Adaptive gamma correction for automatic contrast enhancement of Chest-X-ray images affected by various lung diseases
Lung and respiratory ailments are among the leading causes of illness and fatalities. Coronavirus disease (COVID-19), caused by the SARS-CoV-2 virus, has convinced the world that early and affordable detection improves treatment. X-ray imaging systems are inexpensive and widely available. Chest X-ra...
Saved in:
| Published in | Multimedia tools and applications Vol. 83; no. 29; pp. 73457 - 73475 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.09.2024
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1573-7721 1380-7501 1573-7721 |
| DOI | 10.1007/s11042-023-18083-x |
Cover
| Abstract | Lung and respiratory ailments are among the leading causes of illness and fatalities. Coronavirus disease (COVID-19), caused by the SARS-CoV-2 virus, has convinced the world that early and affordable detection improves treatment. X-ray imaging systems are inexpensive and widely available. Chest X-ray (CXR) images are inadequate due to the acquiring environment and technician skill. Hence, CXR image contrast enhancement is necessary for a correct diagnosis. Various lung diseases create variable spatial variation in CXR image contrast and brightness; hence, a single contrast enhancement procedure cannot improve it. In the proposed method CXR images are first classified into four categories depending upon their quality defined by their statistical parameters, before applying adaptive gamma correction for contrast enhancement. The performance of the proposed method is compared with existing methods on four datasets for five different types of lung diseases. The performance of the proposed algorithm is evaluated using parameters, such as Root Mean Square Contrast (RMSC) to determine the relation of contrast enhancement between the original and enhanced image, Contrast Improvement Index (CII) to measure the achieved contrast enhancement and Tenengrad which calculates the variation of intensity in the direction of maximum gradient descent
.
The qualitative and quantitative performance of the proposed method is found better than the existing methods for CXR images for all five lung diseases, which shows the stable performance of the proposed method and improvement in the processed images. |
|---|---|
| AbstractList | Lung and respiratory ailments are among the leading causes of illness and fatalities. Coronavirus disease (COVID-19), caused by the SARS-CoV-2 virus, has convinced the world that early and affordable detection improves treatment. X-ray imaging systems are inexpensive and widely available. Chest X-ray (CXR) images are inadequate due to the acquiring environment and technician skill. Hence, CXR image contrast enhancement is necessary for a correct diagnosis. Various lung diseases create variable spatial variation in CXR image contrast and brightness; hence, a single contrast enhancement procedure cannot improve it. In the proposed method CXR images are first classified into four categories depending upon their quality defined by their statistical parameters, before applying adaptive gamma correction for contrast enhancement. The performance of the proposed method is compared with existing methods on four datasets for five different types of lung diseases. The performance of the proposed algorithm is evaluated using parameters, such as Root Mean Square Contrast (RMSC) to determine the relation of contrast enhancement between the original and enhanced image, Contrast Improvement Index (CII) to measure the achieved contrast enhancement and Tenengrad which calculates the variation of intensity in the direction of maximum gradient descent. The qualitative and quantitative performance of the proposed method is found better than the existing methods for CXR images for all five lung diseases, which shows the stable performance of the proposed method and improvement in the processed images. Lung and respiratory ailments are among the leading causes of illness and fatalities. Coronavirus disease (COVID-19), caused by the SARS-CoV-2 virus, has convinced the world that early and affordable detection improves treatment. X-ray imaging systems are inexpensive and widely available. Chest X-ray (CXR) images are inadequate due to the acquiring environment and technician skill. Hence, CXR image contrast enhancement is necessary for a correct diagnosis. Various lung diseases create variable spatial variation in CXR image contrast and brightness; hence, a single contrast enhancement procedure cannot improve it. In the proposed method CXR images are first classified into four categories depending upon their quality defined by their statistical parameters, before applying adaptive gamma correction for contrast enhancement. The performance of the proposed method is compared with existing methods on four datasets for five different types of lung diseases. The performance of the proposed algorithm is evaluated using parameters, such as Root Mean Square Contrast (RMSC) to determine the relation of contrast enhancement between the original and enhanced image, Contrast Improvement Index (CII) to measure the achieved contrast enhancement and Tenengrad which calculates the variation of intensity in the direction of maximum gradient descent . The qualitative and quantitative performance of the proposed method is found better than the existing methods for CXR images for all five lung diseases, which shows the stable performance of the proposed method and improvement in the processed images. |
| Author | Yadav, Vivek Kumar Singhai, Jyoti |
| Author_xml | – sequence: 1 givenname: Vivek Kumar surname: Yadav fullname: Yadav, Vivek Kumar email: viwek94@gmail.com organization: Department of Electronics and Communication, Maulana Azad National Institute of Technology – sequence: 2 givenname: Jyoti orcidid: 0000-0002-7096-9269 surname: Singhai fullname: Singhai, Jyoti organization: Department of Electronics and Communication, Maulana Azad National Institute of Technology |
| BookMark | eNp9kE1LJDEQhoO44MfuH9hTwHO0kv5I91EGv0DwouAt1CTVMz3YyWySHpx_b3ZnQU-eqqDe962q54wd--CJsd8SLiWAvkpSQq0EqErIDrpKvB-xU9noSmit5PGX_oSdpbQBkG2j6lOWrx1u87gjvsJpQm5DjGTzGDwfQuQ45zBhHm0Z-BwxZU5-jd7SRD7zMPDFmlIWryLino8TrihxHIYSQY4v93yHcQxz4m-zX3E3JsJE6Sf7MeBbol__6zl7ub15XtyLx6e7h8X1o7BKQxZa9tQvLXVOgm2cIq2aFutGW616qdwAZYKta5WSTrZ2WVnoaofQyQEQ-uqcXRxytzH8mcudZhPm6MtKU0Hf93XddnVRqYPKxpBSpMFsY_kk7o0E85euOdA1ha75R9e8F1N1MKUi9iuKn9HfuD4ApeCA1w |
| Cites_doi | 10.1109/CVPR.2017.369 10.1109/EIConCIT50028.2021.9431856 10.1109/42.14513 10.1016/j.ijleo.2019.02.054 10.1109/30.580378 10.3238/arztebl.2014.0181 10.1186/2043-9113-1-33 10.14257/ijsip.2015.8.8.27 10.1080/00031305.2016.1186559 10.34740/kaggle/dsv/3122958 10.48550/arXiv.1905.08545 10.1109/TIP.2012.2226047 10.1007/s10278-006-0623-7 10.1186/s13640-016-0138-1 10.1016/B978-0-12-336156-1.50061-6 10.1364/JOSAA.7.002032 10.21037/tlcr.2020.04.02 10.1016/j.ejrnm.2015.01.004 10.1109/30.754419 10.1016/j.media.2020.101794 10.1016/j.infrared.2016.11.001 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
| DOI | 10.1007/s11042-023-18083-x |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central (subscription) Business Premium Collection Technology collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global (OCUL) Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1573-7721 |
| EndPage | 73475 |
| ExternalDocumentID | 10_1007_s11042_023_18083_x |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PUEGO 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D MBDVC PHGZM PHGZT PKEHL PQEST PQGLB PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c270t-719e9bce8d10c5d2e7256a457c72912df08d1a6d6221d16cb3c084da081f0a093 |
| IEDL.DBID | BENPR |
| ISSN | 1573-7721 1380-7501 |
| IngestDate | Tue Sep 02 03:17:49 EDT 2025 Wed Oct 01 04:51:41 EDT 2025 Fri Feb 21 02:39:05 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 29 |
| Keywords | Adaptive Gamma Correction Histogram Equalization Image Enhancement Chest X-ray Lung diseases |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c270t-719e9bce8d10c5d2e7256a457c72912df08d1a6d6221d16cb3c084da081f0a093 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7096-9269 |
| PQID | 3099944684 |
| PQPubID | 54626 |
| PageCount | 19 |
| ParticipantIDs | proquest_journals_3099944684 crossref_primary_10_1007_s11042_023_18083_x springer_journals_10_1007_s11042_023_18083_x |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20240900 |
| PublicationDateYYYYMMDD | 2024-09-01 |
| PublicationDate_xml | – month: 9 year: 2024 text: 20240900 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | An International Journal |
| PublicationTitle | Multimedia tools and applications |
| PublicationTitleAbbrev | Multimed Tools Appl |
| PublicationYear | 2024 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Zimmerman JB, Pizer SM, Staab EV, Perry JR, McCartney W, Brenton BC (1988) An evaluation of the effectiveness of adaptive histogram equalization for contrast enhancement. IEEE Trans Med Imaging. https://doi.org/10.1109/42.14513 KimoriYMathematical morphology-based approach to the enhancement of morphological features in medical imagesJ ClinBioinforma201110.1186/2043-9113-1-33 HuangS-CChengF-CChiuY-SEfficient contrast enhancement using adaptive gamma correction with weighting distributionImage Process IEEE Trans201322410321041306210010.1109/TIP.2012.2226047 AntonyBNBKLung tuberculosis detection using x-ray imagesInt J Appl Eng Res201712241519615201 MinaeeSKafiehRSonkaMYazdaniSJamalipourSoufiGDeep-COVID: predicting COVID-19 from chest X-ray images using deep transfer learningMed Image Anal20206510179410.1016/j.media.2020.101794 ZimmermanJBPizerSMStaabEVPerryJRMcCartneyWBrentonBCAn evaluation of the effectiveness of adaptive histogram equalization for contrast enhancementIEEE Trans Med Imag1988730431210.1109/42.14513 Kushol R, Raihan MN, Salekin MS, Rahman ABM (2019) Contrast enhancement of medical X-Ray image using morphological operators with optimal structuring element. ArXiv abs 1905.08545. https://doi.org/10.48550/arXiv.1905.08545 SomasundaramKGKalavathiPMedical image contrast enhancement based on gamma correctionInt J Knowl Manag e-Learn201231518 KimY-TContrast enhancement using brightness preserving bi-histogram equalizationIEEE Trans Consum Electron199710.1109/30.580378 WangYuQian Chen and Baeomin Zhang: Image enhancement based on equal area dualistic sub-image histogram equalization methodIEEE Trans Consum Electron199910.1109/30.754419 Stellato B, Van Parys BPG, Goulart PJ (2017) Multivariate Chebyshev inequality with estimated mean and variance. Am Stat. https://doi.org/10.1080/00031305.2016.1186559 WHO coronavirus (COVID-19) dashboard: world health organization. https://covid19.who.int/. Accessed 03 Oct 2022 Kim J, Hyoung Kim K (2020) Role of chest radiographs in early lung cancer detection. Transl Lung Cancer Res. https://doi.org/10.21037/tlcr.2020.04.02 Rahman T et al (2020) Tuberculosis (TB) Chest X-ray Database: kaggle. https://www.kaggle.com/datasets/tawsifurrahman/tuberculosis-tb-chest-xray-dataset. Accessed 10 Nov 2022 RahmanSRahmanMMAbdullah-Al-WadudMAn adaptive gamma correction for image enhancementJ Image Video Proc201610.1186/s13640-016-0138-1 VeluchamyMSubramaniBImage contrast and color enhancement using adaptive gamma correction and histogram equalizationOptik201918332933710.1016/j.ijleo.2019.02.054 CottonAThe limitations of the X-Ray in the diagnosis of certain bone and joint diseasesAm J Orthop Surg191513217240 Hassanpour H, Samadian N (2015) Using morphological transforms to enhance the contrast of medical images. Egypt J Radiol Nucl Med.https://doi.org/10.1016/j.ejrnm.2015.01.004 Peli E (1990) Contrast in complex images. J Opt Soc Am A. https://doi.org/10.1364/JOSAA.7.002032 Nafiiyah N, Setyati E (2021) Lung X-Ray Image Enhancement to Identify Pneumonia with CNN. 3rd East Indonesia Conference on Computer and Information Technology (EIConCIT). https://doi.org/10.1109/EIConCIT50028.2021.9431856. Shuyue C, Hou H (2006) Study of automatic enhancement for chest radiograph. J Digit Imaging.https://doi.org/10.1007/s10278-006-0623-7 Zuiderveld K (1994) Contrast Limited Adaptive Histogram Equalization. Paul S. Heckbert, Graphics Gems Academic Press.https://doi.org/10.1016/B978-0-12-336156-1.50061-6 Tahir AM, Chowdhury MEH, Yazan Q (2021) COVID-QU-Ex.Kaggle. https://doi.org/10.34740/kaggle/dsv/3122958 HuagZZhangTLiQAdaptive gamma correction based-on cumulative histogram for enhancing near-infrared imagesInfrared Phys Technol20167920521510.1016/j.infrared.2016.11.001 GonzalezRCDigital Image Processing2009IndiaPearson Education Wang X, Peng Y, Lu L, Lu Z, Bagheri M, Summers RM (2017) ChestX-ray8: Hospital-scale Chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). https://doi.org/10.1109/CVPR.2017.369 Mooney P (2018) Chest X-Ray Images (Pneumonia): kaggle. https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia. Accessed 10 Nov 2022 WielputzMORadiological diagnosis in lung disease: factoring treatment options into the choice of diagnostic modalityDeutsches Arzteblatt Int201410.3238/arztebl.2014.0181 Puniani S, Arora S (2015) Performance Evaluation of Image Enhancement Techniques. Int J Signal Process Image Process Pattern Recogn. https://doi.org/10.14257/ijsip.2015.8.8.27 S Minaee (18083_CR4) 2020; 65 A Cotton (18083_CR6) 1915; 13 S-C Huang (18083_CR24) 2013; 22 Y-T Kim (18083_CR18) 1997 18083_CR29 18083_CR28 Y Kimori (18083_CR22) 2011 18083_CR27 18083_CR23 18083_CR1 18083_CR2 MO Wielputz (18083_CR5) 2014 18083_CR7 18083_CR8 18083_CR9 Z Huag (18083_CR25) 2016; 79 B Antony (18083_CR3) 2017; 12 S Rahman (18083_CR26) 2016 JB Zimmerman (18083_CR20) 1988; 7 M Veluchamy (18083_CR10) 2019; 183 KG Somasundaram (18083_CR13) 2012; 3 18083_CR17 18083_CR14 18083_CR16 18083_CR15 18083_CR12 18083_CR11 Yu Wang (18083_CR19) 1999 RC Gonzalez (18083_CR21) 2009 |
| References_xml | – reference: AntonyBNBKLung tuberculosis detection using x-ray imagesInt J Appl Eng Res201712241519615201 – reference: Tahir AM, Chowdhury MEH, Yazan Q (2021) COVID-QU-Ex.Kaggle. https://doi.org/10.34740/kaggle/dsv/3122958 – reference: WHO coronavirus (COVID-19) dashboard: world health organization. https://covid19.who.int/. Accessed 03 Oct 2022 – reference: Shuyue C, Hou H (2006) Study of automatic enhancement for chest radiograph. J Digit Imaging.https://doi.org/10.1007/s10278-006-0623-7 – reference: ZimmermanJBPizerSMStaabEVPerryJRMcCartneyWBrentonBCAn evaluation of the effectiveness of adaptive histogram equalization for contrast enhancementIEEE Trans Med Imag1988730431210.1109/42.14513 – reference: Zimmerman JB, Pizer SM, Staab EV, Perry JR, McCartney W, Brenton BC (1988) An evaluation of the effectiveness of adaptive histogram equalization for contrast enhancement. IEEE Trans Med Imaging. https://doi.org/10.1109/42.14513 – reference: VeluchamyMSubramaniBImage contrast and color enhancement using adaptive gamma correction and histogram equalizationOptik201918332933710.1016/j.ijleo.2019.02.054 – reference: KimY-TContrast enhancement using brightness preserving bi-histogram equalizationIEEE Trans Consum Electron199710.1109/30.580378 – reference: KimoriYMathematical morphology-based approach to the enhancement of morphological features in medical imagesJ ClinBioinforma201110.1186/2043-9113-1-33 – reference: Nafiiyah N, Setyati E (2021) Lung X-Ray Image Enhancement to Identify Pneumonia with CNN. 3rd East Indonesia Conference on Computer and Information Technology (EIConCIT). https://doi.org/10.1109/EIConCIT50028.2021.9431856. – reference: HuangS-CChengF-CChiuY-SEfficient contrast enhancement using adaptive gamma correction with weighting distributionImage Process IEEE Trans201322410321041306210010.1109/TIP.2012.2226047 – reference: Peli E (1990) Contrast in complex images. J Opt Soc Am A. https://doi.org/10.1364/JOSAA.7.002032 – reference: Mooney P (2018) Chest X-Ray Images (Pneumonia): kaggle. https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia. Accessed 10 Nov 2022 – reference: Rahman T et al (2020) Tuberculosis (TB) Chest X-ray Database: kaggle. https://www.kaggle.com/datasets/tawsifurrahman/tuberculosis-tb-chest-xray-dataset. Accessed 10 Nov 2022 – reference: SomasundaramKGKalavathiPMedical image contrast enhancement based on gamma correctionInt J Knowl Manag e-Learn201231518 – reference: WangYuQian Chen and Baeomin Zhang: Image enhancement based on equal area dualistic sub-image histogram equalization methodIEEE Trans Consum Electron199910.1109/30.754419 – reference: GonzalezRCDigital Image Processing2009IndiaPearson Education – reference: Kushol R, Raihan MN, Salekin MS, Rahman ABM (2019) Contrast enhancement of medical X-Ray image using morphological operators with optimal structuring element. ArXiv abs 1905.08545. https://doi.org/10.48550/arXiv.1905.08545 – reference: WielputzMORadiological diagnosis in lung disease: factoring treatment options into the choice of diagnostic modalityDeutsches Arzteblatt Int201410.3238/arztebl.2014.0181 – reference: CottonAThe limitations of the X-Ray in the diagnosis of certain bone and joint diseasesAm J Orthop Surg191513217240 – reference: RahmanSRahmanMMAbdullah-Al-WadudMAn adaptive gamma correction for image enhancementJ Image Video Proc201610.1186/s13640-016-0138-1 – reference: Puniani S, Arora S (2015) Performance Evaluation of Image Enhancement Techniques. Int J Signal Process Image Process Pattern Recogn. https://doi.org/10.14257/ijsip.2015.8.8.27 – reference: Kim J, Hyoung Kim K (2020) Role of chest radiographs in early lung cancer detection. Transl Lung Cancer Res. https://doi.org/10.21037/tlcr.2020.04.02 – reference: Hassanpour H, Samadian N (2015) Using morphological transforms to enhance the contrast of medical images. Egypt J Radiol Nucl Med.https://doi.org/10.1016/j.ejrnm.2015.01.004 – reference: Zuiderveld K (1994) Contrast Limited Adaptive Histogram Equalization. Paul S. Heckbert, Graphics Gems Academic Press.https://doi.org/10.1016/B978-0-12-336156-1.50061-6 – reference: Stellato B, Van Parys BPG, Goulart PJ (2017) Multivariate Chebyshev inequality with estimated mean and variance. Am Stat. https://doi.org/10.1080/00031305.2016.1186559 – reference: MinaeeSKafiehRSonkaMYazdaniSJamalipourSoufiGDeep-COVID: predicting COVID-19 from chest X-ray images using deep transfer learningMed Image Anal20206510179410.1016/j.media.2020.101794 – reference: HuagZZhangTLiQAdaptive gamma correction based-on cumulative histogram for enhancing near-infrared imagesInfrared Phys Technol20167920521510.1016/j.infrared.2016.11.001 – reference: Wang X, Peng Y, Lu L, Lu Z, Bagheri M, Summers RM (2017) ChestX-ray8: Hospital-scale Chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). https://doi.org/10.1109/CVPR.2017.369 – ident: 18083_CR17 doi: 10.1109/CVPR.2017.369 – volume: 12 start-page: 15196 issue: 24 year: 2017 ident: 18083_CR3 publication-title: Int J Appl Eng Res – ident: 18083_CR1 – volume: 3 start-page: 15 year: 2012 ident: 18083_CR13 publication-title: Int J Knowl Manag e-Learn – ident: 18083_CR2 doi: 10.1109/EIConCIT50028.2021.9431856 – volume: 7 start-page: 304 year: 1988 ident: 18083_CR20 publication-title: IEEE Trans Med Imag doi: 10.1109/42.14513 – volume: 183 start-page: 329 year: 2019 ident: 18083_CR10 publication-title: Optik doi: 10.1016/j.ijleo.2019.02.054 – year: 1997 ident: 18083_CR18 publication-title: IEEE Trans Consum Electron doi: 10.1109/30.580378 – year: 2014 ident: 18083_CR5 publication-title: Deutsches Arzteblatt Int doi: 10.3238/arztebl.2014.0181 – year: 2011 ident: 18083_CR22 publication-title: J ClinBioinforma doi: 10.1186/2043-9113-1-33 – ident: 18083_CR29 doi: 10.14257/ijsip.2015.8.8.27 – ident: 18083_CR27 doi: 10.1080/00031305.2016.1186559 – ident: 18083_CR16 doi: 10.34740/kaggle/dsv/3122958 – ident: 18083_CR23 doi: 10.48550/arXiv.1905.08545 – ident: 18083_CR9 doi: 10.1109/42.14513 – volume: 22 start-page: 1032 issue: 4 year: 2013 ident: 18083_CR24 publication-title: Image Process IEEE Trans doi: 10.1109/TIP.2012.2226047 – ident: 18083_CR8 doi: 10.1007/s10278-006-0623-7 – ident: 18083_CR14 – volume-title: Digital Image Processing year: 2009 ident: 18083_CR21 – year: 2016 ident: 18083_CR26 publication-title: J Image Video Proc doi: 10.1186/s13640-016-0138-1 – ident: 18083_CR11 doi: 10.1016/B978-0-12-336156-1.50061-6 – ident: 18083_CR28 doi: 10.1364/JOSAA.7.002032 – ident: 18083_CR15 – ident: 18083_CR7 doi: 10.21037/tlcr.2020.04.02 – ident: 18083_CR12 doi: 10.1016/j.ejrnm.2015.01.004 – year: 1999 ident: 18083_CR19 publication-title: IEEE Trans Consum Electron doi: 10.1109/30.754419 – volume: 65 start-page: 101794 year: 2020 ident: 18083_CR4 publication-title: Med Image Anal doi: 10.1016/j.media.2020.101794 – volume: 13 start-page: 217 year: 1915 ident: 18083_CR6 publication-title: Am J Orthop Surg – volume: 79 start-page: 205 year: 2016 ident: 18083_CR25 publication-title: Infrared Phys Technol doi: 10.1016/j.infrared.2016.11.001 |
| SSID | ssj0016524 |
| Score | 2.3682067 |
| Snippet | Lung and respiratory ailments are among the leading causes of illness and fatalities. Coronavirus disease (COVID-19), caused by the SARS-CoV-2 virus, has... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 73457 |
| SubjectTerms | 1232: Human-centric Multimedia Analysis Adaptive algorithms Chest Computer Communication Networks Computer Science Coronaviruses Data Structures and Information Theory Image acquisition Image contrast Image enhancement Image quality Lung diseases Medical imaging Multimedia Information Systems Parameters Performance evaluation Special Purpose and Application-Based Systems Statistical methods Viral diseases X ray imagery |
| SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB6h5EIPQIGKtFDNgRtdtN5dv44RCqBW5USk9GTtywVBEoSdCvj1HW9s0iI4cF7bWs3OznzjmW8G4FBIKbiVEdNeKqa0TZghRWEultypvPQykMJ-XiTnY_V9Ek9aUljVVbt3KclgqVdkt6ihkpCPYVFGwIERcuyHfls96A_Pfv0YPWcPklioliDz-pv_O6EVsnyRDA0-5nQTxt3ulqUlN8eL2hzbpxeNG9-7_S3YaEEnDpda8hHW_GwbNruBDtje72348E93wh2oh07fNdYQf-vpVKNtBnkEGgQS0kW9qOeh3yuGcndd1ehnV40SNT8ccV7iSTOLi03YvX7E6ykZrgp1KB_xDs0j_qEwfb6o8JbsDbaJomoXxqejy5Nz1g5pYFakvGZplPvcWJ-5iNvYCZ8SiNIqTi3B9ki4ktOKTlwiROSixBppeaacJihScs1z-Ql6s_nM7wHmTglDEWmeCEJxFLqZPDaS61SZ0mY6HsBRd2rF3bIXR7HqutyItyDxFkG8xcMA9ruDLdp7WRWyAcQUAWdqAN-6c1otv_21z-97_AusC0I_y2K0fejV9wt_QOilNl9bZf0LtqboUQ priority: 102 providerName: Springer Nature |
| Title | Adaptive gamma correction for automatic contrast enhancement of Chest-X-ray images affected by various lung diseases |
| URI | https://link.springer.com/article/10.1007/s11042-023-18083-x https://www.proquest.com/docview/3099944684 |
| Volume | 83 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1573-7721 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: ADMLS dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-7721 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: BENPR dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-7721 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LixNBEC52k4sefKyK0TX0wZs29mOeB5FkSXZRDCIG4mno16yCycSdiez-e6s7PUYFPc2hoA9T1VVfdT0-gOdCSsGM5FQ5mdBEmYxqNBRqU8lsUtZOhqGw94vsYpm8XaWrI1j0szC-rbL3icFR28b4N_JX0kMZzF2K5M32O_WsUb662lNoqEitYF-HFWPHMBR-M9YAhtPZ4sPHX3WFLI00twWjGCt5HKPZD9NxP6qCMYzyAoEJvf4zVB3w518l0xCJ5vfgToSQZLLX-X04cpsTuNvTM5B4W0_g9m-7Bh9AN7Fq630buVTrtSLG03KEoQaCuJWoXdeE7a0kNK-rtiNu88WbhH8-JE1NzjyzFl3RK3VDvq7RDbVEhWYQZ4m-IT8w6W52LfmG3oPEsk_7EJbz2aezCxopF6gROetozktXauMKy5lJrXA5QiKVpLlBEM6FrRlKVGYzIbjlmdHSsCKxCoFFzRQr5SMYbJqNewyktInQmF-WmUBMhomYLlMtmcoTXZtCpSN40f_darvfrFEddih7XVSoiyrooroewWmvgCresrY62MQIXvZKOYj_fdqT_5_2FG4JxC77VrJTGHRXO_cMsUenx3BczM_HMJzMp9OF_55_fjcbRzND6VJMfgJAAtsH |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NbxMxELWq9gAcoBRQAy3MAU5g4a_9OlSolFYpbSOEWim3xWt7AYlkQ3cDzZ_jtzF2vASQ4NbzSj54ZmfeeObNI-SpkFIwIznVTiqqtElphY5CbSKZVUXtZCCFnY3S4YV6O07Ga-RHz4XxY5V9TAyB2jbGv5G_lB7KYO2Sq1ezr9SrRvnuai-hoaO0gt0LK8YisePELb5jCdfuHb9Bez8T4ujw_GBIo8oANSJjHc144YrKuNxyZhIrXIYoQKskM4g7ubA1wy86takQ3PLUVNKwXFmNubRmOixjwhSwoaQqsPjbeH04evf-Vx8jTaKsbs4o5mYeaTtL8h731BjMmZTnCITo1Z-pcYV3_2rRhsx3tEluR8gK-0sfu0vW3HSL3OnlICBGhy1y67fdhvdIt2_1zMdS-KgnEw3Gy4AEEgUgTgY975qwLRbCsLxuO3DTT94F_XMlNDUceCUvOqaXegGfJxj2WtBh-MRZqBbwDYv8Zt7CF4xWENtM7X1ycS2X_4CsT5up2yZQWCUqrGeLVCAGxMKvKpJKMp2pqja5TgbkeX-75Wy5yaNc7Wz2tijRFmWwRXk1IDu9Acr4V7flygcH5EVvlNXnf5_28P-nPSE3hudnp-Xp8ejkEbkpEDctx9h2yHp3OXe7iHu66nF0LiAfrtuffwLwjhJr |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK4QTIweUFHjKmgf9KQd-jWvgzEEXEGUeJBkb2O_RkjYnZWZVfav-euo7plx1URvnCfpQ9c3VV911VcF8FxIKZiVnGovFVXaptQgUKhLJHOqqLyMorCPx-nBiXo_SSZr8HPQwoS2ysEnRkftahveyHdkoDKYu-Rqp-rbIj7tj9_Mv9GwQSpUWod1Gh1EjvzyB6ZvzevDfbT1CyHGbz_vHdB-wwC1ImMtzXjhC2N97jiziRM-QwagVZJZ5JxcuIrhF526VAjueGqNtCxXTmMcrZiOg5jQ_d_IwhT3oFIfv_tVwUiTfqFuzihGZd4LdjrZHg-iGIyWlOdIgejln0FxxXT_Ks7GmDe-Cxs9WSW7HbruwZqfbcKdYREE6f3CJtz-barhfWh3nZ4HL0q-6ulUExsWgET5BEGGTPSireOcWBLb5HXTEj87DeALD5Wkrshe2OFFJ_RCL8nZFB1eQ3RsO_GOmCX5jul9vWjIOfop0heYmgdwci1X_xDWZ_XMPwJSOCUMZrJFKpD9YcpnisRIpjNlKpvrZAQvh9st590Mj3I1rTnYokRblNEW5eUItgYDlP3_3JQr9I3g1WCU1ed_n_b4_6c9g5uI4vLD4fHRE7glkDB1_WtbsN5eLPw2Ep7WPI3IIvDluqF8BWajEAU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+gamma+correction+for+automatic+contrast+enhancement+of+Chest-X-ray+images+affected+by+various+lung+diseases&rft.jtitle=Multimedia+tools+and+applications&rft.au=Yadav%2C+Vivek+Kumar&rft.au=Singhai%2C+Jyoti&rft.date=2024-09-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=83&rft.issue=29&rft.spage=73457&rft.epage=73475&rft_id=info:doi/10.1007%2Fs11042-023-18083-x&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon |