Hybrid feature selection model for classification of lung disorders
Feature selection in computer aided diagnosis is now becoming a challenging part in the classification of lung diseases. This is because, it needs to deliver results with improved accuracy and it also requires a greater number of features for analysis. The major demerit of widely utilized single-obj...
Saved in:
| Published in | Journal of ambient intelligence and humanized computing Vol. 13; no. 12; pp. 5609 - 5625 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2022
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1868-5137 1868-5145 |
| DOI | 10.1007/s12652-021-03224-7 |
Cover
| Abstract | Feature selection in computer aided diagnosis is now becoming a challenging part in the classification of lung diseases. This is because, it needs to deliver results with improved accuracy and it also requires a greater number of features for analysis. The major demerit of widely utilized single-objective feature selection (FS) algorithm is that it proffers only a single optimum solution for a feature set. Here, a hybridized multi-objective particle swarm optimization with a local Tabu search (MOPSO-TS) algorithm is proposed to overcome the above demerit of the traditional single objective algorithm by producing a bag of optimum solutions which trade disparate objectives amongst themselves. The work is validated against a feature set which consists of GLCM features, shape features and GLRLM (gray-level run length matrix) extracted from lung chest tomography (CT) images. Classification is done using k-nearest neighbor with class probability and normal distribution (ND). The proposed FS method’s performance is analyzed against widely used bio-inspired FS methods such as Firefly, Particle Swarm Optimization along with Bee Colony Optimization algorithms. The numerical analysis of this model indicates that the proposed hybrid FS algorithm achieves improved performance compared to a single objective optimization algorithm in respect of specificity, accuracy, F-score, precision, sensitivity and error rate. The proposed algorithm obtains the result of 90.588% in both and specificity accuracy rate, (77.143) precision, 87.667 sensitivity rate and error rate of 0.1 which are higher on considering the other prevailing methodologies |
|---|---|
| AbstractList | Feature selection in computer aided diagnosis is now becoming a challenging part in the classification of lung diseases. This is because, it needs to deliver results with improved accuracy and it also requires a greater number of features for analysis. The major demerit of widely utilized single-objective feature selection (FS) algorithm is that it proffers only a single optimum solution for a feature set. Here, a hybridized multi-objective particle swarm optimization with a local Tabu search (MOPSO-TS) algorithm is proposed to overcome the above demerit of the traditional single objective algorithm by producing a bag of optimum solutions which trade disparate objectives amongst themselves. The work is validated against a feature set which consists of GLCM features, shape features and GLRLM (gray-level run length matrix) extracted from lung chest tomography (CT) images. Classification is done using k-nearest neighbor with class probability and normal distribution (ND). The proposed FS method’s performance is analyzed against widely used bio-inspired FS methods such as Firefly, Particle Swarm Optimization along with Bee Colony Optimization algorithms. The numerical analysis of this model indicates that the proposed hybrid FS algorithm achieves improved performance compared to a single objective optimization algorithm in respect of specificity, accuracy, F-score, precision, sensitivity and error rate. The proposed algorithm obtains the result of 90.588% in both and specificity accuracy rate, (77.143) precision, 87.667 sensitivity rate and error rate of 0.1 which are higher on considering the other prevailing methodologies |
| Author | Kumar, Dhananjay Dharmalingam, Vivekanandan |
| Author_xml | – sequence: 1 givenname: Vivekanandan surname: Dharmalingam fullname: Dharmalingam, Vivekanandan email: Vivek.thanigai@gmail.com organization: Information Technology, Madras Institute of Technology Campus, Anna University – sequence: 2 givenname: Dhananjay surname: Kumar fullname: Kumar, Dhananjay organization: Information Technology, Madras Institute of Technology Campus, Anna University |
| BookMark | eNp9kMFOwzAMhiM0JMbYC3CKxDmQxE3SHtEEDGkSFzhHbeJOnbpmJO1hb0-3onHDF1vy99vSd0tmXeiQkHvBHwXn5ikJqZVkXArGQcqMmSsyF7nOmRKZml1mMDdkmdKOjwUFCCHmZLU-VrHxtMayHyLShC26vgkd3QePLa1DpK4tU2rqxpXnRahpO3Rb6psUoseY7sh1XbYJl799Qb5eXz5Xa7b5eHtfPW-Yk4b3TKNUgBV6dNp40Fjk2uXoFWRSF5nMMPcVZEpzLhQYNCBH2BW64iBAV7AgD9PdQwzfA6be7sIQu_GllYUoIOfCmJGSE-ViSClibQ-x2ZfxaAW3J1928mVHX_bsy55CMIXSCHdbjH-n_0n9ABVQbmg |
| Cites_doi | 10.1155/2017/9838169 10.3322/caac.21492 10.1007/s13042-017-0712-6 10.1016/j.compbiomed.2012.10.001 10.2174/1386207321666180601074349 10.21917/ijivp.2015.0160 10.14419/ijet.v7i2.26.12538 10.1016/j.eswa.2017.03.036 10.9790/3021-04140105 10.1109/TCBB.2015.2476796 10.5120/16888-6910 10.1118/1.4890080 10.4018/jssci.2011040102 10.1016/j.ins.2015.07.041 10.1016/j.dss.2017.12.001 10.1109/TMI.2016.2535865 10.1007/s10916-014-0097-y 10.1007/978-1-4612-2404-4_19 10.1109/TSMCB.2012.2227469 10.1145/3205455.3205540 10.1007/978-3-319-13563-2_44 10.1109/ELECSYM.2016.7861030 10.1109/ICACDOT.2016.7877572 10.1109/ICCKE.2013.6682833 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.1007/s12652-021-03224-7 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC PROQUEST Technology Collection (via ProQuest SciTech Premium Collection) ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1868-5145 |
| EndPage | 5625 |
| ExternalDocumentID | 10_1007_s12652_021_03224_7 |
| GroupedDBID | -EM 06D 0R~ 0VY 1N0 203 29~ 2JY 2VQ 30V 4.4 406 408 409 40D 96X AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABBXA ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ARAPS AUKKA AXYYD AYJHY BENPR BGLVJ BGNMA BSONS CCPQU CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG F5P FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 GQ8 H13 HCIFZ HF~ HG6 HMJXF HQYDN HRMNR HZ~ I0C IKXTQ IWAJR IXD IZIGR J-C J0Z JBSCW JCJTX JZLTJ K7- KOV LLZTM M4Y NPVJJ NQJWS NU0 O9- O93 O9J P2P P9P PT4 QOS R89 R9I RLLFE ROL RSV S1Z S27 S3B SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VFIZW W48 WK8 Z45 Z5O Z7R Z7X Z83 Z88 ZMTXR ~A9 AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c270t-6e253ebedec67d36e986c8ed534269424e8db3456001537e732bedc96b03136b3 |
| IEDL.DBID | BENPR |
| ISSN | 1868-5137 |
| IngestDate | Fri Jul 25 23:29:26 EDT 2025 Wed Oct 01 03:06:40 EDT 2025 Fri Feb 21 02:46:33 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | Multi-objective particle swarm optimization Feature selection Tabu search Multi-objective particle swarm optimization with a local Tabu search (MOPSO-TS) k-Nearest neighbor |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c270t-6e253ebedec67d36e986c8ed534269424e8db3456001537e732bedc96b03136b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2919380177 |
| PQPubID | 2043913 |
| PageCount | 17 |
| ParticipantIDs | proquest_journals_2919380177 crossref_primary_10_1007_s12652_021_03224_7 springer_journals_10_1007_s12652_021_03224_7 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20221200 |
| PublicationDateYYYYMMDD | 2022-12-01 |
| PublicationDate_xml | – month: 12 year: 2022 text: 20221200 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Journal of ambient intelligence and humanized computing |
| PublicationTitleAbbrev | J Ambient Intell Human Comput |
| PublicationYear | 2022 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Banati, Bajaj (CR4) 2011; 8 Lu, Zhu, Gu (CR18) 2014; 38 CR13 Rajab (CR24) 2017 CR12 Ferchichi, Laabidi, Zidi (CR15) 2009; 18 Bing, Mengjie, Browne (CR5) 2013; 43 Fatemeh, Soltanian-Zadeh (CR14) 2013; 45 Aha, Bankert, Fisher, Lenz (CR2) 1996 Perumal, Velmurugan (CR23) 2018; 7 Wang, Kong, Aorigele, Gao, Zeng (CR28) 2018; 21 Bray, Ferlay, Soerjomataram, Siegel, Torre, Jemal (CR6) 2018; 68 Changzhong, Qiang, Mingwen, Qinghua (CR8) 2017 Zhang, Gong, Cheng (CR31) 2017; 14 Chen, Zhou, Luo (CR10) 2017; 81 Chitra, Nasira (CR11) 2015; 06 Miguel, Francisco, Batista, Moreno-Vega (CR19) 2016; 326 CR29 Kharrat, Karim, Ben Messaoud, Abid, M (CR16) 2011; 3 Tan, Pu, Zheng (CR27) 2014; 41 Pattanshetti, Attar, Balas, Sharma, Chakrabarti (CR22) 2019 Adegoke (CR1) 2014; 4 Chen, Bolun, Yixin (CR9) 2011 CR21 CR20 Vanaja, Ramesh Kumar (CR17) 2014; 96 Zhang, Mistry, Lim, Neoh (CR30) 2017; 106 Suebsing, Hiransakolwong (CR25) 2012; 6 Chang, Kim, Lee, Lim, Seo, Lee (CR7) 2012; 42 Anthimopoulos, Christodoulidis, Ebner, Christe, Mougiakakou (CR3) 2016; 35 Talavera, Famili, Kok, Peña, Siebes, Feelders (CR26) 2005 H Banati (3224_CR4) 2011; 8 3224_CR12 F Bray (3224_CR6) 2018; 68 3224_CR13 GT Miguel (3224_CR19) 2016; 326 X Bing (3224_CR5) 2013; 43 W Changzhong (3224_CR8) 2017 L Chen (3224_CR9) 2011 KD Rajab (3224_CR24) 2017 S Vanaja (3224_CR17) 2014; 96 Z Chen (3224_CR10) 2017; 81 A Kharrat (3224_CR16) 2011; 3 D Chitra (3224_CR11) 2015; 06 Y Chang (3224_CR7) 2012; 42 BO Adegoke (3224_CR1) 2014; 4 S Perumal (3224_CR23) 2018; 7 S Wang (3224_CR28) 2018; 21 L Zhang (3224_CR30) 2017; 106 3224_CR20 Y Zhang (3224_CR31) 2017; 14 3224_CR21 S Ferchichi (3224_CR15) 2009; 18 M Anthimopoulos (3224_CR3) 2016; 35 C Lu (3224_CR18) 2014; 38 L Talavera (3224_CR26) 2005 DW Aha (3224_CR2) 1996 M Tan (3224_CR27) 2014; 41 S Fatemeh (3224_CR14) 2013; 45 A Suebsing (3224_CR25) 2012; 6 T Pattanshetti (3224_CR22) 2019 3224_CR29 |
| References_xml | – year: 2017 ident: CR24 article-title: New hybrid features selection method: a case study on websites phishing. publication-title: Hindawi Secur Commun Netw doi: 10.1155/2017/9838169 – year: 2005 ident: CR26 article-title: An evaluation of filter and wrapper methods for feature selection in categorical clustering publication-title: Advances in intelligent data analysis VI. IDA 2005 – volume: 68 start-page: 394 year: 2018 end-page: 424 ident: CR6 article-title: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries publication-title: CA Cancer J Clin doi: 10.3322/caac.21492 – year: 2017 ident: CR8 article-title: Feature selection based on maximal neighborhood discernibility publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-017-0712-6 – ident: CR12 – volume: 18 start-page: 181 issue: 2 year: 2009 end-page: 187 ident: CR15 article-title: Genetic algorithm and Tabu search for feature selection publication-title: Stud Inform Control – year: 2019 ident: CR22 article-title: Performance evaluation and analysis of feature selection algorithms publication-title: Data management, analytics and innovation. Advances in intelligent systems and computing – volume: 42 start-page: 1157 issue: 12 year: 2012 end-page: 1164 ident: CR7 article-title: Fast and efficient lung disease classification using hierarchical one-against-all support vector machine and cost-sensitive feature selection publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2012.10.001 – volume: 21 start-page: 420 issue: 6 year: 2018 end-page: 430 ident: CR28 article-title: Hybrid feature selection algorithm mRMR-ICA for cancer classification from microarray gene expression data publication-title: Comb Chem High Throughput Screen doi: 10.2174/1386207321666180601074349 – volume: 06 start-page: 1096 year: 2015 end-page: 1103 ident: CR11 article-title: Wrapper based feature selection for CT image publication-title: ICTACT J Image Video Process doi: 10.21917/ijivp.2015.0160 – ident: CR29 – volume: 6 start-page: 6627 year: 2012 end-page: 6655 ident: CR25 article-title: A novel technique for feature subset selection based on Cosine similarity publication-title: Appl Math Sci – volume: 7 start-page: 74 issue: 2.26 year: 2018 end-page: 79 ident: CR23 article-title: Lung cancer detection and classification on CT scan images using enhanced artificial bee colony optimization publication-title: Int J Eng Technol doi: 10.14419/ijet.v7i2.26.12538 – volume: 81 start-page: 309 year: 2017 end-page: 320 ident: CR10 article-title: A robust ant colony optimization for continuous functions publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.03.036 – ident: CR21 – start-page: 580 year: 2011 end-page: 589 ident: CR9 article-title: Image feature selection based on ant colony optimization publication-title: Australasian joint conference on artificial intelligence – volume: 4 start-page: 01 year: 2014 end-page: 05 ident: CR1 article-title: Review of feature selection methods in medical image processing publication-title: IOSR J Eng doi: 10.9790/3021-04140105 – volume: 8 start-page: 473 issue: 4 year: 2011 end-page: 479 ident: CR4 article-title: Fire fly based feature selection approach publication-title: Int J Comput Sci Issues – volume: 14 start-page: 64 year: 2017 end-page: 75 ident: CR31 article-title: Multi-objective particle swarm optimization approach for cost-based feature selection in classification publication-title: IEEE/ACM Trans Comput Biol Bioinf doi: 10.1109/TCBB.2015.2476796 – volume: 96 start-page: 28 issue: 14 year: 2014 end-page: 35 ident: CR17 article-title: Analysis of feature selection algorithms on classification: a survey publication-title: Int J Comput Appl doi: 10.5120/16888-6910 – volume: 41 start-page: 081906 issue: 8 year: 2014 ident: CR27 article-title: A new and fast image feature selection method for developing an optimal mammographic mass detection scheme publication-title: Med Phys doi: 10.1118/1.4890080 – volume: 3 start-page: 19 issue: 2 year: 2011 end-page: 33 ident: CR16 article-title: Medical image classification using an optimal feature extraction algorithm and a supervised classifier technique publication-title: Int J Softw Sci Comput Intell (JSSCI) doi: 10.4018/jssci.2011040102 – ident: CR13 – volume: 45 start-page: 43 issue: 2 year: 2013 end-page: 56 ident: CR14 article-title: Fast SFFS-based algorithm for feature selection in biomedical datasets publication-title: Amirkabir (J Sci Technol) – volume: 326 start-page: 102 year: 2016 end-page: 118 ident: CR19 article-title: High-dimensional feature selection via feature grouping: a variable neighborhood search approach publication-title: Inf Sci doi: 10.1016/j.ins.2015.07.041 – volume: 106 start-page: 64 year: 2017 end-page: 85 ident: CR30 article-title: Feature selection using firefly optimization for classification and regression models publication-title: Decis Support Syst doi: 10.1016/j.dss.2017.12.001 – volume: 35 start-page: 1207 issue: 5 year: 2016 end-page: 1216 ident: CR3 article-title: Lung pattern classification for interstitial lung diseases using a deep convolutional neural network publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2016.2535865 – volume: 38 start-page: 97 issue: 9 year: 2014 ident: CR18 article-title: An intelligent system for lung cancer diagnosis using a new genetic algorithm based feature selection method publication-title: J Med Syst doi: 10.1007/s10916-014-0097-y – start-page: 199 year: 1996 end-page: 206 ident: CR2 article-title: A comparative evaluation of sequential feature selection algorithms publication-title: Learning from data doi: 10.1007/978-1-4612-2404-4_19 – volume: 43 start-page: 1656 issue: 6 year: 2013 end-page: 1671 ident: CR5 article-title: Particle swarm optimization for feature selection in classification: a multi-objective approach publication-title: IEEE Trans Cybern doi: 10.1109/TSMCB.2012.2227469 – ident: CR20 – year: 2017 ident: 3224_CR24 publication-title: Hindawi Secur Commun Netw doi: 10.1155/2017/9838169 – volume: 81 start-page: 309 year: 2017 ident: 3224_CR10 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.03.036 – volume: 41 start-page: 081906 issue: 8 year: 2014 ident: 3224_CR27 publication-title: Med Phys doi: 10.1118/1.4890080 – volume: 14 start-page: 64 year: 2017 ident: 3224_CR31 publication-title: IEEE/ACM Trans Comput Biol Bioinf doi: 10.1109/TCBB.2015.2476796 – volume: 35 start-page: 1207 issue: 5 year: 2016 ident: 3224_CR3 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2016.2535865 – volume: 45 start-page: 43 issue: 2 year: 2013 ident: 3224_CR14 publication-title: Amirkabir (J Sci Technol) – ident: 3224_CR21 doi: 10.1145/3205455.3205540 – volume: 42 start-page: 1157 issue: 12 year: 2012 ident: 3224_CR7 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2012.10.001 – volume: 3 start-page: 19 issue: 2 year: 2011 ident: 3224_CR16 publication-title: Int J Softw Sci Comput Intell (JSSCI) doi: 10.4018/jssci.2011040102 – volume-title: Advances in intelligent data analysis VI. IDA 2005 year: 2005 ident: 3224_CR26 – volume: 326 start-page: 102 year: 2016 ident: 3224_CR19 publication-title: Inf Sci doi: 10.1016/j.ins.2015.07.041 – ident: 3224_CR29 doi: 10.1007/978-3-319-13563-2_44 – start-page: 580 volume-title: Australasian joint conference on artificial intelligence year: 2011 ident: 3224_CR9 – volume: 06 start-page: 1096 year: 2015 ident: 3224_CR11 publication-title: ICTACT J Image Video Process doi: 10.21917/ijivp.2015.0160 – volume: 4 start-page: 01 year: 2014 ident: 3224_CR1 publication-title: IOSR J Eng doi: 10.9790/3021-04140105 – volume: 21 start-page: 420 issue: 6 year: 2018 ident: 3224_CR28 publication-title: Comb Chem High Throughput Screen doi: 10.2174/1386207321666180601074349 – year: 2017 ident: 3224_CR8 publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-017-0712-6 – ident: 3224_CR13 doi: 10.1109/ELECSYM.2016.7861030 – volume: 38 start-page: 97 issue: 9 year: 2014 ident: 3224_CR18 publication-title: J Med Syst doi: 10.1007/s10916-014-0097-y – volume: 96 start-page: 28 issue: 14 year: 2014 ident: 3224_CR17 publication-title: Int J Comput Appl doi: 10.5120/16888-6910 – volume: 6 start-page: 6627 year: 2012 ident: 3224_CR25 publication-title: Appl Math Sci – ident: 3224_CR12 doi: 10.1109/ICACDOT.2016.7877572 – ident: 3224_CR20 doi: 10.1109/ICCKE.2013.6682833 – start-page: 199 volume-title: Learning from data year: 1996 ident: 3224_CR2 doi: 10.1007/978-1-4612-2404-4_19 – volume: 68 start-page: 394 year: 2018 ident: 3224_CR6 publication-title: CA Cancer J Clin doi: 10.3322/caac.21492 – volume: 18 start-page: 181 issue: 2 year: 2009 ident: 3224_CR15 publication-title: Stud Inform Control – volume-title: Data management, analytics and innovation. Advances in intelligent systems and computing year: 2019 ident: 3224_CR22 – volume: 8 start-page: 473 issue: 4 year: 2011 ident: 3224_CR4 publication-title: Int J Comput Sci Issues – volume: 7 start-page: 74 issue: 2.26 year: 2018 ident: 3224_CR23 publication-title: Int J Eng Technol doi: 10.14419/ijet.v7i2.26.12538 – volume: 106 start-page: 64 year: 2017 ident: 3224_CR30 publication-title: Decis Support Syst doi: 10.1016/j.dss.2017.12.001 – volume: 43 start-page: 1656 issue: 6 year: 2013 ident: 3224_CR5 publication-title: IEEE Trans Cybern doi: 10.1109/TSMCB.2012.2227469 |
| SSID | ssj0000393111 |
| Score | 2.2576642 |
| Snippet | Feature selection in computer aided diagnosis is now becoming a challenging part in the classification of lung diseases. This is because, it needs to deliver... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 5609 |
| SubjectTerms | Accuracy Algorithms Artificial Intelligence Classification Computational Intelligence Computed tomography Datasets Engineering Feature selection Image classification Lung diseases Lungs Methods Multiple objective analysis Normal distribution Numerical analysis Optimization Original Research Particle swarm optimization Robotics and Automation Search algorithms Sensitivity Statistical analysis Support vector machines Swarm intelligence Tabu search User Interfaces and Human Computer Interaction |
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED3xscCA-BSFgjywgaXEn8lYVVQVAxOVulm140yoRaQM_HvO14QAgoHZlodnO_cuvvcO4Cb4RVlgZOSiNDVXPiheBiG5zGpjiiKluVTl-2imM_Uw1_NWFNZ01e7dkyR9qXuxmzBa8FRSkOEpVNxuw65Odl54imdi9PlnJalNc2q8m6zguc6lbdUyvy_zPSL1NPPHyygFnMkhHLRMkY02W3sEW3F5DPtf_ANPYDx9T4IrVkey52QNNbVBpBk1uGFISFlI9DjVA9EWsFXNnvF-s6p13WxOYTa5fxpPedsVgQdhszU3UWiJ0FcxGFtJExHrUMRKS1KlChWLyktFTEZLG60UODmUxiebRuPlGewsV8t4DkxlUWnMmMq8Dpi4LArkXypIzDCQ5eXBD-C2Q8a9bMwvXG9znHB0iKMjHJ0dwLADz7UXoXGiRIaIUdDi8F0HaD_892oX_5t-CXsiCROo0GQIO-vXt3iFdGHtr-l0fABlzLMf priority: 102 providerName: Springer Nature |
| Title | Hybrid feature selection model for classification of lung disorders |
| URI | https://link.springer.com/article/10.1007/s12652-021-03224-7 https://www.proquest.com/docview/2919380177 |
| Volume | 13 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1868-5145 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000393111 issn: 1868-5137 databaseCode: AFBBN dateStart: 20100301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1868-5145 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0000393111 issn: 1868-5137 databaseCode: BENPR dateStart: 20100301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1868-5145 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000393111 issn: 1868-5137 databaseCode: AGYKE dateStart: 20100101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1868-5145 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000393111 issn: 1868-5137 databaseCode: U2A dateStart: 20100301 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwED2VdmFBIEAUSuWBDSwS27GTAaFS9UMgVQhRqUxR4zgTagstA_-eOzchAgnWJPLwLrbf2XfvAVzYbJ7EuDNykeiCq8wqnlghuQwKreOY0lxf5TvR46m6n0WzBkyqXhgqq6zWRL9Q50tLZ-TXIkGqgcupMberN06uUXS7WllozEtrhfzGS4ztQEuQMlYTWneDyePT96kLdaKG3pSXZOJ5FEpTdtJs--mEjgSnqoUAf3TFzc_dqqagv25N_WY03Ie9kkWy3jbsB9Bwi0Pojz-p_YoVzot1srW3uEHcmbe7YUhPmSWyTNVBPiBsWbBXnO0sLzU410cwHQ6e-2NeeiRwK0yw4dqJSGIgcme1yaV2iLyNXR5J36MqlIvzTCrPayJpnJECP7aJzki0UWfyGJqL5cKdAFOBUxHmT0lYWExj5jGyMWUl5hvI-UKbteGywiJdbaUw0lr0mJBLEbnUI5eaNnQquNJyWqzTOohtuKogrF__Pdrp_6Odwa6gtgRfZtKB5ub9w50jWdhkXdiJh6MutHqjl4dBt_wf8OlU9L4AJ-u7rw |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1BT8IwFH5BOOjFaNSIovagJ22Etmu3AzGKEhAkxkDCbbKuOxlAhzH8OX-br2WTaKI3zlua7fX19Xvt-74HcKqjUeDjzkhZIBMqIi1ooBmnvJpI6fs2zXVVvj3ZGoj7oTcswGfOhbFllXlMdIE6nmh7Rn7JAoQaGE6Vupq-Uts1yt6u5i00RllrhbjuJMYyYkfHzD8whUvr7Vuc7zPGmnf9RotmXQaoZqo6o9Iwj-OvxEZLFXNp8Nu1b2KPO5YnE8aPIy4cMvC4MoozfFkHMrKyhzLiOO4alAQXASZ_pZu73uPT9ymPZb7WXBNgK0tPvRpXGXNnwd9j0mPUVklUcWEJqn7ujkvI--uW1m1-zS3YzFAruV642TYUzHgHGq25pXuRxDhxUJK6ljo4z8S11yEIh4m24NxWIzkHIJOEvGB0IXGm-ZnuwmAl1tqD4ngyNvtARNUID_O1oJZoTJtGPqI_oTnmN4gxazoqw3lui3C6kN4IlyLL1nIhWi50lgtVGSq5ucJsGabh0mnKcJGbcPn479EO_h_tBNZb_Ydu2G33OoewwSwlwpW4VKA4e3s3RwhUZtFx5g0EnlftgF8LlvRe |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BkRAMiE9RKOCBDawmtmMnY1WoyocqBip1sxrHmVBatWHg33N2E1IQDMy2PDzbunf2vXcA1yadJjFGRsoSmVORGkETwzjlQS5lHLs011f5juRwLB4n0WRNxe-r3esvyZWmwbk0FWV3nuXdRvjGZMSoKy8I8EQKqjZhSzijBDzRY9b7emVxytPQN-F1tvA0CrmqlDO_L_M9OjWU88cvqQ8-g33Yq1gj6a22-QA2bHEIu2tegkfQH3448RXJrbfqJEvf4AZRJ77ZDUFySoyjyq42yG8HmeXkDe86ySoHzuUxjAf3r_0hrTokUMNUUFJpWcRxGzJrpMq4tIi7iW0Wca9QZcLGWcqFZzURV1ZxhpNNIlNn2ShTfgKtYlbYUyAisCLC7CkJc4NJzDRGLiYMx2wDGV9o0jbc1Mjo-coIQzeWxw5HjThqj6NWbejU4OnqUiw1S5AtYkRUOHxbA9oM_73a2f-mX8H2y91APz-Mns5hhzm9gq8_6UCrXLzbC2QRZXrpD8onAfG6Rw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+feature+selection+model+for+classification+of+lung+disorders&rft.jtitle=Journal+of+ambient+intelligence+and+humanized+computing&rft.au=Dharmalingam%2C+Vivekanandan&rft.au=Kumar%2C+Dhananjay&rft.date=2022-12-01&rft.issn=1868-5137&rft.eissn=1868-5145&rft.volume=13&rft.issue=12&rft.spage=5609&rft.epage=5625&rft_id=info:doi/10.1007%2Fs12652-021-03224-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12652_021_03224_7 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-5137&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-5137&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-5137&client=summon |