), mean squared error (MSE), root-mean-squared error, and R-squared ( R 2 ). Among the eight models developed, the random forest regression model exhibited superior accuracy with the lowest R metrics values. For the random forest regression model, the metrics were as follows: MSE 0.053, MAE 0.117, MAPE 0.0281, and R 2 score 0.9995. This model was trained with four input features (hours, temperature, wind speed, and relative humidity) and one output (energy). Utilizing this model, energy predictions can be made for any day, hour, month, or year. Furthermore, the predicted energy data from the model were employed in the modeling of hybrid renewable energy sources (HRE) systems to satisfy the building’s power demands. A techno-economic feasibility analysis of the hybrid renewable energy (HRE) system was conducted, optimizing the PV and wind sources to 133 kW and 1 kW, respectively. This resulted in a minimum cost of energy (COE) of 0.009 USD and an 81% reduction in CO 2 emissions.
AbstractList Forecasting energy has become crucial in modern power systems to ensure efficient operation. Enhanced forecasting tools enable accurate prediction of load and energy demand well in advance, ensuring system reliability. This study focuses on predicting the energy demands of educational institutions, employing various models such as neural networks, support vector machines, ensemble methods, and machine learning algorithms. Using real-time energy data from an educational institute in Hyderabad, consisting of nearly 8760 data points (365*24), forecasting models were trained. The performance of each model was evaluated using R metrics including mean absolute error (MAE), mean absolute percentage error (MAPE), mean squared error (MSE), root-mean-squared error, and R-squared ( R 2 ). Among the eight models developed, the random forest regression model exhibited superior accuracy with the lowest R metrics values. For the random forest regression model, the metrics were as follows: MSE 0.053, MAE 0.117, MAPE 0.0281, and R 2 score 0.9995. This model was trained with four input features (hours, temperature, wind speed, and relative humidity) and one output (energy). Utilizing this model, energy predictions can be made for any day, hour, month, or year. Furthermore, the predicted energy data from the model were employed in the modeling of hybrid renewable energy sources (HRE) systems to satisfy the building’s power demands. A techno-economic feasibility analysis of the hybrid renewable energy (HRE) system was conducted, optimizing the PV and wind sources to 133 kW and 1 kW, respectively. This resulted in a minimum cost of energy (COE) of 0.009 USD and an 81% reduction in CO 2 emissions.
Forecasting energy has become crucial in modern power systems to ensure efficient operation. Enhanced forecasting tools enable accurate prediction of load and energy demand well in advance, ensuring system reliability. This study focuses on predicting the energy demands of educational institutions, employing various models such as neural networks, support vector machines, ensemble methods, and machine learning algorithms. Using real-time energy data from an educational institute in Hyderabad, consisting of nearly 8760 data points (365*24), forecasting models were trained. The performance of each model was evaluated using R metrics including mean absolute error (MAE), mean absolute percentage error (MAPE), mean squared error (MSE), root-mean-squared error, and R-squared (R2). Among the eight models developed, the random forest regression model exhibited superior accuracy with the lowest R metrics values. For the random forest regression model, the metrics were as follows: MSE 0.053, MAE 0.117, MAPE 0.0281, and R2 score 0.9995. This model was trained with four input features (hours, temperature, wind speed, and relative humidity) and one output (energy). Utilizing this model, energy predictions can be made for any day, hour, month, or year. Furthermore, the predicted energy data from the model were employed in the modeling of hybrid renewable energy sources (HRE) systems to satisfy the building’s power demands. A techno-economic feasibility analysis of the hybrid renewable energy (HRE) system was conducted, optimizing the PV and wind sources to 133 kW and 1 kW, respectively. This resulted in a minimum cost of energy (COE) of 0.009 USD and an 81% reduction in CO2 emissions.
Author Thulasingam, Muthukumaran
Periyanayagam, Ajay D. Vimal Raj
Author_xml – sequence: 1
  givenname: Muthukumaran
  orcidid: 0000-0002-6667-5997
  surname: Thulasingam
  fullname: Thulasingam, Muthukumaran
  email: amtechhy@gmail.com, muthukumaran.t@ptuniv.edu.in
  organization: Department of EEE, Puducherry Technological University
– sequence: 2
  givenname: Ajay D. Vimal Raj
  surname: Periyanayagam
  fullname: Periyanayagam, Ajay D. Vimal Raj
  organization: Department of EEE, Puducherry Technological University
BookMark eNp9kM9qGzEQxkVJoU7aF-hJ0Ety2GSk1Vq7uYXgNgFDobRnoT8je81acqTdBL9HH7hyN5BbDmI0w-_7mPnOyVmIAQn5yuCaAcibDMCBV8BFea2QFftAFkzUZSRaeUYW0Im2kh1nn8h5zjsAqJtOLMjfVcC0OVIfE1qdxz5s6D46HDKd8qlxvfeYMIxUD5uY-nG7pzq4GToB0dPt0aTe0ULhizYDll-OU7KY6eXDr9XVyZ2im6we-xj0QM3UD66Ib6mmNu4PCbcYcv-MNI-TO34mH70eMn55rRfkz_fV7_uHav3zx-P93bqyXMJYtcI7W0tnXLnRt0Z0tnUOGiG9BN81HphoGEjjW85Kazvpl7VxvPDG2GV9Qb7NvocUnybMo9qVtcuCWdW8aVi97CQUis-UTTHnhF4dUr_X6agYqFP6ak5flfTV__QVK6J6FuUChw2mN-t3VP8AQ3-MiQ
Cites_doi 10.5194/gmd-15-5481-2022
10.1016/j.apenergy.2019.114243
10.1016/j.energy.2019.04.077
10.3390/en16052283
10.1002/er.6679
10.1016/j.rser.2012.02.049
10.1109/ipact52855.2021.9696911
10.1016/j.energy.2022.123856
10.4018/978-1-6684-6859-3.ch009
10.1002/ese3.71
10.1016/j.enpol.2020.111571
10.1016/j.rineng.2023.101296
10.1016/j.jclepro.2019.01.108
10.3390/en16031370
10.1016/j.energy.2022.125955
10.1016/j.apenergy.2017.08.228
10.1016/j.rser.2015.12.290
10.3390/pr11051382
10.1016/j.scs.2022.104015
10.1109/GLOBECOM48099.2022.10001558
10.3390/sym14010160
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024.
DBID AAYXX
CITATION
DOI 10.1007/s00202-024-02847-1
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Education
EISSN 1432-0487
EndPage 6328
ExternalDocumentID 10_1007_s00202_024_02847_1
GroupedDBID -Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29G
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSTC
ACUHS
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L8X
LAS
LLZTM
M4Y
M7S
MA-
MK~
ML~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9P
PF0
PHGZM
PHGZT
PQGLB
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~EX
AAYXX
AAYZH
CITATION
ID FETCH-LOGICAL-c270t-84fdc37dbd487f8b49c8dd0547f70f95f0145107bf82195fc97f63bd2d48bbc63
IEDL.DBID U2A
ISSN 0948-7921
IngestDate Mon Oct 06 18:36:17 EDT 2025
Wed Oct 01 05:59:40 EDT 2025
Sat Oct 18 23:21:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Energy demand
HRE
R metrics
HOMER Pro
Energy forecasting
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-84fdc37dbd487f8b49c8dd0547f70f95f0145107bf82195fc97f63bd2d48bbc63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6667-5997
PQID 3255136970
PQPubID 2044221
PageCount 24
ParticipantIDs proquest_journals_3255136970
crossref_primary_10_1007_s00202_024_02847_1
springer_journals_10_1007_s00202_024_02847_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250500
2025-05-00
20250501
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 5
  year: 2025
  text: 20250500
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle Archiv für Elektrotechnik
PublicationTitle Electrical engineering
PublicationTitleAbbrev Electr Eng
PublicationYear 2025
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References S Muneer (2847_CR23) 2022; 1
H-X Zhao (2847_CR1) 2012; 16
S Thapar (2847_CR4) 2020; 143
T Adefarati (2847_CR31) 2017; 206
MM Samy (2847_CR18) 2022; 84
C Rao (2847_CR19) 2023; 263
2847_CR14
NJ Johannesen (2847_CR10) 2019; 218
2847_CR15
GP Herrera (2847_CR9) 2019; 179
2847_CR16
M Abumohsen (2847_CR21) 2023; 16
2847_CR17
P Jiang (2847_CR8) 2020; 260
2847_CR32
2847_CR11
2847_CR12
2847_CR13
B Wang (2847_CR6) 2023; 38
P-P Phyo (2847_CR22) 2022; 14
JC Nsangou (2847_CR20) 2022; 250
A Chauhan (2847_CR29) 2016; 59
HK Pujari (2847_CR30) 2021; 31
AA Alghamdi (2847_CR3) 2023; 16
L Olatomiwa (2847_CR27) 2015; 3
AK Shaikh (2847_CR5) 2023; 19
2847_CR25
TO Hodson (2847_CR26) 2022; 15
2847_CR28
NLM Jailani (2847_CR2) 2023; 11
J Devaraj (2847_CR7) 2021; 45
2847_CR24
References_xml – volume: 15
  start-page: 5481
  issue: 14
  year: 2022
  ident: 2847_CR26
  publication-title: Geosci Model Develop
  doi: 10.5194/gmd-15-5481-2022
– volume: 260
  start-page: 114243
  year: 2020
  ident: 2847_CR8
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.114243
– volume: 179
  start-page: 214
  year: 2019
  ident: 2847_CR9
  publication-title: Energy
  doi: 10.1016/j.energy.2019.04.077
– volume: 1
  start-page: 28
  issue: 1
  year: 2022
  ident: 2847_CR23
  publication-title: Int J Comput Innov Sci
– ident: 2847_CR12
– ident: 2847_CR14
– volume: 16
  start-page: 2283
  issue: 5
  year: 2023
  ident: 2847_CR21
  publication-title: Energies
  doi: 10.3390/en16052283
– ident: 2847_CR16
– volume: 45
  start-page: 13489
  issue: 9
  year: 2021
  ident: 2847_CR7
  publication-title: Int J Energy Res
  doi: 10.1002/er.6679
– volume: 16
  start-page: 3586
  issue: 6
  year: 2012
  ident: 2847_CR1
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2012.02.049
– ident: 2847_CR13
  doi: 10.1109/ipact52855.2021.9696911
– volume: 250
  start-page: 123856
  year: 2022
  ident: 2847_CR20
  publication-title: Energy
  doi: 10.1016/j.energy.2022.123856
– ident: 2847_CR25
  doi: 10.4018/978-1-6684-6859-3.ch009
– volume: 3
  start-page: 271
  year: 2015
  ident: 2847_CR27
  publication-title: Energy Sci Eng
  doi: 10.1002/ese3.71
– ident: 2847_CR28
– volume: 143
  start-page: 111571
  year: 2020
  ident: 2847_CR4
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2020.111571
– volume: 19
  start-page: 101296
  year: 2023
  ident: 2847_CR5
  publication-title: Results Eng
  doi: 10.1016/j.rineng.2023.101296
– volume: 218
  start-page: 555
  year: 2019
  ident: 2847_CR10
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2019.01.108
– volume: 16
  start-page: 1370
  issue: 3
  year: 2023
  ident: 2847_CR3
  publication-title: Energies
  doi: 10.3390/en16031370
– volume: 263
  start-page: 125955
  year: 2023
  ident: 2847_CR19
  publication-title: Energy
  doi: 10.1016/j.energy.2022.125955
– volume: 206
  start-page: 911
  year: 2017
  ident: 2847_CR31
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.08.228
– ident: 2847_CR15
– volume: 59
  start-page: 388
  year: 2016
  ident: 2847_CR29
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2015.12.290
– ident: 2847_CR17
– volume: 11
  start-page: 1382
  issue: 5
  year: 2023
  ident: 2847_CR2
  publication-title: Processes
  doi: 10.3390/pr11051382
– volume: 84
  start-page: 104015
  year: 2022
  ident: 2847_CR18
  publication-title: Sustain Cities Soc
  doi: 10.1016/j.scs.2022.104015
– ident: 2847_CR32
– ident: 2847_CR24
  doi: 10.1109/GLOBECOM48099.2022.10001558
– volume: 38
  start-page: 100876
  year: 2023
  ident: 2847_CR6
  publication-title: Sustain Comput Inf Syst
– ident: 2847_CR11
– volume: 14
  start-page: 160
  issue: 1
  year: 2022
  ident: 2847_CR22
  publication-title: Symmetry
  doi: 10.3390/sym14010160
– volume: 31
  start-page: e13007
  issue: 9
  year: 2021
  ident: 2847_CR30
  publication-title: Int Trans Electric Energy Syst
SSID ssj0003594
Score 2.3497422
Snippet Forecasting energy has become crucial in modern power systems to ensure efficient operation. Enhanced forecasting tools enable accurate prediction of load and...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 6305
SubjectTerms Algorithms
Alternative energy sources
Business metrics
Data points
Deep learning
Economics and Management
Education
Electrical Engineering
Electrical Machines and Networks
Energy consumption
Energy demand
Energy Policy
Energy resources
Engineering
Ensemble learning
Errors
Feasibility studies
Forecasting
Forecasting techniques
Humidity
HVAC
Machine learning
Neural networks
Original Paper
Photovoltaic cells
Power Electronics
Python
Radiation
Real time
Regression models
Relative humidity
Renewable energy sources
Renewable resources
Research methodology
Statistical analysis
Support vector machines
System reliability
Time series
Wind speed
Title Energy forecasting models using different algorithm and modeling of hybrid renewable resources (HRE) for educational building: a comprehensive study
URI https://link.springer.com/article/10.1007/s00202-024-02847-1
https://www.proquest.com/docview/3255136970
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1432-0487
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003594
  issn: 0948-7921
  databaseCode: AFBBN
  dateStart: 19120101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1432-0487
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003594
  issn: 0948-7921
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1432-0487
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003594
  issn: 0948-7921
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA-yXfQgfuJ0jhw8KBro2qZpvG3SORR3EAfzVJomcYJ2slbE_8M_2Je03VT04KG0kEcofen7SN7v_RA6gnUDbkVQIsG9EV_5inCmKTEAWJlooZU2eOebUTAc-1cTOqlAYXld7V4fSVpLvQC7mcjGJeBT4AKbSiDnaVLTzgtW8djtLeyvRy39IeQtIWEwXEFlfp_juztaxpg_jkWttxlsoPUqTMS9Uq-baEVlW2jtS_PAbfQRWdgehqhTpUluypex5bXJsSlmf8A190mBk6eH2fyxmD7jJJOlkBGYaTx9N4gtbPpavhkQFTyV2_k5Ph7eRidmdqzqIhB4I1HRaJ_jBJty9LmaliXw2Daq3UHjQXR3MSQVxwJJXeYUJPS1TD0mhYTMRYfC52koJcRxTDNHc6otla_DhA7BtlGdgiYDT0gX5IVIA28XNbJZpvYQTruBSoTUikLWmHAuQIb5PKQ-BIUBD1votP7U8UvZSiNeNE22iolBMbFVTNxtoXatjbj6rfLYcw0fTcCZ00JntYaWw3_Ptv8_8QO06hqeX1vY2EaNYv6qDiH4KEQHNXuDfn9k7pf311HHrr1PRBnVvA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2hcgAO7Iiy-sABBEZtNsfcECoUuhwQleAUxbFNEdCiJgjBd_DBjJ2kLIIDh0iRMrISz2QW-c08gB20GwwrwqcSwxv1lKcoZ9qnpgFWxlpopU2_c6cbNHvexbV_XTSFpSXavTyStJ563OxmMhuHYkzBC30qxZpn0sMCxanA5PHZTasx9sCubwkQsXIJKeNOvWiW-X2V7wHpM8v8cTBq483pHPTKN81hJveHz5k4TN5-DHH876fMw2yRgJLj3GIWYEINFmHmy1jCJXhv2IZAgvmsSuLUAKOJZcxJiYHJ35KSVSUj8cPtcHSX9R9JPJC5kBEYatJ_Nb1gxEzMfDHtWXiXHxSkZLd52dgzqxNVwkvwjURB0H1EYmKA7iPVz8H1xI7AXYbeaePqpEkL9gaaOKyW0dDTMnGZFBJrIh0KjyehlJghMs1qmvvakgTXmNAhek1fJ2gjgSukg_JCJIG7ApXBcKBWgST1QMVCauWjumPOBcowj4e-h-lmwMMq7JcqjJ7yIR3ReByz3esI9zqyex3Vq7BRajkqftg0ch3DdBNwVqvCQam0z8d_r7b2P_FtmGpeddpR-7zbWodpx7AJW_jkBlSy0bPaxBQnE1uFRX8ANw3ygA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFA2iIPogfuJ0ah58UDRsa9Om8W3oxvwaIg72Vpom2QTtxloR_4c_2Ju03abogw-FQi-h9Ca59zbn3IPQMcwbCCvCIxLCG6GKKsKZ9oghwMpIC6204Tvfd_1Oj970vf4ci9-i3csjyZzTYLo0JVltLHVtSnwzWY5DIL7ABfsrgfpniZpGCTCje05zuhe7npVChBomIIw7jYI28_sY30PTLN_8cURqI097Ha0VKSNu5j7eQAsq2USrc40Et9Bny1L4MGSgKo5SA2XGVuMmxQbYPsClDkqGo5fBaPKcDV9xlMjcyBiMNB5-GPYWNj0u3w2hCu7yX_spPuk8tk7N6FiVgBB4I1FIal_gCBto-kQNczg8tk1rt1Gv3Xq67JBCb4HEDqtnJKBaxi6TQkIVowNBeRxICTkd06yuuaetrG-dCR3APufpGLzqu0I6YC9E7Ls7aDEZJWoX4bjhq0hIrTyoICPOBdgwygOPQoLo86CCzspPHY7zthrhtIGydUwIjgmtY8JGBVVLb4TFEktD1zHaND5n9Qo6Lz00e_z3aHv_Mz9Cyw9X7fDuunu7j1YcI_9r8Y5VtJhN3tQB5CSZOLTT7gtmbdnU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy+forecasting+models+using+different+algorithm+and+modeling+of+hybrid+renewable+resources+%28HRE%29+for+educational+building%3A+a+comprehensive+study&rft.jtitle=Electrical+engineering&rft.au=Thulasingam%2C+Muthukumaran&rft.au=Periyanayagam%2C+Ajay+D.+Vimal+Raj&rft.date=2025-05-01&rft.pub=Springer+Nature+B.V&rft.issn=0948-7921&rft.eissn=1432-0487&rft.volume=107&rft.issue=5&rft.spage=6305&rft.epage=6328&rft_id=info:doi/10.1007%2Fs00202-024-02847-1&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0948-7921&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0948-7921&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0948-7921&client=summon