Digital Mapping of the Humus Horizon Thickness in Soils of the Cis-Salair Plain Using the Random Forest Machine Learning Algorithm

Results of digital mapping of the humus horizon thickness (HHT) in the soils of the Cis-Salair Plain using the Random Forest (RF) machine learning algorithm implemented on the Google Earth Engine cloud online platform are reported. A total of 92 predictors are employed to characterize the soil forma...

Full description

Saved in:
Bibliographic Details
Published inEurasian soil science Vol. 58; no. 11
Main Author Gopp, N. V.
Format Journal Article
LanguageEnglish
Published Moscow Pleiades Publishing 01.11.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1064-2293
1556-195X
DOI10.1134/S1064229325601568

Cover

Abstract Results of digital mapping of the humus horizon thickness (HHT) in the soils of the Cis-Salair Plain using the Random Forest (RF) machine learning algorithm implemented on the Google Earth Engine cloud online platform are reported. A total of 92 predictors are employed to characterize the soil formation factors, including climate, relief, vegetation, spatial position, and soil properties. Training ( n = 718) and validation ( n = 130) datasets are constructed based on the archive materials (1974–1984) of ZapSibNIIgiprozem (Western Siberian Research, Design, and Survey Institute for Land Use Planning). The following indicators of the HHT modeling efficacy using the RF algorithm are obtained: coefficient of determination for training dataset = 0.88; coefficient of determination for validation dataset = 0.12; root mean square error RMSE VD = 9.7 cm; mean absolute percentage error MAPE VD = 24.3%; and mean absolute error MAE VD = 6.5 cm. The modeling accuracy estimated with MAPE VD is satisfactory. Actual data show that HHT varies from 3 to 110 cm with the trend of a decrease from northwest to southeast. The lowest (3 cm) average HHT values are typical of meadow–chernozemic solonetz (Solonetz (Salic)) and the highest (61 cm), of ordinary meadow soils (Mollic Gleysols).
AbstractList Results of digital mapping of the humus horizon thickness (HHT) in the soils of the Cis-Salair Plain using the Random Forest (RF) machine learning algorithm implemented on the Google Earth Engine cloud online platform are reported. A total of 92 predictors are employed to characterize the soil formation factors, including climate, relief, vegetation, spatial position, and soil properties. Training (n = 718) and validation (n = 130) datasets are constructed based on the archive materials (1974–1984) of ZapSibNIIgiprozem (Western Siberian Research, Design, and Survey Institute for Land Use Planning). The following indicators of the HHT modeling efficacy using the RF algorithm are obtained: coefficient of determination for training dataset = 0.88; coefficient of determination for validation dataset = 0.12; root mean square error RMSEVD = 9.7 cm; mean absolute percentage error MAPEVD = 24.3%; and mean absolute error MAEVD = 6.5 cm. The modeling accuracy estimated with MAPEVD is satisfactory. Actual data show that HHT varies from 3 to 110 cm with the trend of a decrease from northwest to southeast. The lowest (3 cm) average HHT values are typical of meadow–chernozemic solonetz (Solonetz (Salic)) and the highest (61 cm), of ordinary meadow soils (Mollic Gleysols).
Results of digital mapping of the humus horizon thickness (HHT) in the soils of the Cis-Salair Plain using the Random Forest (RF) machine learning algorithm implemented on the Google Earth Engine cloud online platform are reported. A total of 92 predictors are employed to characterize the soil formation factors, including climate, relief, vegetation, spatial position, and soil properties. Training ( n = 718) and validation ( n = 130) datasets are constructed based on the archive materials (1974–1984) of ZapSibNIIgiprozem (Western Siberian Research, Design, and Survey Institute for Land Use Planning). The following indicators of the HHT modeling efficacy using the RF algorithm are obtained: coefficient of determination for training dataset = 0.88; coefficient of determination for validation dataset = 0.12; root mean square error RMSE VD = 9.7 cm; mean absolute percentage error MAPE VD = 24.3%; and mean absolute error MAE VD = 6.5 cm. The modeling accuracy estimated with MAPE VD is satisfactory. Actual data show that HHT varies from 3 to 110 cm with the trend of a decrease from northwest to southeast. The lowest (3 cm) average HHT values are typical of meadow–chernozemic solonetz (Solonetz (Salic)) and the highest (61 cm), of ordinary meadow soils (Mollic Gleysols).
ArticleNumber 149
Author Gopp, N. V.
Author_xml – sequence: 1
  givenname: N. V.
  surname: Gopp
  fullname: Gopp, N. V.
  email: natalia.gopp@gmail.com
  organization: Institute of Soil Science and Agrochemistry, Siberian Branch, Russian Academy of Sciences
BookMark eNp1kDtPwzAUhS1UJNrCD2CzxBzwO_FYlUeRikC0ldgiJ3Val8QOdjrAyC_HUUEMiOX6Suc751pnBAbWWQ3AOUaXGFN2tcBIMEIkJVwgzEV2BIaYc5FgyV8GcY9y0usnYBTCDiGaZSwbgs9rszGdquGDaltjN9BVsNtqONs3-wBnzpsPZ-Fya8pXq0OAxsKFM3X44aYmJAtVK-PhU5wWrkKf0kvPyq5dA2-d16GL-eXWWA3nWnnbI5N6E9O7bXMKjitVB332_Y7B6vZmOZ0l88e7--lknpQkRV2SykqWa4k5wgUuqGYFI5wIroqMM8lwJmiJJVnzClepEkKvq0JEWaI0JYhSOgYXh9zWu7d9_FO-c3tv48k8toYZFYTJSOEDVXoXgtdV3nrTKP-eY5T3Ved_qo4ecvCEyNqN9r_J_5u-AIqWgS8
Cites_doi 10.19047/0136-1694-2020-102-125-142
10.1016/j.rse.2017.06.031
10.1126/science.1244908
10.7717/peerj.16336
10.1016/j.catena.2023.106979
10.1016/j.geoderma.2009.10.007
10.1002/joc.5086
10.5194/gmd-8-1991-2015
10.1016/j.geodrs.2023.e00641
10.1016/j.geoderma.2024.116896
10.1007/s40710-024-00722-6
10.1016/j.geodrs.2023.e00619
10.5194/soil-7-217-2021
10.1134/S1064229319060061
10.3390/agronomy14092106
10.1023/A:1010933404324
10.1371/journal.pone.0183742
ContentType Journal Article
Copyright Pleiades Publishing, Ltd. 2025 ISSN 1064-2293, Eurasian Soil Science, 2025, Vol. 58:149. © Pleiades Publishing, Ltd., 2025.
Pleiades Publishing, Ltd. 2025.
Copyright_xml – notice: Pleiades Publishing, Ltd. 2025 ISSN 1064-2293, Eurasian Soil Science, 2025, Vol. 58:149. © Pleiades Publishing, Ltd., 2025.
– notice: Pleiades Publishing, Ltd. 2025.
DBID AAYXX
CITATION
7QL
7ST
7T7
7U9
7UA
8FD
C1K
F1W
FR3
H94
H96
L.G
M7N
P64
SOI
DOI 10.1134/S1064229325601568
DatabaseName CrossRef
Bacteriology Abstracts (Microbiology B)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Virology and AIDS Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
AIDS and Cancer Research Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Virology and AIDS Abstracts
Technology Research Database
Water Resources Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1556-195X
ExternalDocumentID 10_1134_S1064229325601568
GroupedDBID .VR
06D
0R~
0VY
1N0
29G
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
408
40D
40E
5GY
5VS
67M
6NX
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
ATHPR
AVWKF
AXYYD
AZFZN
B-.
BA0
BSONS
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
HF~
HG6
HLICF
HMJXF
HRMNR
HVGLF
IAO
IJ-
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
JBSCW
JZLTJ
KOV
LLZTM
M0K
MA-
NB0
NPVJJ
NQJWS
O93
O9J
PF0
PT4
QOS
R89
R9I
ROL
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TUC
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
ZMTXR
~02
~A9
-Y2
2VQ
4P2
7X2
7XC
88I
8FE
8FH
AARHV
AAYTO
AAYXX
ABQSL
ABULA
ABUWG
ACBXY
ACUHS
ADHKG
AEBTG
AEKMD
AEUYN
AFGCZ
AFKRA
AGQPQ
AHSBF
AJBLW
AZQEC
BDATZ
BENPR
BGNMA
BHPHI
BKSAR
BPHCQ
CAG
CCPQU
CITATION
COF
DWQXO
EBD
EIOEI
EJD
FINBP
FSGXE
GNUQQ
H13
HCIFZ
HZ~
IAG
ITC
L8X
LK5
M2P
M4Y
M7R
N2Q
NU0
O9-
PATMY
PCBAR
PHGZM
PHGZT
PQQKQ
PROAC
PUEGO
PYCSY
Q2X
7QL
7ST
7T7
7U9
7UA
8FD
C1K
F1W
FR3
H94
H96
L.G
M7N
P64
SOI
ID FETCH-LOGICAL-c270t-79f9cd91501b1b3e4b425265ab854941863c192d5f1f7a66edfb665a907720333
IEDL.DBID AGYKE
ISSN 1064-2293
IngestDate Thu Sep 18 02:40:46 EDT 2025
Wed Oct 01 05:22:22 EDT 2025
Wed Sep 17 01:20:07 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords predictors
gray forest soils
WorldClim
climate
relief
SAGA GIS
chernozems
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-79f9cd91501b1b3e4b425265ab854941863c192d5f1f7a66edfb665a907720333
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3251436249
PQPubID 54181
ParticipantIDs proquest_journals_3251436249
crossref_primary_10_1134_S1064229325601568
springer_journals_10_1134_S1064229325601568
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-11-01
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
– name: Silver Spring
PublicationTitle Eurasian soil science
PublicationTitleAbbrev Eurasian Soil Sc
PublicationYear 2025
Publisher Pleiades Publishing
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer Nature B.V
References L. Brieman (2395_CR17) 2001; 45
Y. A. Gelsleichter (2395_CR21) 2023; 33
V. V. Valdaiskikh (2395_CR4) 2015; 4
E. I. Ergina (2395_CR8) 2019; 4
I. A. Krupenikov (2395_CR12) 2005; 12
J. E. Macray (2395_CR27) 2023; 11
A. Suleymanov (2395_CR31) 2024; 11
I. V. Ivanov (2395_CR9) 2019; 52
S. E. Fick (2395_CR20) 2017; 37
N. Gorelick (2395_CR22) 2017; 202
H. Man (2395_CR29) 2023; 224
Y.-Y. Jiang (2395_CR24) 2024; 14
Yu. I. Cheverdin (2395_CR16) 2015; 29
V. P. Belobrov (2395_CR3) 2020; 102
V. V. Dokuchaev (2395_CR7) 1883
A. Li (2395_CR26) 2017; 12
T. A. Hengl (2395_CR23) 2007
M. Fantappie (2395_CR19) 2023; 32
B. P. Malone (2395_CR28) 2009; 154
V. V. Gritsenko (2395_CR6) 1971
2395_CR2
O. Conrad (2395_CR18) 2015; 8
I. J. Larsen (2395_CR25) 2014; 343
A. N. Gennadiev (2395_CR5) 1990
2395_CR10
2395_CR11
N. Yamashita (2395_CR32) 2024; 446
V. N. Afanas’ev (2395_CR1) 2008
2395_CR13
2395_CR14
2395_CR15
L. Poggio (2395_CR30) 2021; 7
References_xml – volume: 102
  start-page: 125
  year: 2020
  ident: 2395_CR3
  publication-title: V. V. Dokuchaeva
  doi: 10.19047/0136-1694-2020-102-125-142
– volume-title: Soils and Time: Development Models
  year: 1990
  ident: 2395_CR5
– volume: 29
  start-page: 62
  year: 2015
  ident: 2395_CR16
  publication-title: Dostizh. Nauki Tekh. APK
– volume-title: Econometrics in STATIS-TICA Package: a Tutorial for Completing Laboratory Work
  year: 2008
  ident: 2395_CR1
– volume: 202
  start-page: 18
  year: 2017
  ident: 2395_CR22
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.06.031
– volume: 12
  start-page: 1509
  year: 2005
  ident: 2395_CR12
  publication-title: Pochvovedenie, No.
– volume: 343
  start-page: 637
  year: 2014
  ident: 2395_CR25
  publication-title: Science
  doi: 10.1126/science.1244908
– volume: 11
  start-page: e16336
  year: 2023
  ident: 2395_CR27
  publication-title: PeerJ
  doi: 10.7717/peerj.16336
– ident: 2395_CR14
– ident: 2395_CR10
– volume: 4
  start-page: 19
  year: 2015
  ident: 2395_CR4
  publication-title: Urala, No.
– ident: 2395_CR2
– volume: 224
  start-page: 106979
  year: 2023
  ident: 2395_CR29
  publication-title: Catena
  doi: 10.1016/j.catena.2023.106979
– volume: 154
  start-page: 138
  year: 2009
  ident: 2395_CR28
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2009.10.007
– volume-title: Russian Chernozem: Report to the Imperial Free Economic Society
  year: 1883
  ident: 2395_CR7
– volume: 37
  start-page: 4302
  year: 2017
  ident: 2395_CR20
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.5086
– volume: 4
  start-page: 39
  year: 2019
  ident: 2395_CR8
  publication-title: Nauka, No.
– volume: 8
  start-page: 1991
  year: 2015
  ident: 2395_CR18
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-8-1991-2015
– volume: 33
  start-page: e00641
  year: 2023
  ident: 2395_CR21
  publication-title: Geoderma Reg.
  doi: 10.1016/j.geodrs.2023.e00641
– volume-title: Practical Guide to Geostatistical Mapping of Environmental Variables
  year: 2007
  ident: 2395_CR23
– volume: 446
  start-page: 116896
  year: 2024
  ident: 2395_CR32
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2024.116896
– volume: 11
  start-page: 44
  year: 2024
  ident: 2395_CR31
  publication-title: Environ. Processes
  doi: 10.1007/s40710-024-00722-6
– ident: 2395_CR11
– volume: 32
  start-page: e00619
  year: 2023
  ident: 2395_CR19
  publication-title: Geoderma Reg.
  doi: 10.1016/j.geodrs.2023.e00619
– volume: 7
  start-page: 217
  year: 2021
  ident: 2395_CR30
  publication-title: Soil
  doi: 10.5194/soil-7-217-2021
– volume-title: Processing and Deepening of Arable Soil Layer
  year: 1971
  ident: 2395_CR6
– volume: 52
  start-page: 593
  year: 2019
  ident: 2395_CR9
  publication-title: Eurasian Soil Sci.
  doi: 10.1134/S1064229319060061
– ident: 2395_CR15
– ident: 2395_CR13
– volume: 14
  start-page: 2106
  year: 2024
  ident: 2395_CR24
  publication-title: Agronomy
  doi: 10.3390/agronomy14092106
– volume: 45
  start-page: 5
  year: 2001
  ident: 2395_CR17
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 12
  start-page: e0183742
  year: 2017
  ident: 2395_CR26
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0183742
SSID ssj0038848
Score 2.3478653
Snippet Results of digital mapping of the humus horizon thickness (HHT) in the soils of the Cis-Salair Plain using the Random Forest (RF) machine learning algorithm...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Algorithms
Datasets
Decomposing organic matter
Digital mapping
Digital maps
Earth and Environmental Science
Earth Sciences
Errors
Genesis and Geography of Soils
Geotechnical Engineering & Applied Earth Sciences
Horizon
Humus
Land use
Land use management
Land use planning
Learning algorithms
Machine learning
Mapping
Meadows
Modelling
Soil formation
Soil properties
Soils
Thickness
Training
Title Digital Mapping of the Humus Horizon Thickness in Soils of the Cis-Salair Plain Using the Random Forest Machine Learning Algorithm
URI https://link.springer.com/article/10.1134/S1064229325601568
https://www.proquest.com/docview/3251436249
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1556-195X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0038848
  issn: 1064-2293
  databaseCode: AFBBN
  dateStart: 20060101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1556-195X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0038848
  issn: 1064-2293
  databaseCode: AGYKE
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB4t5QIH2OUhujzkAydQgCSOkxzbQqlAIESLBKfIduI0oiSrJr1w5JczdhKhZZcDl1zGmTzGnvlG8wI4FGjGOXWk5TOmLOooPFJxGFgyTjyqKEICE4q5uWWjB3r16D02ddxlm-3ehiSNpq7njtDTsa2xMlon40R4LFiCZdNuqwPLvcun64tWAbtBQOsKOEYtfUMTzPwvk7_N0QfG_BQWNdZmuA6T9j3rJJPnk0UlTuTrpxaO3_yQn7DWoE_Sq7fLL_iR5Buw2kvnTQeOZBPezrNUDxIhN1y3bkhJoQiCRIJyX5RkVMyz1yInk2kmn7WWJFlOxkU2K9t1g6y0xnzGszm5w2tOTFKCId3zPC5eiJ4GWlbIX6dxJqTp8JqS3ixF7tX0ZQsehheTwchqBjVY0vHPKssPVSjjELGlLWzhJlSgJnCYx0WA7ie1A-ZKRJKxp2zlc8aSWAmGZHTMdRTYdbehkxd5sgMkVIxKL5ahbq0mORWBE3Ll--jInUl8WheOWnlFf-p-HJHxY1wa_fNju7DXSjRqjmYZIRUxIkO3swvHrYA-yF8y-_2t1buw4uhJwaZqcQ861XyR7CN8qcQBbtdhv3970Gzbd4it5EA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BGYCBN6JQwAMTKEATx0nGild5FCFaJJgi24lDRElQky4d-eWc8xDiNbBkOefyOPvuO90LYE-gGefUlIbDmDKoqfBIBZ5ryCC0qaIICYpQTO-WdR_o1aP9WNVxZ3W2ex2SLDR1OXeEHvXbGiujdSqcCJu50zBD0T8xGzDTuXi6PqsVsOW6tKyAY9TQN1TBzF-ZfDVHnxjzW1i0sDbnizCo37NMMnk5HOfiUE6-tXD854cswUKFPkmn3C7LMBUmKzDfiUZVB45wFd5P40gPEiE9rls3RCRVBEEiQbmPM9JNR_EkTcjgOZYvWkuSOCH9NB5m9bqTODP6fMjjEbnDa0KKpISCdM-TIH0lehpoliN_ncYZkqrDa0Q6wwi558-va_BwfjY46RrVoAZDms5xbjie8mTgIbZsi7awQipQE5jM5sJF9xOFxCyJSDKwVVs5nLEwUIIhGR1zHQW2rHVoJGkSbgDxFKPSDqSnW6tJToVrelw5DjpyxxKf1oT9Wl7-W9mPwy_8GIv6P35sE1q1RP3qaGY-UhEjMnQ7m3BQC-iT_CezzX-t3oXZ7qB3499c3l5vwZyppwYXFYwtaOSjcbiNUCYXO9XW_QARBeWj
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T-QwEB7xkBAUx1vsHXAuqEABkjhOUq6AZY-XEAsSVwXbiUPEkqBNtqG8X844cYSAo0A0acaZPDz2fKMZfwOwJdCNc-pIy2dMWdRRuKTiMLBknHhUUYQEdSrm_IL1b-jJrXdr-pyWbbV7m5JszjRolqa82nuKlelBQvcGtsbN6KnqgMJjwSRMY2Tio6FPd4__nh61m7EbBLQ5DceopW8wic3_Knnrml7x5rsUae15evNw175zU3DysDuuxK58fkfn-I2PWoAfBpWSbmNGizCR5Esw101HhpkjWYZ_h1mqG4yQc64pHVJSKILgkaA9jEvSL0bZc5GT6_tMPujdk2Q5GRTZsGzHHWSlNeBDno3IJV5zUhcr1KIrnsfFI9FdQssK9evyzoQY5teUdIcpaq_uH1fgpnd0fdC3TAMHSzr-fmX5oQplHCLmtIUt3IQK3CEc5nERYFhK7YC5EhFm7Clb-ZyxJFaCoRgDdp0ddt1VmMqLPFkDEipGpRfLUFOuSU5F4IRc-T4GePsSn9aB7XbuoqeGpyOq4xuXRh9-bAfW29mNzJItI5QidmQYjnZgp52sV_Gnyn5-afRvmLk87EVnfy5Of8Gso5sJ1wcb12GqGo2TDUQ4ldg0VvwCLGTuhw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Digital+Mapping+of+the+Humus+Horizon+Thickness+in+Soils+of+the+Cis-Salair+Plain+Using+the+Random+Forest+Machine+Learning+Algorithm&rft.jtitle=Eurasian+soil+science&rft.au=Gopp%2C+N.+V.&rft.date=2025-11-01&rft.issn=1064-2293&rft.eissn=1556-195X&rft.volume=58&rft.issue=11&rft_id=info:doi/10.1134%2FS1064229325601568&rft.externalDBID=n%2Fa&rft.externalDocID=10_1134_S1064229325601568
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1064-2293&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1064-2293&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1064-2293&client=summon