Digital Mapping of the Humus Horizon Thickness in Soils of the Cis-Salair Plain Using the Random Forest Machine Learning Algorithm
Results of digital mapping of the humus horizon thickness (HHT) in the soils of the Cis-Salair Plain using the Random Forest (RF) machine learning algorithm implemented on the Google Earth Engine cloud online platform are reported. A total of 92 predictors are employed to characterize the soil forma...
Saved in:
| Published in | Eurasian soil science Vol. 58; no. 11 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Moscow
Pleiades Publishing
01.11.2025
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1064-2293 1556-195X |
| DOI | 10.1134/S1064229325601568 |
Cover
| Abstract | Results of digital mapping of the humus horizon thickness (HHT) in the soils of the Cis-Salair Plain using the Random Forest (RF) machine learning algorithm implemented on the Google Earth Engine cloud online platform are reported. A total of 92 predictors are employed to characterize the soil formation factors, including climate, relief, vegetation, spatial position, and soil properties. Training (
n
= 718) and validation (
n
= 130) datasets are constructed based on the archive materials (1974–1984) of ZapSibNIIgiprozem (Western Siberian Research, Design, and Survey Institute for Land Use Planning). The following indicators of the HHT modeling efficacy using the RF algorithm are obtained: coefficient of determination for training dataset
= 0.88; coefficient of determination for validation dataset
= 0.12; root mean square error RMSE
VD
= 9.7 cm; mean absolute percentage error MAPE
VD
= 24.3%; and mean absolute error MAE
VD
= 6.5 cm. The modeling accuracy estimated with MAPE
VD
is satisfactory. Actual data show that HHT varies from 3 to 110 cm with the trend of a decrease from northwest to southeast. The lowest (3 cm) average HHT values are typical of meadow–chernozemic solonetz (Solonetz (Salic)) and the highest (61 cm), of ordinary meadow soils (Mollic Gleysols). |
|---|---|
| AbstractList | Results of digital mapping of the humus horizon thickness (HHT) in the soils of the Cis-Salair Plain using the Random Forest (RF) machine learning algorithm implemented on the Google Earth Engine cloud online platform are reported. A total of 92 predictors are employed to characterize the soil formation factors, including climate, relief, vegetation, spatial position, and soil properties. Training (n = 718) and validation (n = 130) datasets are constructed based on the archive materials (1974–1984) of ZapSibNIIgiprozem (Western Siberian Research, Design, and Survey Institute for Land Use Planning). The following indicators of the HHT modeling efficacy using the RF algorithm are obtained: coefficient of determination for training dataset = 0.88; coefficient of determination for validation dataset = 0.12; root mean square error RMSEVD = 9.7 cm; mean absolute percentage error MAPEVD = 24.3%; and mean absolute error MAEVD = 6.5 cm. The modeling accuracy estimated with MAPEVD is satisfactory. Actual data show that HHT varies from 3 to 110 cm with the trend of a decrease from northwest to southeast. The lowest (3 cm) average HHT values are typical of meadow–chernozemic solonetz (Solonetz (Salic)) and the highest (61 cm), of ordinary meadow soils (Mollic Gleysols). Results of digital mapping of the humus horizon thickness (HHT) in the soils of the Cis-Salair Plain using the Random Forest (RF) machine learning algorithm implemented on the Google Earth Engine cloud online platform are reported. A total of 92 predictors are employed to characterize the soil formation factors, including climate, relief, vegetation, spatial position, and soil properties. Training ( n = 718) and validation ( n = 130) datasets are constructed based on the archive materials (1974–1984) of ZapSibNIIgiprozem (Western Siberian Research, Design, and Survey Institute for Land Use Planning). The following indicators of the HHT modeling efficacy using the RF algorithm are obtained: coefficient of determination for training dataset = 0.88; coefficient of determination for validation dataset = 0.12; root mean square error RMSE VD = 9.7 cm; mean absolute percentage error MAPE VD = 24.3%; and mean absolute error MAE VD = 6.5 cm. The modeling accuracy estimated with MAPE VD is satisfactory. Actual data show that HHT varies from 3 to 110 cm with the trend of a decrease from northwest to southeast. The lowest (3 cm) average HHT values are typical of meadow–chernozemic solonetz (Solonetz (Salic)) and the highest (61 cm), of ordinary meadow soils (Mollic Gleysols). |
| ArticleNumber | 149 |
| Author | Gopp, N. V. |
| Author_xml | – sequence: 1 givenname: N. V. surname: Gopp fullname: Gopp, N. V. email: natalia.gopp@gmail.com organization: Institute of Soil Science and Agrochemistry, Siberian Branch, Russian Academy of Sciences |
| BookMark | eNp1kDtPwzAUhS1UJNrCD2CzxBzwO_FYlUeRikC0ldgiJ3Val8QOdjrAyC_HUUEMiOX6Suc751pnBAbWWQ3AOUaXGFN2tcBIMEIkJVwgzEV2BIaYc5FgyV8GcY9y0usnYBTCDiGaZSwbgs9rszGdquGDaltjN9BVsNtqONs3-wBnzpsPZ-Fya8pXq0OAxsKFM3X44aYmJAtVK-PhU5wWrkKf0kvPyq5dA2-d16GL-eXWWA3nWnnbI5N6E9O7bXMKjitVB332_Y7B6vZmOZ0l88e7--lknpQkRV2SykqWa4k5wgUuqGYFI5wIroqMM8lwJmiJJVnzClepEkKvq0JEWaI0JYhSOgYXh9zWu7d9_FO-c3tv48k8toYZFYTJSOEDVXoXgtdV3nrTKP-eY5T3Ved_qo4ecvCEyNqN9r_J_5u-AIqWgS8 |
| Cites_doi | 10.19047/0136-1694-2020-102-125-142 10.1016/j.rse.2017.06.031 10.1126/science.1244908 10.7717/peerj.16336 10.1016/j.catena.2023.106979 10.1016/j.geoderma.2009.10.007 10.1002/joc.5086 10.5194/gmd-8-1991-2015 10.1016/j.geodrs.2023.e00641 10.1016/j.geoderma.2024.116896 10.1007/s40710-024-00722-6 10.1016/j.geodrs.2023.e00619 10.5194/soil-7-217-2021 10.1134/S1064229319060061 10.3390/agronomy14092106 10.1023/A:1010933404324 10.1371/journal.pone.0183742 |
| ContentType | Journal Article |
| Copyright | Pleiades Publishing, Ltd. 2025 ISSN 1064-2293, Eurasian Soil Science, 2025, Vol. 58:149. © Pleiades Publishing, Ltd., 2025. Pleiades Publishing, Ltd. 2025. |
| Copyright_xml | – notice: Pleiades Publishing, Ltd. 2025 ISSN 1064-2293, Eurasian Soil Science, 2025, Vol. 58:149. © Pleiades Publishing, Ltd., 2025. – notice: Pleiades Publishing, Ltd. 2025. |
| DBID | AAYXX CITATION 7QL 7ST 7T7 7U9 7UA 8FD C1K F1W FR3 H94 H96 L.G M7N P64 SOI |
| DOI | 10.1134/S1064229325601568 |
| DatabaseName | CrossRef Bacteriology Abstracts (Microbiology B) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Virology and AIDS Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database AIDS and Cancer Research Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Environment Abstracts |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Virology and AIDS Abstracts Technology Research Database Water Resources Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts AIDS and Cancer Research Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Agriculture |
| EISSN | 1556-195X |
| ExternalDocumentID | 10_1134_S1064229325601568 |
| GroupedDBID | .VR 06D 0R~ 0VY 1N0 29G 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 408 40D 40E 5GY 5VS 67M 6NX 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABDBE ABDBF ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACGOD ACHSB ACHXU ACIHN ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACSNA ACSTC ACZOJ ADHHG ADHIR ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS ATHPR AVWKF AXYYD AZFZN B-. BA0 BSONS CS3 CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS ESBYG FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 HF~ HG6 HLICF HMJXF HRMNR HVGLF IAO IJ- IKXTQ IWAJR IXD I~X I~Z J-C JBSCW JZLTJ KOV LLZTM M0K MA- NB0 NPVJJ NQJWS O93 O9J PF0 PT4 QOS R89 R9I ROL RSV S16 S1Z S27 S3B SAP SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TUC UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR ZMTXR ~02 ~A9 -Y2 2VQ 4P2 7X2 7XC 88I 8FE 8FH AARHV AAYTO AAYXX ABQSL ABULA ABUWG ACBXY ACUHS ADHKG AEBTG AEKMD AEUYN AFGCZ AFKRA AGQPQ AHSBF AJBLW AZQEC BDATZ BENPR BGNMA BHPHI BKSAR BPHCQ CAG CCPQU CITATION COF DWQXO EBD EIOEI EJD FINBP FSGXE GNUQQ H13 HCIFZ HZ~ IAG ITC L8X LK5 M2P M4Y M7R N2Q NU0 O9- PATMY PCBAR PHGZM PHGZT PQQKQ PROAC PUEGO PYCSY Q2X 7QL 7ST 7T7 7U9 7UA 8FD C1K F1W FR3 H94 H96 L.G M7N P64 SOI |
| ID | FETCH-LOGICAL-c270t-79f9cd91501b1b3e4b425265ab854941863c192d5f1f7a66edfb665a907720333 |
| IEDL.DBID | AGYKE |
| ISSN | 1064-2293 |
| IngestDate | Thu Sep 18 02:40:46 EDT 2025 Wed Oct 01 05:22:22 EDT 2025 Wed Sep 17 01:20:07 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | predictors gray forest soils WorldClim climate relief SAGA GIS chernozems |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c270t-79f9cd91501b1b3e4b425265ab854941863c192d5f1f7a66edfb665a907720333 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3251436249 |
| PQPubID | 54181 |
| ParticipantIDs | proquest_journals_3251436249 crossref_primary_10_1134_S1064229325601568 springer_journals_10_1134_S1064229325601568 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-11-01 |
| PublicationDateYYYYMMDD | 2025-11-01 |
| PublicationDate_xml | – month: 11 year: 2025 text: 2025-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Moscow |
| PublicationPlace_xml | – name: Moscow – name: Silver Spring |
| PublicationTitle | Eurasian soil science |
| PublicationTitleAbbrev | Eurasian Soil Sc |
| PublicationYear | 2025 |
| Publisher | Pleiades Publishing Springer Nature B.V |
| Publisher_xml | – name: Pleiades Publishing – name: Springer Nature B.V |
| References | L. Brieman (2395_CR17) 2001; 45 Y. A. Gelsleichter (2395_CR21) 2023; 33 V. V. Valdaiskikh (2395_CR4) 2015; 4 E. I. Ergina (2395_CR8) 2019; 4 I. A. Krupenikov (2395_CR12) 2005; 12 J. E. Macray (2395_CR27) 2023; 11 A. Suleymanov (2395_CR31) 2024; 11 I. V. Ivanov (2395_CR9) 2019; 52 S. E. Fick (2395_CR20) 2017; 37 N. Gorelick (2395_CR22) 2017; 202 H. Man (2395_CR29) 2023; 224 Y.-Y. Jiang (2395_CR24) 2024; 14 Yu. I. Cheverdin (2395_CR16) 2015; 29 V. P. Belobrov (2395_CR3) 2020; 102 V. V. Dokuchaev (2395_CR7) 1883 A. Li (2395_CR26) 2017; 12 T. A. Hengl (2395_CR23) 2007 M. Fantappie (2395_CR19) 2023; 32 B. P. Malone (2395_CR28) 2009; 154 V. V. Gritsenko (2395_CR6) 1971 2395_CR2 O. Conrad (2395_CR18) 2015; 8 I. J. Larsen (2395_CR25) 2014; 343 A. N. Gennadiev (2395_CR5) 1990 2395_CR10 2395_CR11 N. Yamashita (2395_CR32) 2024; 446 V. N. Afanas’ev (2395_CR1) 2008 2395_CR13 2395_CR14 2395_CR15 L. Poggio (2395_CR30) 2021; 7 |
| References_xml | – volume: 102 start-page: 125 year: 2020 ident: 2395_CR3 publication-title: V. V. Dokuchaeva doi: 10.19047/0136-1694-2020-102-125-142 – volume-title: Soils and Time: Development Models year: 1990 ident: 2395_CR5 – volume: 29 start-page: 62 year: 2015 ident: 2395_CR16 publication-title: Dostizh. Nauki Tekh. APK – volume-title: Econometrics in STATIS-TICA Package: a Tutorial for Completing Laboratory Work year: 2008 ident: 2395_CR1 – volume: 202 start-page: 18 year: 2017 ident: 2395_CR22 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.06.031 – volume: 12 start-page: 1509 year: 2005 ident: 2395_CR12 publication-title: Pochvovedenie, No. – volume: 343 start-page: 637 year: 2014 ident: 2395_CR25 publication-title: Science doi: 10.1126/science.1244908 – volume: 11 start-page: e16336 year: 2023 ident: 2395_CR27 publication-title: PeerJ doi: 10.7717/peerj.16336 – ident: 2395_CR14 – ident: 2395_CR10 – volume: 4 start-page: 19 year: 2015 ident: 2395_CR4 publication-title: Urala, No. – ident: 2395_CR2 – volume: 224 start-page: 106979 year: 2023 ident: 2395_CR29 publication-title: Catena doi: 10.1016/j.catena.2023.106979 – volume: 154 start-page: 138 year: 2009 ident: 2395_CR28 publication-title: Geoderma doi: 10.1016/j.geoderma.2009.10.007 – volume-title: Russian Chernozem: Report to the Imperial Free Economic Society year: 1883 ident: 2395_CR7 – volume: 37 start-page: 4302 year: 2017 ident: 2395_CR20 publication-title: Int. J. Climatol. doi: 10.1002/joc.5086 – volume: 4 start-page: 39 year: 2019 ident: 2395_CR8 publication-title: Nauka, No. – volume: 8 start-page: 1991 year: 2015 ident: 2395_CR18 publication-title: Geosci. Model Dev. doi: 10.5194/gmd-8-1991-2015 – volume: 33 start-page: e00641 year: 2023 ident: 2395_CR21 publication-title: Geoderma Reg. doi: 10.1016/j.geodrs.2023.e00641 – volume-title: Practical Guide to Geostatistical Mapping of Environmental Variables year: 2007 ident: 2395_CR23 – volume: 446 start-page: 116896 year: 2024 ident: 2395_CR32 publication-title: Geoderma doi: 10.1016/j.geoderma.2024.116896 – volume: 11 start-page: 44 year: 2024 ident: 2395_CR31 publication-title: Environ. Processes doi: 10.1007/s40710-024-00722-6 – ident: 2395_CR11 – volume: 32 start-page: e00619 year: 2023 ident: 2395_CR19 publication-title: Geoderma Reg. doi: 10.1016/j.geodrs.2023.e00619 – volume: 7 start-page: 217 year: 2021 ident: 2395_CR30 publication-title: Soil doi: 10.5194/soil-7-217-2021 – volume-title: Processing and Deepening of Arable Soil Layer year: 1971 ident: 2395_CR6 – volume: 52 start-page: 593 year: 2019 ident: 2395_CR9 publication-title: Eurasian Soil Sci. doi: 10.1134/S1064229319060061 – ident: 2395_CR15 – ident: 2395_CR13 – volume: 14 start-page: 2106 year: 2024 ident: 2395_CR24 publication-title: Agronomy doi: 10.3390/agronomy14092106 – volume: 45 start-page: 5 year: 2001 ident: 2395_CR17 publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 12 start-page: e0183742 year: 2017 ident: 2395_CR26 publication-title: PLoS One doi: 10.1371/journal.pone.0183742 |
| SSID | ssj0038848 |
| Score | 2.3478653 |
| Snippet | Results of digital mapping of the humus horizon thickness (HHT) in the soils of the Cis-Salair Plain using the Random Forest (RF) machine learning algorithm... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| SubjectTerms | Algorithms Datasets Decomposing organic matter Digital mapping Digital maps Earth and Environmental Science Earth Sciences Errors Genesis and Geography of Soils Geotechnical Engineering & Applied Earth Sciences Horizon Humus Land use Land use management Land use planning Learning algorithms Machine learning Mapping Meadows Modelling Soil formation Soil properties Soils Thickness Training |
| Title | Digital Mapping of the Humus Horizon Thickness in Soils of the Cis-Salair Plain Using the Random Forest Machine Learning Algorithm |
| URI | https://link.springer.com/article/10.1134/S1064229325601568 https://www.proquest.com/docview/3251436249 |
| Volume | 58 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1556-195X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0038848 issn: 1064-2293 databaseCode: AFBBN dateStart: 20060101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1556-195X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0038848 issn: 1064-2293 databaseCode: AGYKE dateStart: 20060101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB4t5QIH2OUhujzkAydQgCSOkxzbQqlAIESLBKfIduI0oiSrJr1w5JczdhKhZZcDl1zGmTzGnvlG8wI4FGjGOXWk5TOmLOooPFJxGFgyTjyqKEICE4q5uWWjB3r16D02ddxlm-3ehiSNpq7njtDTsa2xMlon40R4LFiCZdNuqwPLvcun64tWAbtBQOsKOEYtfUMTzPwvk7_N0QfG_BQWNdZmuA6T9j3rJJPnk0UlTuTrpxaO3_yQn7DWoE_Sq7fLL_iR5Buw2kvnTQeOZBPezrNUDxIhN1y3bkhJoQiCRIJyX5RkVMyz1yInk2kmn7WWJFlOxkU2K9t1g6y0xnzGszm5w2tOTFKCId3zPC5eiJ4GWlbIX6dxJqTp8JqS3ixF7tX0ZQsehheTwchqBjVY0vHPKssPVSjjELGlLWzhJlSgJnCYx0WA7ie1A-ZKRJKxp2zlc8aSWAmGZHTMdRTYdbehkxd5sgMkVIxKL5ahbq0mORWBE3Ll--jInUl8WheOWnlFf-p-HJHxY1wa_fNju7DXSjRqjmYZIRUxIkO3swvHrYA-yF8y-_2t1buw4uhJwaZqcQ861XyR7CN8qcQBbtdhv3970Gzbd4it5EA |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BGYCBN6JQwAMTKEATx0nGild5FCFaJJgi24lDRElQky4d-eWc8xDiNbBkOefyOPvuO90LYE-gGefUlIbDmDKoqfBIBZ5ryCC0qaIICYpQTO-WdR_o1aP9WNVxZ3W2ex2SLDR1OXeEHvXbGiujdSqcCJu50zBD0T8xGzDTuXi6PqsVsOW6tKyAY9TQN1TBzF-ZfDVHnxjzW1i0sDbnizCo37NMMnk5HOfiUE6-tXD854cswUKFPkmn3C7LMBUmKzDfiUZVB45wFd5P40gPEiE9rls3RCRVBEEiQbmPM9JNR_EkTcjgOZYvWkuSOCH9NB5m9bqTODP6fMjjEbnDa0KKpISCdM-TIH0lehpoliN_ncYZkqrDa0Q6wwi558-va_BwfjY46RrVoAZDms5xbjie8mTgIbZsi7awQipQE5jM5sJF9xOFxCyJSDKwVVs5nLEwUIIhGR1zHQW2rHVoJGkSbgDxFKPSDqSnW6tJToVrelw5DjpyxxKf1oT9Wl7-W9mPwy_8GIv6P35sE1q1RP3qaGY-UhEjMnQ7m3BQC-iT_CezzX-t3oXZ7qB3499c3l5vwZyppwYXFYwtaOSjcbiNUCYXO9XW_QARBeWj |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T-QwEB7xkBAUx1vsHXAuqEABkjhOUq6AZY-XEAsSVwXbiUPEkqBNtqG8X844cYSAo0A0acaZPDz2fKMZfwOwJdCNc-pIy2dMWdRRuKTiMLBknHhUUYQEdSrm_IL1b-jJrXdr-pyWbbV7m5JszjRolqa82nuKlelBQvcGtsbN6KnqgMJjwSRMY2Tio6FPd4__nh61m7EbBLQ5DceopW8wic3_Knnrml7x5rsUae15evNw175zU3DysDuuxK58fkfn-I2PWoAfBpWSbmNGizCR5Esw101HhpkjWYZ_h1mqG4yQc64pHVJSKILgkaA9jEvSL0bZc5GT6_tMPujdk2Q5GRTZsGzHHWSlNeBDno3IJV5zUhcr1KIrnsfFI9FdQssK9evyzoQY5teUdIcpaq_uH1fgpnd0fdC3TAMHSzr-fmX5oQplHCLmtIUt3IQK3CEc5nERYFhK7YC5EhFm7Clb-ZyxJFaCoRgDdp0ddt1VmMqLPFkDEipGpRfLUFOuSU5F4IRc-T4GePsSn9aB7XbuoqeGpyOq4xuXRh9-bAfW29mNzJItI5QidmQYjnZgp52sV_Gnyn5-afRvmLk87EVnfy5Of8Gso5sJ1wcb12GqGo2TDUQ4ldg0VvwCLGTuhw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Digital+Mapping+of+the+Humus+Horizon+Thickness+in+Soils+of+the+Cis-Salair+Plain+Using+the+Random+Forest+Machine+Learning+Algorithm&rft.jtitle=Eurasian+soil+science&rft.au=Gopp%2C+N.+V.&rft.date=2025-11-01&rft.issn=1064-2293&rft.eissn=1556-195X&rft.volume=58&rft.issue=11&rft_id=info:doi/10.1134%2FS1064229325601568&rft.externalDBID=n%2Fa&rft.externalDocID=10_1134_S1064229325601568 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1064-2293&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1064-2293&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1064-2293&client=summon |