Adaptive gamma correction for automatic contrast enhancement of Chest-X-ray images affected by various lung diseases

Lung and respiratory ailments are among the leading causes of illness and fatalities. Coronavirus disease (COVID-19), caused by the SARS-CoV-2 virus, has convinced the world that early and affordable detection improves treatment. X-ray imaging systems are inexpensive and widely available. Chest X-ra...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 83; no. 29; pp. 73457 - 73475
Main Authors Yadav, Vivek Kumar, Singhai, Jyoti
Format Journal Article
LanguageEnglish
Published New York Springer US 01.09.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1573-7721
1380-7501
1573-7721
DOI10.1007/s11042-023-18083-x

Cover

Abstract Lung and respiratory ailments are among the leading causes of illness and fatalities. Coronavirus disease (COVID-19), caused by the SARS-CoV-2 virus, has convinced the world that early and affordable detection improves treatment. X-ray imaging systems are inexpensive and widely available. Chest X-ray (CXR) images are inadequate due to the acquiring environment and technician skill. Hence, CXR image contrast enhancement is necessary for a correct diagnosis. Various lung diseases create variable spatial variation in CXR image contrast and brightness; hence, a single contrast enhancement procedure cannot improve it. In the proposed method CXR images are first classified into four categories depending upon their quality defined by their statistical parameters, before applying adaptive gamma correction for contrast enhancement. The performance of the proposed method is compared with existing methods on four datasets for five different types of lung diseases. The performance of the proposed algorithm is evaluated using parameters, such as Root Mean Square Contrast (RMSC) to determine the relation of contrast enhancement between the original and enhanced image, Contrast Improvement Index (CII) to measure the achieved contrast enhancement and Tenengrad which calculates the variation of intensity in the direction of maximum gradient descent . The qualitative and quantitative performance of the proposed method is found better than the existing methods for CXR images for all five lung diseases, which shows the stable performance of the proposed method and improvement in the processed images.
AbstractList Lung and respiratory ailments are among the leading causes of illness and fatalities. Coronavirus disease (COVID-19), caused by the SARS-CoV-2 virus, has convinced the world that early and affordable detection improves treatment. X-ray imaging systems are inexpensive and widely available. Chest X-ray (CXR) images are inadequate due to the acquiring environment and technician skill. Hence, CXR image contrast enhancement is necessary for a correct diagnosis. Various lung diseases create variable spatial variation in CXR image contrast and brightness; hence, a single contrast enhancement procedure cannot improve it. In the proposed method CXR images are first classified into four categories depending upon their quality defined by their statistical parameters, before applying adaptive gamma correction for contrast enhancement. The performance of the proposed method is compared with existing methods on four datasets for five different types of lung diseases. The performance of the proposed algorithm is evaluated using parameters, such as Root Mean Square Contrast (RMSC) to determine the relation of contrast enhancement between the original and enhanced image, Contrast Improvement Index (CII) to measure the achieved contrast enhancement and Tenengrad which calculates the variation of intensity in the direction of maximum gradient descent. The qualitative and quantitative performance of the proposed method is found better than the existing methods for CXR images for all five lung diseases, which shows the stable performance of the proposed method and improvement in the processed images.
Lung and respiratory ailments are among the leading causes of illness and fatalities. Coronavirus disease (COVID-19), caused by the SARS-CoV-2 virus, has convinced the world that early and affordable detection improves treatment. X-ray imaging systems are inexpensive and widely available. Chest X-ray (CXR) images are inadequate due to the acquiring environment and technician skill. Hence, CXR image contrast enhancement is necessary for a correct diagnosis. Various lung diseases create variable spatial variation in CXR image contrast and brightness; hence, a single contrast enhancement procedure cannot improve it. In the proposed method CXR images are first classified into four categories depending upon their quality defined by their statistical parameters, before applying adaptive gamma correction for contrast enhancement. The performance of the proposed method is compared with existing methods on four datasets for five different types of lung diseases. The performance of the proposed algorithm is evaluated using parameters, such as Root Mean Square Contrast (RMSC) to determine the relation of contrast enhancement between the original and enhanced image, Contrast Improvement Index (CII) to measure the achieved contrast enhancement and Tenengrad which calculates the variation of intensity in the direction of maximum gradient descent . The qualitative and quantitative performance of the proposed method is found better than the existing methods for CXR images for all five lung diseases, which shows the stable performance of the proposed method and improvement in the processed images.
Author Yadav, Vivek Kumar
Singhai, Jyoti
Author_xml – sequence: 1
  givenname: Vivek Kumar
  surname: Yadav
  fullname: Yadav, Vivek Kumar
  email: viwek94@gmail.com
  organization: Department of Electronics and Communication, Maulana Azad National Institute of Technology
– sequence: 2
  givenname: Jyoti
  orcidid: 0000-0002-7096-9269
  surname: Singhai
  fullname: Singhai, Jyoti
  organization: Department of Electronics and Communication, Maulana Azad National Institute of Technology
BookMark eNp9kE1LJDEQhoO44MfuH9hTwHO0kv5I91EGv0DwouAt1CTVMz3YyWySHpx_b3ZnQU-eqqDe962q54wd--CJsd8SLiWAvkpSQq0EqErIDrpKvB-xU9noSmit5PGX_oSdpbQBkG2j6lOWrx1u87gjvsJpQm5DjGTzGDwfQuQ45zBhHm0Z-BwxZU5-jd7SRD7zMPDFmlIWryLino8TrihxHIYSQY4v93yHcQxz4m-zX3E3JsJE6Sf7MeBbol__6zl7ub15XtyLx6e7h8X1o7BKQxZa9tQvLXVOgm2cIq2aFutGW616qdwAZYKta5WSTrZ2WVnoaofQyQEQ-uqcXRxytzH8mcudZhPm6MtKU0Hf93XddnVRqYPKxpBSpMFsY_kk7o0E85euOdA1ha75R9e8F1N1MKUi9iuKn9HfuD4ApeCA1w
Cites_doi 10.1109/CVPR.2017.369
10.1109/EIConCIT50028.2021.9431856
10.1109/42.14513
10.1016/j.ijleo.2019.02.054
10.1109/30.580378
10.3238/arztebl.2014.0181
10.1186/2043-9113-1-33
10.14257/ijsip.2015.8.8.27
10.1080/00031305.2016.1186559
10.34740/kaggle/dsv/3122958
10.48550/arXiv.1905.08545
10.1109/TIP.2012.2226047
10.1007/s10278-006-0623-7
10.1186/s13640-016-0138-1
10.1016/B978-0-12-336156-1.50061-6
10.1364/JOSAA.7.002032
10.21037/tlcr.2020.04.02
10.1016/j.ejrnm.2015.01.004
10.1109/30.754419
10.1016/j.media.2020.101794
10.1016/j.infrared.2016.11.001
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s11042-023-18083-x
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central (subscription)
Business Premium Collection
Technology collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global (OCUL)
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 73475
ExternalDocumentID 10_1007_s11042_023_18083_x
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PUEGO
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c270t-719e9bce8d10c5d2e7256a457c72912df08d1a6d6221d16cb3c084da081f0a093
IEDL.DBID BENPR
ISSN 1573-7721
1380-7501
IngestDate Tue Sep 02 03:17:49 EDT 2025
Wed Oct 01 04:51:41 EDT 2025
Fri Feb 21 02:39:05 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 29
Keywords Adaptive Gamma Correction
Histogram Equalization
Image Enhancement
Chest X-ray
Lung diseases
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-719e9bce8d10c5d2e7256a457c72912df08d1a6d6221d16cb3c084da081f0a093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7096-9269
PQID 3099944684
PQPubID 54626
PageCount 19
ParticipantIDs proquest_journals_3099944684
crossref_primary_10_1007_s11042_023_18083_x
springer_journals_10_1007_s11042_023_18083_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240900
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 9
  year: 2024
  text: 20240900
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Zimmerman JB, Pizer SM, Staab EV, Perry JR, McCartney W, Brenton BC (1988) An evaluation of the effectiveness of adaptive histogram equalization for contrast enhancement. IEEE Trans Med Imaging. https://doi.org/10.1109/42.14513
KimoriYMathematical morphology-based approach to the enhancement of morphological features in medical imagesJ ClinBioinforma201110.1186/2043-9113-1-33
HuangS-CChengF-CChiuY-SEfficient contrast enhancement using adaptive gamma correction with weighting distributionImage Process IEEE Trans201322410321041306210010.1109/TIP.2012.2226047
AntonyBNBKLung tuberculosis detection using x-ray imagesInt J Appl Eng Res201712241519615201
MinaeeSKafiehRSonkaMYazdaniSJamalipourSoufiGDeep-COVID: predicting COVID-19 from chest X-ray images using deep transfer learningMed Image Anal20206510179410.1016/j.media.2020.101794
ZimmermanJBPizerSMStaabEVPerryJRMcCartneyWBrentonBCAn evaluation of the effectiveness of adaptive histogram equalization for contrast enhancementIEEE Trans Med Imag1988730431210.1109/42.14513
Kushol R, Raihan MN, Salekin MS, Rahman ABM (2019) Contrast enhancement of medical X-Ray image using morphological operators with optimal structuring element. ArXiv abs 1905.08545. https://doi.org/10.48550/arXiv.1905.08545
SomasundaramKGKalavathiPMedical image contrast enhancement based on gamma correctionInt J Knowl Manag e-Learn201231518
KimY-TContrast enhancement using brightness preserving bi-histogram equalizationIEEE Trans Consum Electron199710.1109/30.580378
WangYuQian Chen and Baeomin Zhang: Image enhancement based on equal area dualistic sub-image histogram equalization methodIEEE Trans Consum Electron199910.1109/30.754419
Stellato B, Van Parys BPG, Goulart PJ (2017) Multivariate Chebyshev inequality with estimated mean and variance. Am Stat. https://doi.org/10.1080/00031305.2016.1186559
WHO coronavirus (COVID-19) dashboard: world health organization. https://covid19.who.int/. Accessed 03 Oct 2022
Kim J, Hyoung Kim K (2020) Role of chest radiographs in early lung cancer detection. Transl Lung Cancer Res. https://doi.org/10.21037/tlcr.2020.04.02
Rahman T et al (2020) Tuberculosis (TB) Chest X-ray Database: kaggle. https://www.kaggle.com/datasets/tawsifurrahman/tuberculosis-tb-chest-xray-dataset.  Accessed 10 Nov 2022
RahmanSRahmanMMAbdullah-Al-WadudMAn adaptive gamma correction for image enhancementJ Image Video Proc201610.1186/s13640-016-0138-1
VeluchamyMSubramaniBImage contrast and color enhancement using adaptive gamma correction and histogram equalizationOptik201918332933710.1016/j.ijleo.2019.02.054
CottonAThe limitations of the X-Ray in the diagnosis of certain bone and joint diseasesAm J Orthop Surg191513217240
Hassanpour H, Samadian N (2015) Using morphological transforms to enhance the contrast of medical images. Egypt J Radiol Nucl Med.https://doi.org/10.1016/j.ejrnm.2015.01.004
Peli E (1990) Contrast in complex images. J Opt Soc Am A. https://doi.org/10.1364/JOSAA.7.002032
Nafiiyah N, Setyati E (2021) Lung X-Ray Image Enhancement to Identify Pneumonia with CNN. 3rd East Indonesia Conference on Computer and Information Technology (EIConCIT). https://doi.org/10.1109/EIConCIT50028.2021.9431856.
Shuyue C, Hou H (2006) Study of automatic enhancement for chest radiograph. J Digit Imaging.https://doi.org/10.1007/s10278-006-0623-7
Zuiderveld K (1994) Contrast Limited Adaptive Histogram Equalization. Paul S. Heckbert, Graphics Gems Academic Press.https://doi.org/10.1016/B978-0-12-336156-1.50061-6
Tahir AM, Chowdhury MEH, Yazan Q (2021) COVID-QU-Ex.Kaggle. https://doi.org/10.34740/kaggle/dsv/3122958
HuagZZhangTLiQAdaptive gamma correction based-on cumulative histogram for enhancing near-infrared imagesInfrared Phys Technol20167920521510.1016/j.infrared.2016.11.001
GonzalezRCDigital Image Processing2009IndiaPearson Education
Wang X, Peng Y, Lu L, Lu Z, Bagheri M, Summers RM (2017) ChestX-ray8: Hospital-scale Chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). https://doi.org/10.1109/CVPR.2017.369
Mooney P (2018) Chest X-Ray Images (Pneumonia): kaggle. https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia. Accessed 10 Nov 2022
WielputzMORadiological diagnosis in lung disease: factoring treatment options into the choice of diagnostic modalityDeutsches Arzteblatt Int201410.3238/arztebl.2014.0181
Puniani S, Arora S (2015) Performance Evaluation of Image Enhancement Techniques. Int J Signal Process Image Process Pattern Recogn. https://doi.org/10.14257/ijsip.2015.8.8.27
S Minaee (18083_CR4) 2020; 65
A Cotton (18083_CR6) 1915; 13
S-C Huang (18083_CR24) 2013; 22
Y-T Kim (18083_CR18) 1997
18083_CR29
18083_CR28
Y Kimori (18083_CR22) 2011
18083_CR27
18083_CR23
18083_CR1
18083_CR2
MO Wielputz (18083_CR5) 2014
18083_CR7
18083_CR8
18083_CR9
Z Huag (18083_CR25) 2016; 79
B Antony (18083_CR3) 2017; 12
S Rahman (18083_CR26) 2016
JB Zimmerman (18083_CR20) 1988; 7
M Veluchamy (18083_CR10) 2019; 183
KG Somasundaram (18083_CR13) 2012; 3
18083_CR17
18083_CR14
18083_CR16
18083_CR15
18083_CR12
18083_CR11
Yu Wang (18083_CR19) 1999
RC Gonzalez (18083_CR21) 2009
References_xml – reference: AntonyBNBKLung tuberculosis detection using x-ray imagesInt J Appl Eng Res201712241519615201
– reference: Tahir AM, Chowdhury MEH, Yazan Q (2021) COVID-QU-Ex.Kaggle. https://doi.org/10.34740/kaggle/dsv/3122958
– reference: WHO coronavirus (COVID-19) dashboard: world health organization. https://covid19.who.int/. Accessed 03 Oct 2022
– reference: Shuyue C, Hou H (2006) Study of automatic enhancement for chest radiograph. J Digit Imaging.https://doi.org/10.1007/s10278-006-0623-7
– reference: ZimmermanJBPizerSMStaabEVPerryJRMcCartneyWBrentonBCAn evaluation of the effectiveness of adaptive histogram equalization for contrast enhancementIEEE Trans Med Imag1988730431210.1109/42.14513
– reference: Zimmerman JB, Pizer SM, Staab EV, Perry JR, McCartney W, Brenton BC (1988) An evaluation of the effectiveness of adaptive histogram equalization for contrast enhancement. IEEE Trans Med Imaging. https://doi.org/10.1109/42.14513
– reference: VeluchamyMSubramaniBImage contrast and color enhancement using adaptive gamma correction and histogram equalizationOptik201918332933710.1016/j.ijleo.2019.02.054
– reference: KimY-TContrast enhancement using brightness preserving bi-histogram equalizationIEEE Trans Consum Electron199710.1109/30.580378
– reference: KimoriYMathematical morphology-based approach to the enhancement of morphological features in medical imagesJ ClinBioinforma201110.1186/2043-9113-1-33
– reference: Nafiiyah N, Setyati E (2021) Lung X-Ray Image Enhancement to Identify Pneumonia with CNN. 3rd East Indonesia Conference on Computer and Information Technology (EIConCIT). https://doi.org/10.1109/EIConCIT50028.2021.9431856.
– reference: HuangS-CChengF-CChiuY-SEfficient contrast enhancement using adaptive gamma correction with weighting distributionImage Process IEEE Trans201322410321041306210010.1109/TIP.2012.2226047
– reference: Peli E (1990) Contrast in complex images. J Opt Soc Am A. https://doi.org/10.1364/JOSAA.7.002032
– reference: Mooney P (2018) Chest X-Ray Images (Pneumonia): kaggle. https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia. Accessed 10 Nov 2022
– reference: Rahman T et al (2020) Tuberculosis (TB) Chest X-ray Database: kaggle. https://www.kaggle.com/datasets/tawsifurrahman/tuberculosis-tb-chest-xray-dataset.  Accessed 10 Nov 2022
– reference: SomasundaramKGKalavathiPMedical image contrast enhancement based on gamma correctionInt J Knowl Manag e-Learn201231518
– reference: WangYuQian Chen and Baeomin Zhang: Image enhancement based on equal area dualistic sub-image histogram equalization methodIEEE Trans Consum Electron199910.1109/30.754419
– reference: GonzalezRCDigital Image Processing2009IndiaPearson Education
– reference: Kushol R, Raihan MN, Salekin MS, Rahman ABM (2019) Contrast enhancement of medical X-Ray image using morphological operators with optimal structuring element. ArXiv abs 1905.08545. https://doi.org/10.48550/arXiv.1905.08545
– reference: WielputzMORadiological diagnosis in lung disease: factoring treatment options into the choice of diagnostic modalityDeutsches Arzteblatt Int201410.3238/arztebl.2014.0181
– reference: CottonAThe limitations of the X-Ray in the diagnosis of certain bone and joint diseasesAm J Orthop Surg191513217240
– reference: RahmanSRahmanMMAbdullah-Al-WadudMAn adaptive gamma correction for image enhancementJ Image Video Proc201610.1186/s13640-016-0138-1
– reference: Puniani S, Arora S (2015) Performance Evaluation of Image Enhancement Techniques. Int J Signal Process Image Process Pattern Recogn. https://doi.org/10.14257/ijsip.2015.8.8.27
– reference: Kim J, Hyoung Kim K (2020) Role of chest radiographs in early lung cancer detection. Transl Lung Cancer Res. https://doi.org/10.21037/tlcr.2020.04.02
– reference: Hassanpour H, Samadian N (2015) Using morphological transforms to enhance the contrast of medical images. Egypt J Radiol Nucl Med.https://doi.org/10.1016/j.ejrnm.2015.01.004
– reference: Zuiderveld K (1994) Contrast Limited Adaptive Histogram Equalization. Paul S. Heckbert, Graphics Gems Academic Press.https://doi.org/10.1016/B978-0-12-336156-1.50061-6
– reference: Stellato B, Van Parys BPG, Goulart PJ (2017) Multivariate Chebyshev inequality with estimated mean and variance. Am Stat. https://doi.org/10.1080/00031305.2016.1186559
– reference: MinaeeSKafiehRSonkaMYazdaniSJamalipourSoufiGDeep-COVID: predicting COVID-19 from chest X-ray images using deep transfer learningMed Image Anal20206510179410.1016/j.media.2020.101794
– reference: HuagZZhangTLiQAdaptive gamma correction based-on cumulative histogram for enhancing near-infrared imagesInfrared Phys Technol20167920521510.1016/j.infrared.2016.11.001
– reference: Wang X, Peng Y, Lu L, Lu Z, Bagheri M, Summers RM (2017) ChestX-ray8: Hospital-scale Chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). https://doi.org/10.1109/CVPR.2017.369
– ident: 18083_CR17
  doi: 10.1109/CVPR.2017.369
– volume: 12
  start-page: 15196
  issue: 24
  year: 2017
  ident: 18083_CR3
  publication-title: Int J Appl Eng Res
– ident: 18083_CR1
– volume: 3
  start-page: 15
  year: 2012
  ident: 18083_CR13
  publication-title: Int J Knowl Manag e-Learn
– ident: 18083_CR2
  doi: 10.1109/EIConCIT50028.2021.9431856
– volume: 7
  start-page: 304
  year: 1988
  ident: 18083_CR20
  publication-title: IEEE Trans Med Imag
  doi: 10.1109/42.14513
– volume: 183
  start-page: 329
  year: 2019
  ident: 18083_CR10
  publication-title: Optik
  doi: 10.1016/j.ijleo.2019.02.054
– year: 1997
  ident: 18083_CR18
  publication-title: IEEE Trans Consum Electron
  doi: 10.1109/30.580378
– year: 2014
  ident: 18083_CR5
  publication-title: Deutsches Arzteblatt Int
  doi: 10.3238/arztebl.2014.0181
– year: 2011
  ident: 18083_CR22
  publication-title: J ClinBioinforma
  doi: 10.1186/2043-9113-1-33
– ident: 18083_CR29
  doi: 10.14257/ijsip.2015.8.8.27
– ident: 18083_CR27
  doi: 10.1080/00031305.2016.1186559
– ident: 18083_CR16
  doi: 10.34740/kaggle/dsv/3122958
– ident: 18083_CR23
  doi: 10.48550/arXiv.1905.08545
– ident: 18083_CR9
  doi: 10.1109/42.14513
– volume: 22
  start-page: 1032
  issue: 4
  year: 2013
  ident: 18083_CR24
  publication-title: Image Process IEEE Trans
  doi: 10.1109/TIP.2012.2226047
– ident: 18083_CR8
  doi: 10.1007/s10278-006-0623-7
– ident: 18083_CR14
– volume-title: Digital Image Processing
  year: 2009
  ident: 18083_CR21
– year: 2016
  ident: 18083_CR26
  publication-title: J Image Video Proc
  doi: 10.1186/s13640-016-0138-1
– ident: 18083_CR11
  doi: 10.1016/B978-0-12-336156-1.50061-6
– ident: 18083_CR28
  doi: 10.1364/JOSAA.7.002032
– ident: 18083_CR15
– ident: 18083_CR7
  doi: 10.21037/tlcr.2020.04.02
– ident: 18083_CR12
  doi: 10.1016/j.ejrnm.2015.01.004
– year: 1999
  ident: 18083_CR19
  publication-title: IEEE Trans Consum Electron
  doi: 10.1109/30.754419
– volume: 65
  start-page: 101794
  year: 2020
  ident: 18083_CR4
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2020.101794
– volume: 13
  start-page: 217
  year: 1915
  ident: 18083_CR6
  publication-title: Am J Orthop Surg
– volume: 79
  start-page: 205
  year: 2016
  ident: 18083_CR25
  publication-title: Infrared Phys Technol
  doi: 10.1016/j.infrared.2016.11.001
SSID ssj0016524
Score 2.3682067
Snippet Lung and respiratory ailments are among the leading causes of illness and fatalities. Coronavirus disease (COVID-19), caused by the SARS-CoV-2 virus, has...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 73457
SubjectTerms 1232: Human-centric Multimedia Analysis
Adaptive algorithms
Chest
Computer Communication Networks
Computer Science
Coronaviruses
Data Structures and Information Theory
Image acquisition
Image contrast
Image enhancement
Image quality
Lung diseases
Medical imaging
Multimedia Information Systems
Parameters
Performance evaluation
Special Purpose and Application-Based Systems
Statistical methods
Viral diseases
X ray imagery
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB6h5EIPQIGKtFDNgRtdtN5dv44RCqBW5USk9GTtywVBEoSdCvj1HW9s0iI4cF7bWs3OznzjmW8G4FBIKbiVEdNeKqa0TZghRWEultypvPQykMJ-XiTnY_V9Ek9aUljVVbt3KclgqVdkt6ihkpCPYVFGwIERcuyHfls96A_Pfv0YPWcPklioliDz-pv_O6EVsnyRDA0-5nQTxt3ulqUlN8eL2hzbpxeNG9-7_S3YaEEnDpda8hHW_GwbNruBDtje72348E93wh2oh07fNdYQf-vpVKNtBnkEGgQS0kW9qOeh3yuGcndd1ehnV40SNT8ccV7iSTOLi03YvX7E6ykZrgp1KB_xDs0j_qEwfb6o8JbsDbaJomoXxqejy5Nz1g5pYFakvGZplPvcWJ-5iNvYCZ8SiNIqTi3B9ki4ktOKTlwiROSixBppeaacJihScs1z-Ql6s_nM7wHmTglDEWmeCEJxFLqZPDaS61SZ0mY6HsBRd2rF3bIXR7HqutyItyDxFkG8xcMA9ruDLdp7WRWyAcQUAWdqAN-6c1otv_21z-97_AusC0I_y2K0fejV9wt_QOilNl9bZf0LtqboUQ
  priority: 102
  providerName: Springer Nature
Title Adaptive gamma correction for automatic contrast enhancement of Chest-X-ray images affected by various lung diseases
URI https://link.springer.com/article/10.1007/s11042-023-18083-x
https://www.proquest.com/docview/3099944684
Volume 83
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: ADMLS
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-7721
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: BENPR
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LixNBEC52k4sefKyK0TX0wZs29mOeB5FkSXZRDCIG4mno16yCycSdiez-e6s7PUYFPc2hoA9T1VVfdT0-gOdCSsGM5FQ5mdBEmYxqNBRqU8lsUtZOhqGw94vsYpm8XaWrI1j0szC-rbL3icFR28b4N_JX0kMZzF2K5M32O_WsUb662lNoqEitYF-HFWPHMBR-M9YAhtPZ4sPHX3WFLI00twWjGCt5HKPZD9NxP6qCMYzyAoEJvf4zVB3w518l0xCJ5vfgToSQZLLX-X04cpsTuNvTM5B4W0_g9m-7Bh9AN7Fq630buVTrtSLG03KEoQaCuJWoXdeE7a0kNK-rtiNu88WbhH8-JE1NzjyzFl3RK3VDvq7RDbVEhWYQZ4m-IT8w6W52LfmG3oPEsk_7EJbz2aezCxopF6gROetozktXauMKy5lJrXA5QiKVpLlBEM6FrRlKVGYzIbjlmdHSsCKxCoFFzRQr5SMYbJqNewyktInQmF-WmUBMhomYLlMtmcoTXZtCpSN40f_darvfrFEddih7XVSoiyrooroewWmvgCresrY62MQIXvZKOYj_fdqT_5_2FG4JxC77VrJTGHRXO_cMsUenx3BczM_HMJzMp9OF_55_fjcbRzND6VJMfgJAAtsH
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NbxMxELWq9gAcoBRQAy3MAU5g4a_9OlSolFYpbSOEWim3xWt7AYlkQ3cDzZ_jtzF2vASQ4NbzSj54ZmfeeObNI-SpkFIwIznVTiqqtElphY5CbSKZVUXtZCCFnY3S4YV6O07Ga-RHz4XxY5V9TAyB2jbGv5G_lB7KYO2Sq1ezr9SrRvnuai-hoaO0gt0LK8YisePELb5jCdfuHb9Bez8T4ujw_GBIo8oANSJjHc144YrKuNxyZhIrXIYoQKskM4g7ubA1wy86takQ3PLUVNKwXFmNubRmOixjwhSwoaQqsPjbeH04evf-Vx8jTaKsbs4o5mYeaTtL8h731BjMmZTnCITo1Z-pcYV3_2rRhsx3tEluR8gK-0sfu0vW3HSL3OnlICBGhy1y67fdhvdIt2_1zMdS-KgnEw3Gy4AEEgUgTgY975qwLRbCsLxuO3DTT94F_XMlNDUceCUvOqaXegGfJxj2WtBh-MRZqBbwDYv8Zt7CF4xWENtM7X1ycS2X_4CsT5up2yZQWCUqrGeLVCAGxMKvKpJKMp2pqja5TgbkeX-75Wy5yaNc7Wz2tijRFmWwRXk1IDu9Acr4V7flygcH5EVvlNXnf5_28P-nPSE3hudnp-Xp8ejkEbkpEDctx9h2yHp3OXe7iHu66nF0LiAfrtuffwLwjhJr
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK4QTIweUFHjKmgf9KQd-jWvgzEEXEGUeJBkb2O_RkjYnZWZVfav-euo7plx1URvnCfpQ9c3VV911VcF8FxIKZiVnGovFVXaptQgUKhLJHOqqLyMorCPx-nBiXo_SSZr8HPQwoS2ysEnRkftahveyHdkoDKYu-Rqp-rbIj7tj9_Mv9GwQSpUWod1Gh1EjvzyB6ZvzevDfbT1CyHGbz_vHdB-wwC1ImMtzXjhC2N97jiziRM-QwagVZJZ5JxcuIrhF526VAjueGqNtCxXTmMcrZiOg5jQ_d_IwhT3oFIfv_tVwUiTfqFuzihGZd4LdjrZHg-iGIyWlOdIgejln0FxxXT_Ks7GmDe-Cxs9WSW7HbruwZqfbcKdYREE6f3CJtz-barhfWh3nZ4HL0q-6ulUExsWgET5BEGGTPSireOcWBLb5HXTEj87DeALD5Wkrshe2OFFJ_RCL8nZFB1eQ3RsO_GOmCX5jul9vWjIOfop0heYmgdwci1X_xDWZ_XMPwJSOCUMZrJFKpD9YcpnisRIpjNlKpvrZAQvh9st590Mj3I1rTnYokRblNEW5eUItgYDlP3_3JQr9I3g1WCU1ed_n_b4_6c9g5uI4vLD4fHRE7glkDB1_WtbsN5eLPw2Ep7WPI3IIvDluqF8BWajEAU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+gamma+correction+for+automatic+contrast+enhancement+of+Chest-X-ray+images+affected+by+various+lung+diseases&rft.jtitle=Multimedia+tools+and+applications&rft.au=Yadav%2C+Vivek+Kumar&rft.au=Singhai%2C+Jyoti&rft.date=2024-09-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=83&rft.issue=29&rft.spage=73457&rft.epage=73475&rft_id=info:doi/10.1007%2Fs11042-023-18083-x&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon