Hybrid feature selection model for classification of lung disorders

Feature selection in computer aided diagnosis is now becoming a challenging part in the classification of lung diseases. This is because, it needs to deliver results with improved accuracy and it also requires a greater number of features for analysis. The major demerit of widely utilized single-obj...

Full description

Saved in:
Bibliographic Details
Published inJournal of ambient intelligence and humanized computing Vol. 13; no. 12; pp. 5609 - 5625
Main Authors Dharmalingam, Vivekanandan, Kumar, Dhananjay
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1868-5137
1868-5145
DOI10.1007/s12652-021-03224-7

Cover

Abstract Feature selection in computer aided diagnosis is now becoming a challenging part in the classification of lung diseases. This is because, it needs to deliver results with improved accuracy and it also requires a greater number of features for analysis. The major demerit of widely utilized single-objective feature selection (FS) algorithm is that it proffers only a single optimum solution for a feature set. Here, a hybridized multi-objective particle swarm optimization with a local Tabu search (MOPSO-TS) algorithm is proposed to overcome the above demerit of the traditional single objective algorithm by producing a bag of optimum solutions which trade disparate objectives amongst themselves. The work is validated against a feature set which consists of GLCM features, shape features and GLRLM (gray-level run length matrix) extracted from lung chest tomography (CT) images. Classification is done using k-nearest neighbor with class probability and normal distribution (ND). The proposed FS method’s performance is analyzed against widely used bio-inspired FS methods such as Firefly, Particle Swarm Optimization along with Bee Colony Optimization algorithms. The numerical analysis of this model indicates that the proposed hybrid FS algorithm achieves improved performance compared to a single objective optimization algorithm in respect of specificity, accuracy, F-score, precision, sensitivity and error rate. The proposed algorithm obtains the result of 90.588% in both and specificity accuracy rate, (77.143) precision, 87.667 sensitivity rate and error rate of 0.1 which are higher on considering the other prevailing methodologies
AbstractList Feature selection in computer aided diagnosis is now becoming a challenging part in the classification of lung diseases. This is because, it needs to deliver results with improved accuracy and it also requires a greater number of features for analysis. The major demerit of widely utilized single-objective feature selection (FS) algorithm is that it proffers only a single optimum solution for a feature set. Here, a hybridized multi-objective particle swarm optimization with a local Tabu search (MOPSO-TS) algorithm is proposed to overcome the above demerit of the traditional single objective algorithm by producing a bag of optimum solutions which trade disparate objectives amongst themselves. The work is validated against a feature set which consists of GLCM features, shape features and GLRLM (gray-level run length matrix) extracted from lung chest tomography (CT) images. Classification is done using k-nearest neighbor with class probability and normal distribution (ND). The proposed FS method’s performance is analyzed against widely used bio-inspired FS methods such as Firefly, Particle Swarm Optimization along with Bee Colony Optimization algorithms. The numerical analysis of this model indicates that the proposed hybrid FS algorithm achieves improved performance compared to a single objective optimization algorithm in respect of specificity, accuracy, F-score, precision, sensitivity and error rate. The proposed algorithm obtains the result of 90.588% in both and specificity accuracy rate, (77.143) precision, 87.667 sensitivity rate and error rate of 0.1 which are higher on considering the other prevailing methodologies
Author Kumar, Dhananjay
Dharmalingam, Vivekanandan
Author_xml – sequence: 1
  givenname: Vivekanandan
  surname: Dharmalingam
  fullname: Dharmalingam, Vivekanandan
  email: Vivek.thanigai@gmail.com
  organization: Information Technology, Madras Institute of Technology Campus, Anna University
– sequence: 2
  givenname: Dhananjay
  surname: Kumar
  fullname: Kumar, Dhananjay
  organization: Information Technology, Madras Institute of Technology Campus, Anna University
BookMark eNp9kMFOwzAMhiM0JMbYC3CKxDmQxE3SHtEEDGkSFzhHbeJOnbpmJO1hb0-3onHDF1vy99vSd0tmXeiQkHvBHwXn5ikJqZVkXArGQcqMmSsyF7nOmRKZml1mMDdkmdKOjwUFCCHmZLU-VrHxtMayHyLShC26vgkd3QePLa1DpK4tU2rqxpXnRahpO3Rb6psUoseY7sh1XbYJl799Qb5eXz5Xa7b5eHtfPW-Yk4b3TKNUgBV6dNp40Fjk2uXoFWRSF5nMMPcVZEpzLhQYNCBH2BW64iBAV7AgD9PdQwzfA6be7sIQu_GllYUoIOfCmJGSE-ViSClibQ-x2ZfxaAW3J1928mVHX_bsy55CMIXSCHdbjH-n_0n9ABVQbmg
Cites_doi 10.1155/2017/9838169
10.3322/caac.21492
10.1007/s13042-017-0712-6
10.1016/j.compbiomed.2012.10.001
10.2174/1386207321666180601074349
10.21917/ijivp.2015.0160
10.14419/ijet.v7i2.26.12538
10.1016/j.eswa.2017.03.036
10.9790/3021-04140105
10.1109/TCBB.2015.2476796
10.5120/16888-6910
10.1118/1.4890080
10.4018/jssci.2011040102
10.1016/j.ins.2015.07.041
10.1016/j.dss.2017.12.001
10.1109/TMI.2016.2535865
10.1007/s10916-014-0097-y
10.1007/978-1-4612-2404-4_19
10.1109/TSMCB.2012.2227469
10.1145/3205455.3205540
10.1007/978-3-319-13563-2_44
10.1109/ELECSYM.2016.7861030
10.1109/ICACDOT.2016.7877572
10.1109/ICCKE.2013.6682833
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s12652-021-03224-7
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
PROQUEST
Technology Collection (via ProQuest SciTech Premium Collection)
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1868-5145
EndPage 5625
ExternalDocumentID 10_1007_s12652_021_03224_7
GroupedDBID -EM
06D
0R~
0VY
1N0
203
29~
2JY
2VQ
30V
4.4
406
408
409
40D
96X
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ARAPS
AUKKA
AXYYD
AYJHY
BENPR
BGLVJ
BGNMA
BSONS
CCPQU
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GQ8
H13
HCIFZ
HF~
HG6
HMJXF
HQYDN
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
IZIGR
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P2P
P9P
PT4
QOS
R89
R9I
RLLFE
ROL
RSV
S1Z
S27
S3B
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
WK8
Z45
Z5O
Z7R
Z7X
Z83
Z88
ZMTXR
~A9
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c270t-6e253ebedec67d36e986c8ed534269424e8db3456001537e732bedc96b03136b3
IEDL.DBID BENPR
ISSN 1868-5137
IngestDate Fri Jul 25 23:29:26 EDT 2025
Wed Oct 01 03:06:40 EDT 2025
Fri Feb 21 02:46:33 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Multi-objective particle swarm optimization
Feature selection
Tabu search
Multi-objective particle swarm optimization with a local Tabu search (MOPSO-TS)
k-Nearest neighbor
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-6e253ebedec67d36e986c8ed534269424e8db3456001537e732bedc96b03136b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2919380177
PQPubID 2043913
PageCount 17
ParticipantIDs proquest_journals_2919380177
crossref_primary_10_1007_s12652_021_03224_7
springer_journals_10_1007_s12652_021_03224_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20221200
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 20221200
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Journal of ambient intelligence and humanized computing
PublicationTitleAbbrev J Ambient Intell Human Comput
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Banati, Bajaj (CR4) 2011; 8
Lu, Zhu, Gu (CR18) 2014; 38
CR13
Rajab (CR24) 2017
CR12
Ferchichi, Laabidi, Zidi (CR15) 2009; 18
Bing, Mengjie, Browne (CR5) 2013; 43
Fatemeh, Soltanian-Zadeh (CR14) 2013; 45
Aha, Bankert, Fisher, Lenz (CR2) 1996
Perumal, Velmurugan (CR23) 2018; 7
Wang, Kong, Aorigele, Gao, Zeng (CR28) 2018; 21
Bray, Ferlay, Soerjomataram, Siegel, Torre, Jemal (CR6) 2018; 68
Changzhong, Qiang, Mingwen, Qinghua (CR8) 2017
Zhang, Gong, Cheng (CR31) 2017; 14
Chen, Zhou, Luo (CR10) 2017; 81
Chitra, Nasira (CR11) 2015; 06
Miguel, Francisco, Batista, Moreno-Vega (CR19) 2016; 326
CR29
Kharrat, Karim, Ben Messaoud, Abid, M (CR16) 2011; 3
Tan, Pu, Zheng (CR27) 2014; 41
Pattanshetti, Attar, Balas, Sharma, Chakrabarti (CR22) 2019
Adegoke (CR1) 2014; 4
Chen, Bolun, Yixin (CR9) 2011
CR21
CR20
Vanaja, Ramesh Kumar (CR17) 2014; 96
Zhang, Mistry, Lim, Neoh (CR30) 2017; 106
Suebsing, Hiransakolwong (CR25) 2012; 6
Chang, Kim, Lee, Lim, Seo, Lee (CR7) 2012; 42
Anthimopoulos, Christodoulidis, Ebner, Christe, Mougiakakou (CR3) 2016; 35
Talavera, Famili, Kok, Peña, Siebes, Feelders (CR26) 2005
H Banati (3224_CR4) 2011; 8
3224_CR12
F Bray (3224_CR6) 2018; 68
3224_CR13
GT Miguel (3224_CR19) 2016; 326
X Bing (3224_CR5) 2013; 43
W Changzhong (3224_CR8) 2017
L Chen (3224_CR9) 2011
KD Rajab (3224_CR24) 2017
S Vanaja (3224_CR17) 2014; 96
Z Chen (3224_CR10) 2017; 81
A Kharrat (3224_CR16) 2011; 3
D Chitra (3224_CR11) 2015; 06
Y Chang (3224_CR7) 2012; 42
BO Adegoke (3224_CR1) 2014; 4
S Perumal (3224_CR23) 2018; 7
S Wang (3224_CR28) 2018; 21
L Zhang (3224_CR30) 2017; 106
3224_CR20
Y Zhang (3224_CR31) 2017; 14
3224_CR21
S Ferchichi (3224_CR15) 2009; 18
M Anthimopoulos (3224_CR3) 2016; 35
C Lu (3224_CR18) 2014; 38
L Talavera (3224_CR26) 2005
DW Aha (3224_CR2) 1996
M Tan (3224_CR27) 2014; 41
S Fatemeh (3224_CR14) 2013; 45
A Suebsing (3224_CR25) 2012; 6
T Pattanshetti (3224_CR22) 2019
3224_CR29
References_xml – year: 2017
  ident: CR24
  article-title: New hybrid features selection method: a case study on websites phishing.
  publication-title: Hindawi Secur Commun Netw
  doi: 10.1155/2017/9838169
– year: 2005
  ident: CR26
  article-title: An evaluation of filter and wrapper methods for feature selection in categorical clustering
  publication-title: Advances in intelligent data analysis VI. IDA 2005
– volume: 68
  start-page: 394
  year: 2018
  end-page: 424
  ident: CR6
  article-title: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21492
– year: 2017
  ident: CR8
  article-title: Feature selection based on maximal neighborhood discernibility
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-017-0712-6
– ident: CR12
– volume: 18
  start-page: 181
  issue: 2
  year: 2009
  end-page: 187
  ident: CR15
  article-title: Genetic algorithm and Tabu search for feature selection
  publication-title: Stud Inform Control
– year: 2019
  ident: CR22
  article-title: Performance evaluation and analysis of feature selection algorithms
  publication-title: Data management, analytics and innovation. Advances in intelligent systems and computing
– volume: 42
  start-page: 1157
  issue: 12
  year: 2012
  end-page: 1164
  ident: CR7
  article-title: Fast and efficient lung disease classification using hierarchical one-against-all support vector machine and cost-sensitive feature selection
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2012.10.001
– volume: 21
  start-page: 420
  issue: 6
  year: 2018
  end-page: 430
  ident: CR28
  article-title: Hybrid feature selection algorithm mRMR-ICA for cancer classification from microarray gene expression data
  publication-title: Comb Chem High Throughput Screen
  doi: 10.2174/1386207321666180601074349
– volume: 06
  start-page: 1096
  year: 2015
  end-page: 1103
  ident: CR11
  article-title: Wrapper based feature selection for CT image
  publication-title: ICTACT J Image Video Process
  doi: 10.21917/ijivp.2015.0160
– ident: CR29
– volume: 6
  start-page: 6627
  year: 2012
  end-page: 6655
  ident: CR25
  article-title: A novel technique for feature subset selection based on Cosine similarity
  publication-title: Appl Math Sci
– volume: 7
  start-page: 74
  issue: 2.26
  year: 2018
  end-page: 79
  ident: CR23
  article-title: Lung cancer detection and classification on CT scan images using enhanced artificial bee colony optimization
  publication-title: Int J Eng Technol
  doi: 10.14419/ijet.v7i2.26.12538
– volume: 81
  start-page: 309
  year: 2017
  end-page: 320
  ident: CR10
  article-title: A robust ant colony optimization for continuous functions
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.03.036
– ident: CR21
– start-page: 580
  year: 2011
  end-page: 589
  ident: CR9
  article-title: Image feature selection based on ant colony optimization
  publication-title: Australasian joint conference on artificial intelligence
– volume: 4
  start-page: 01
  year: 2014
  end-page: 05
  ident: CR1
  article-title: Review of feature selection methods in medical image processing
  publication-title: IOSR J Eng
  doi: 10.9790/3021-04140105
– volume: 8
  start-page: 473
  issue: 4
  year: 2011
  end-page: 479
  ident: CR4
  article-title: Fire fly based feature selection approach
  publication-title: Int J Comput Sci Issues
– volume: 14
  start-page: 64
  year: 2017
  end-page: 75
  ident: CR31
  article-title: Multi-objective particle swarm optimization approach for cost-based feature selection in classification
  publication-title: IEEE/ACM Trans Comput Biol Bioinf
  doi: 10.1109/TCBB.2015.2476796
– volume: 96
  start-page: 28
  issue: 14
  year: 2014
  end-page: 35
  ident: CR17
  article-title: Analysis of feature selection algorithms on classification: a survey
  publication-title: Int J Comput Appl
  doi: 10.5120/16888-6910
– volume: 41
  start-page: 081906
  issue: 8
  year: 2014
  ident: CR27
  article-title: A new and fast image feature selection method for developing an optimal mammographic mass detection scheme
  publication-title: Med Phys
  doi: 10.1118/1.4890080
– volume: 3
  start-page: 19
  issue: 2
  year: 2011
  end-page: 33
  ident: CR16
  article-title: Medical image classification using an optimal feature extraction algorithm and a supervised classifier technique
  publication-title: Int J Softw Sci Comput Intell (JSSCI)
  doi: 10.4018/jssci.2011040102
– ident: CR13
– volume: 45
  start-page: 43
  issue: 2
  year: 2013
  end-page: 56
  ident: CR14
  article-title: Fast SFFS-based algorithm for feature selection in biomedical datasets
  publication-title: Amirkabir (J Sci Technol)
– volume: 326
  start-page: 102
  year: 2016
  end-page: 118
  ident: CR19
  article-title: High-dimensional feature selection via feature grouping: a variable neighborhood search approach
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2015.07.041
– volume: 106
  start-page: 64
  year: 2017
  end-page: 85
  ident: CR30
  article-title: Feature selection using firefly optimization for classification and regression models
  publication-title: Decis Support Syst
  doi: 10.1016/j.dss.2017.12.001
– volume: 35
  start-page: 1207
  issue: 5
  year: 2016
  end-page: 1216
  ident: CR3
  article-title: Lung pattern classification for interstitial lung diseases using a deep convolutional neural network
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2016.2535865
– volume: 38
  start-page: 97
  issue: 9
  year: 2014
  ident: CR18
  article-title: An intelligent system for lung cancer diagnosis using a new genetic algorithm based feature selection method
  publication-title: J Med Syst
  doi: 10.1007/s10916-014-0097-y
– start-page: 199
  year: 1996
  end-page: 206
  ident: CR2
  article-title: A comparative evaluation of sequential feature selection algorithms
  publication-title: Learning from data
  doi: 10.1007/978-1-4612-2404-4_19
– volume: 43
  start-page: 1656
  issue: 6
  year: 2013
  end-page: 1671
  ident: CR5
  article-title: Particle swarm optimization for feature selection in classification: a multi-objective approach
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TSMCB.2012.2227469
– ident: CR20
– year: 2017
  ident: 3224_CR24
  publication-title: Hindawi Secur Commun Netw
  doi: 10.1155/2017/9838169
– volume: 81
  start-page: 309
  year: 2017
  ident: 3224_CR10
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.03.036
– volume: 41
  start-page: 081906
  issue: 8
  year: 2014
  ident: 3224_CR27
  publication-title: Med Phys
  doi: 10.1118/1.4890080
– volume: 14
  start-page: 64
  year: 2017
  ident: 3224_CR31
  publication-title: IEEE/ACM Trans Comput Biol Bioinf
  doi: 10.1109/TCBB.2015.2476796
– volume: 35
  start-page: 1207
  issue: 5
  year: 2016
  ident: 3224_CR3
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2016.2535865
– volume: 45
  start-page: 43
  issue: 2
  year: 2013
  ident: 3224_CR14
  publication-title: Amirkabir (J Sci Technol)
– ident: 3224_CR21
  doi: 10.1145/3205455.3205540
– volume: 42
  start-page: 1157
  issue: 12
  year: 2012
  ident: 3224_CR7
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2012.10.001
– volume: 3
  start-page: 19
  issue: 2
  year: 2011
  ident: 3224_CR16
  publication-title: Int J Softw Sci Comput Intell (JSSCI)
  doi: 10.4018/jssci.2011040102
– volume-title: Advances in intelligent data analysis VI. IDA 2005
  year: 2005
  ident: 3224_CR26
– volume: 326
  start-page: 102
  year: 2016
  ident: 3224_CR19
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2015.07.041
– ident: 3224_CR29
  doi: 10.1007/978-3-319-13563-2_44
– start-page: 580
  volume-title: Australasian joint conference on artificial intelligence
  year: 2011
  ident: 3224_CR9
– volume: 06
  start-page: 1096
  year: 2015
  ident: 3224_CR11
  publication-title: ICTACT J Image Video Process
  doi: 10.21917/ijivp.2015.0160
– volume: 4
  start-page: 01
  year: 2014
  ident: 3224_CR1
  publication-title: IOSR J Eng
  doi: 10.9790/3021-04140105
– volume: 21
  start-page: 420
  issue: 6
  year: 2018
  ident: 3224_CR28
  publication-title: Comb Chem High Throughput Screen
  doi: 10.2174/1386207321666180601074349
– year: 2017
  ident: 3224_CR8
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-017-0712-6
– ident: 3224_CR13
  doi: 10.1109/ELECSYM.2016.7861030
– volume: 38
  start-page: 97
  issue: 9
  year: 2014
  ident: 3224_CR18
  publication-title: J Med Syst
  doi: 10.1007/s10916-014-0097-y
– volume: 96
  start-page: 28
  issue: 14
  year: 2014
  ident: 3224_CR17
  publication-title: Int J Comput Appl
  doi: 10.5120/16888-6910
– volume: 6
  start-page: 6627
  year: 2012
  ident: 3224_CR25
  publication-title: Appl Math Sci
– ident: 3224_CR12
  doi: 10.1109/ICACDOT.2016.7877572
– ident: 3224_CR20
  doi: 10.1109/ICCKE.2013.6682833
– start-page: 199
  volume-title: Learning from data
  year: 1996
  ident: 3224_CR2
  doi: 10.1007/978-1-4612-2404-4_19
– volume: 68
  start-page: 394
  year: 2018
  ident: 3224_CR6
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21492
– volume: 18
  start-page: 181
  issue: 2
  year: 2009
  ident: 3224_CR15
  publication-title: Stud Inform Control
– volume-title: Data management, analytics and innovation. Advances in intelligent systems and computing
  year: 2019
  ident: 3224_CR22
– volume: 8
  start-page: 473
  issue: 4
  year: 2011
  ident: 3224_CR4
  publication-title: Int J Comput Sci Issues
– volume: 7
  start-page: 74
  issue: 2.26
  year: 2018
  ident: 3224_CR23
  publication-title: Int J Eng Technol
  doi: 10.14419/ijet.v7i2.26.12538
– volume: 106
  start-page: 64
  year: 2017
  ident: 3224_CR30
  publication-title: Decis Support Syst
  doi: 10.1016/j.dss.2017.12.001
– volume: 43
  start-page: 1656
  issue: 6
  year: 2013
  ident: 3224_CR5
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TSMCB.2012.2227469
SSID ssj0000393111
Score 2.2576642
Snippet Feature selection in computer aided diagnosis is now becoming a challenging part in the classification of lung diseases. This is because, it needs to deliver...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 5609
SubjectTerms Accuracy
Algorithms
Artificial Intelligence
Classification
Computational Intelligence
Computed tomography
Datasets
Engineering
Feature selection
Image classification
Lung diseases
Lungs
Methods
Multiple objective analysis
Normal distribution
Numerical analysis
Optimization
Original Research
Particle swarm optimization
Robotics and Automation
Search algorithms
Sensitivity
Statistical analysis
Support vector machines
Swarm intelligence
Tabu search
User Interfaces and Human Computer Interaction
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED3xscCA-BSFgjywgaXEn8lYVVQVAxOVulm140yoRaQM_HvO14QAgoHZlodnO_cuvvcO4Cb4RVlgZOSiNDVXPiheBiG5zGpjiiKluVTl-2imM_Uw1_NWFNZ01e7dkyR9qXuxmzBa8FRSkOEpVNxuw65Odl54imdi9PlnJalNc2q8m6zguc6lbdUyvy_zPSL1NPPHyygFnMkhHLRMkY02W3sEW3F5DPtf_ANPYDx9T4IrVkey52QNNbVBpBk1uGFISFlI9DjVA9EWsFXNnvF-s6p13WxOYTa5fxpPedsVgQdhszU3UWiJ0FcxGFtJExHrUMRKS1KlChWLyktFTEZLG60UODmUxiebRuPlGewsV8t4DkxlUWnMmMq8Dpi4LArkXypIzDCQ5eXBD-C2Q8a9bMwvXG9znHB0iKMjHJ0dwLADz7UXoXGiRIaIUdDi8F0HaD_892oX_5t-CXsiCROo0GQIO-vXt3iFdGHtr-l0fABlzLMf
  priority: 102
  providerName: Springer Nature
Title Hybrid feature selection model for classification of lung disorders
URI https://link.springer.com/article/10.1007/s12652-021-03224-7
https://www.proquest.com/docview/2919380177
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1868-5145
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000393111
  issn: 1868-5137
  databaseCode: AFBBN
  dateStart: 20100301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1868-5145
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0000393111
  issn: 1868-5137
  databaseCode: BENPR
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1868-5145
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000393111
  issn: 1868-5137
  databaseCode: AGYKE
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1868-5145
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000393111
  issn: 1868-5137
  databaseCode: U2A
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwED2VdmFBIEAUSuWBDSwS27GTAaFS9UMgVQhRqUxR4zgTagstA_-eOzchAgnWJPLwLrbf2XfvAVzYbJ7EuDNykeiCq8wqnlghuQwKreOY0lxf5TvR46m6n0WzBkyqXhgqq6zWRL9Q50tLZ-TXIkGqgcupMberN06uUXS7WllozEtrhfzGS4ztQEuQMlYTWneDyePT96kLdaKG3pSXZOJ5FEpTdtJs--mEjgSnqoUAf3TFzc_dqqagv25N_WY03Ie9kkWy3jbsB9Bwi0Pojz-p_YoVzot1srW3uEHcmbe7YUhPmSWyTNVBPiBsWbBXnO0sLzU410cwHQ6e-2NeeiRwK0yw4dqJSGIgcme1yaV2iLyNXR5J36MqlIvzTCrPayJpnJECP7aJzki0UWfyGJqL5cKdAFOBUxHmT0lYWExj5jGyMWUl5hvI-UKbteGywiJdbaUw0lr0mJBLEbnUI5eaNnQquNJyWqzTOohtuKogrF__Pdrp_6Odwa6gtgRfZtKB5ub9w50jWdhkXdiJh6MutHqjl4dBt_wf8OlU9L4AJ-u7rw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1BT8IwFH5BOOjFaNSIovagJ22Etmu3AzGKEhAkxkDCbbKuOxlAhzH8OX-br2WTaKI3zlua7fX19Xvt-74HcKqjUeDjzkhZIBMqIi1ooBmnvJpI6fs2zXVVvj3ZGoj7oTcswGfOhbFllXlMdIE6nmh7Rn7JAoQaGE6Vupq-Uts1yt6u5i00RllrhbjuJMYyYkfHzD8whUvr7Vuc7zPGmnf9RotmXQaoZqo6o9Iwj-OvxEZLFXNp8Nu1b2KPO5YnE8aPIy4cMvC4MoozfFkHMrKyhzLiOO4alAQXASZ_pZu73uPT9ymPZb7WXBNgK0tPvRpXGXNnwd9j0mPUVklUcWEJqn7ujkvI--uW1m1-zS3YzFAruV642TYUzHgHGq25pXuRxDhxUJK6ljo4z8S11yEIh4m24NxWIzkHIJOEvGB0IXGm-ZnuwmAl1tqD4ngyNvtARNUID_O1oJZoTJtGPqI_oTnmN4gxazoqw3lui3C6kN4IlyLL1nIhWi50lgtVGSq5ucJsGabh0mnKcJGbcPn479EO_h_tBNZb_Ydu2G33OoewwSwlwpW4VKA4e3s3RwhUZtFx5g0EnlftgF8LlvRe
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BkRAMiE9RKOCBDawmtmMnY1WoyocqBip1sxrHmVBatWHg33N2E1IQDMy2PDzbunf2vXcA1yadJjFGRsoSmVORGkETwzjlQS5lHLs011f5juRwLB4n0WRNxe-r3esvyZWmwbk0FWV3nuXdRvjGZMSoKy8I8EQKqjZhSzijBDzRY9b7emVxytPQN-F1tvA0CrmqlDO_L_M9OjWU88cvqQ8-g33Yq1gj6a22-QA2bHEIu2tegkfQH3448RXJrbfqJEvf4AZRJ77ZDUFySoyjyq42yG8HmeXkDe86ySoHzuUxjAf3r_0hrTokUMNUUFJpWcRxGzJrpMq4tIi7iW0Wca9QZcLGWcqFZzURV1ZxhpNNIlNn2ShTfgKtYlbYUyAisCLC7CkJc4NJzDRGLiYMx2wDGV9o0jbc1Mjo-coIQzeWxw5HjThqj6NWbejU4OnqUiw1S5AtYkRUOHxbA9oM_73a2f-mX8H2y91APz-Mns5hhzm9gq8_6UCrXLzbC2QRZXrpD8onAfG6Rw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+feature+selection+model+for+classification+of+lung+disorders&rft.jtitle=Journal+of+ambient+intelligence+and+humanized+computing&rft.au=Dharmalingam%2C+Vivekanandan&rft.au=Kumar%2C+Dhananjay&rft.date=2022-12-01&rft.issn=1868-5137&rft.eissn=1868-5145&rft.volume=13&rft.issue=12&rft.spage=5609&rft.epage=5625&rft_id=info:doi/10.1007%2Fs12652-021-03224-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12652_021_03224_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-5137&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-5137&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-5137&client=summon