Heart Disease Prediction Model Using Feature Selection and Ensemble Deep Learning with Optimized Weight

Heart disease prediction is a critical issue in healthcare, where accurate early diagnosis can save lives and reduce healthcare costs. The problem is inherently complex due to the high dimensionality of medical data, irrelevant or redundant features, and the variability in risk factors such as age,...

Full description

Saved in:
Bibliographic Details
Published inComputer modeling in engineering & sciences Vol. 143; no. 1; pp. 875 - 909
Main Authors Al-Mahdi, Iman S., Darwish, Saad M., Madbouly, Magda M.
Format Journal Article
LanguageEnglish
Published Henderson Tech Science Press 2025
Subjects
Online AccessGet full text
ISSN1526-1506
1526-1492
1526-1506
DOI10.32604/cmes.2025.061623

Cover

Abstract Heart disease prediction is a critical issue in healthcare, where accurate early diagnosis can save lives and reduce healthcare costs. The problem is inherently complex due to the high dimensionality of medical data, irrelevant or redundant features, and the variability in risk factors such as age, lifestyle, and medical history. These challenges often lead to inefficient and less accurate models. Traditional prediction methodologies face limitations in effectively handling large feature sets and optimizing classification performance, which can result in overfitting poor generalization, and high computational cost. This work proposes a novel classification model for heart disease prediction that addresses these challenges by integrating feature selection through a Genetic Algorithm (GA) with an ensemble deep learning approach optimized using the Tunicate Swarm Algorithm (TSA). GA selects the most relevant features, reducing dimensionality and improving model efficiency. The selected features are then used to train an ensemble of deep learning models, where the TSA optimizes the weight of each model in the ensemble to enhance prediction accuracy. This hybrid approach addresses key challenges in the field, such as high dimensionality, redundant features, and classification performance, by introducing an efficient feature selection mechanism and optimizing the weighting of deep learning models in the ensemble. These enhancements result in a model that achieves superior accuracy, generalization, and efficiency compared to traditional methods. The proposed model demonstrated notable advancements in both prediction accuracy and computational efficiency over traditional models. Specifically, it achieved an accuracy of 97.5%, a sensitivity of 97.2%, and a specificity of 97.8%. Additionally, with a 60–40 data split and 5-fold cross-validation, the model showed a significant reduction in training time (90 s), memory consumption (950 MB), and CPU usage (80%), highlighting its effectiveness in processing large, complex medical datasets for heart disease prediction.
AbstractList Heart disease prediction is a critical issue in healthcare, where accurate early diagnosis can save lives and reduce healthcare costs. The problem is inherently complex due to the high dimensionality of medical data, irrelevant or redundant features, and the variability in risk factors such as age, lifestyle, and medical history. These challenges often lead to inefficient and less accurate models. Traditional prediction methodologies face limitations in effectively handling large feature sets and optimizing classification performance, which can result in overfitting poor generalization, and high computational cost. This work proposes a novel classification model for heart disease prediction that addresses these challenges by integrating feature selection through a Genetic Algorithm (GA) with an ensemble deep learning approach optimized using the Tunicate Swarm Algorithm (TSA). GA selects the most relevant features, reducing dimensionality and improving model efficiency. The selected features are then used to train an ensemble of deep learning models, where the TSA optimizes the weight of each model in the ensemble to enhance prediction accuracy. This hybrid approach addresses key challenges in the field, such as high dimensionality, redundant features, and classification performance, by introducing an efficient feature selection mechanism and optimizing the weighting of deep learning models in the ensemble. These enhancements result in a model that achieves superior accuracy, generalization, and efficiency compared to traditional methods. The proposed model demonstrated notable advancements in both prediction accuracy and computational efficiency over traditional models. Specifically, it achieved an accuracy of 97.5%, a sensitivity of 97.2%, and a specificity of 97.8%. Additionally, with a 60–40 data split and 5-fold cross-validation, the model showed a significant reduction in training time (90 s), memory consumption (950 MB), and CPU usage (80%), highlighting its effectiveness in processing large, complex medical datasets for heart disease prediction.
Author Darwish, Saad M.
Madbouly, Magda M.
Al-Mahdi, Iman S.
Author_xml – sequence: 1
  givenname: Iman S.
  surname: Al-Mahdi
  fullname: Al-Mahdi, Iman S.
– sequence: 2
  givenname: Saad M.
  surname: Darwish
  fullname: Darwish, Saad M.
– sequence: 3
  givenname: Magda M.
  surname: Madbouly
  fullname: Madbouly, Magda M.
BookMark eNqNkE1Lw0AQhhdRsK3-AG8LnlP3I7tpjtIPK1QqaPEYtptJuyXZxN0Npf56U-PBo6cZmOd9GZ4hurS1BYTuKBlzJkn8oCvwY0aYGBNJJeMXaEAFkxEVRF7-2a_R0PsDIVzySTpAuyUoF_DMeFAe8KuD3Ohgaotf6hxKvPHG7vACVGgd4Dcoob8qm-O59VBtS8AzgAavuiJ7ho8m7PG6CaYyX5DjDzC7fbhBV4UqPdz-zhHaLObv02W0Wj89Tx9XkWYJCZHkQsVSCL3V24IkiqUAMuVEsQkwRakWVKWFUrmmesITXqRCcxkLksqkKLTiI8T63tY26nRUZZk1zlTKnTJKsh9V2VlVdlaV9aq60H0falz92YIP2aFune3-7BKEUEZFTDuK9pR2tfcOin80fwOcSHug
ContentType Journal Article
Copyright 2025. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ADTOC
UNPAY
DOI 10.32604/cmes.2025.061623
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1526-1506
EndPage 909
ExternalDocumentID 10.32604/cmes.2025.061623
10_32604_cmes_2025_061623
GroupedDBID -~X
AAFWJ
AAYXX
ABJCF
ACIWK
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BENPR
BGLVJ
CCPQU
CITATION
EBS
EJD
F5P
IPNFZ
J9A
K7-
M7S
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PTHSS
PUEGO
RIG
RTS
7SC
7TB
8FD
8FE
8FG
ABUWG
ARAPS
AZQEC
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
KR7
L6V
L7M
L~C
L~D
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
ID FETCH-LOGICAL-c270t-635a4655cbcbf07a29ee6930a28e2a11c51a9faadc1c8373f95c36450967ffca3
IEDL.DBID UNPAY
ISSN 1526-1506
1526-1492
IngestDate Sun Sep 07 11:02:51 EDT 2025
Sat Sep 06 07:32:26 EDT 2025
Wed Oct 01 06:34:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-635a4655cbcbf07a29ee6930a28e2a11c51a9faadc1c8373f95c36450967ffca3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.32604/cmes.2025.061623
PQID 3200121541
PQPubID 2048798
PageCount 35
ParticipantIDs unpaywall_primary_10_32604_cmes_2025_061623
proquest_journals_3200121541
crossref_primary_10_32604_cmes_2025_061623
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-00-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025-00-00
PublicationDecade 2020
PublicationPlace Henderson
PublicationPlace_xml – name: Henderson
PublicationTitle Computer modeling in engineering & sciences
PublicationYear 2025
Publisher Tech Science Press
Publisher_xml – name: Tech Science Press
SSID ssj0036389
Score 2.3935983
Snippet Heart disease prediction is a critical issue in healthcare, where accurate early diagnosis can save lives and reduce healthcare costs. The problem is...
SourceID unpaywall
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 875
SubjectTerms Accuracy
Cardiovascular disease
Classification
Computational efficiency
Computing costs
Deep learning
Efficiency
Feature selection
Genetic algorithms
Health care
Heart
Heart diseases
Machine learning
Prediction models
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9tAEB7RcKCXFiiI0FDtgRPVEnv9PlSoJUEREimiRORmjdezqFJiQh6q4Nez4wfQC1x8sbWHmd2Zb2a83wdwiE6k7U5KZKINSZ9yR6IfakkWymKUEGHGF5wvhuFg5J-Pg_EaDJu7MPxbZRMTy0Cd32nukXc9VdKPBb57MruXrBrF09VGQgNraYX8R0kx9gHWFTNjtWD9V394edXEZo_zc8mgqkJpawNVzTkthHH8rp4S83er4NjmuFB5_2eqF_i5sSpm-PAPJ5NXmehsEz7VEFL8rHy-BWtUbMPnRp5B1Kf1C9wO7C5eil41ghGXc57JsB8EC6BNRPm3gGAMuJqT-FMK4vBbLHLRLxY0zSYkekQzUZOw3gru2orfNspM_z5SLm7KvuoOjM7616cDWesqSK0iZyktxkCmTdOZzowTobIuYUVEVDEpdF0duJgYxFy72tavnkkCzdNKW-1Exmj0dqFV3BW0B4LiPNaBfRqOBspB48WO8X0ThQHGxmnDUWPDdFbRZ6S27CgNnrLBUzZ4Whm8DZ3Gyml9khbpi9_b8P3Z8u8vtv_2Yl_hI39cNVM60FrOV3Rg4cUy-1bvmSftOs5q
  priority: 102
  providerName: ProQuest
Title Heart Disease Prediction Model Using Feature Selection and Ensemble Deep Learning with Optimized Weight
URI https://www.proquest.com/docview/3200121541
https://doi.org/10.32604/cmes.2025.061623
UnpaywallVersion publishedVersion
Volume 143
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1526-1506
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036389
  issn: 1526-1506
  databaseCode: ADMLS
  dateStart: 20180301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1526-1506
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0036389
  issn: 1526-1506
  databaseCode: BENPR
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB6V5MCJRykiiEZ74NTK6drx-nGkkDRCahoVIuBkjdezCJGYKHFUlV_PrO3wqJCgF8uSVytrZnbnm53ZbwAOUYaaLSl2Ym3I8SmTDvqBdoihLIYxEab2gvPPYTAY-6eX6rImi7Z3YZ7l7xlYSP-bnpJl1fZUhz0P--o1aAaKYXcDmuPh6Oiq5EP1AoeRvvf4rmRQZTBfn-OlD3oCluvLfIZ__-Bk8szH9Der6qxFSU1oS0tuO8si7ej7f4gb3_X7W7BRI01xVJnGNnyg_CNsrro4iHpR78D1gI29ECdVpkaM5jZ1Y9UlbJ-0iSiLCoSFiss5ibOyb479inkmevmCpumExAnRTNRcrdfCHu6KX7wZTW_uKRMX5fHrJxj3e-fHA6duv-BoL5SFw1AELbuaTnVqZIgea842TkQvIg9dVysXY4OYaVdzmNs1sdI2qclBUWiMxu4uNPK7nPZAUJRFWvHT2E3Dk2i6kTS-b8JAYWRkC76sFJLMKpaNhKOTUoSJFWFiRZhUImzBwUplSb3gFjy0ZKdTvtuCr49qfHuy_f8afQCNYr6kz4xDirQNa1H_Rxua33vD0e92bY8Prlzauw
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLZKeygXylMsLTAHuICGJpP3oULAbrWl7VJBK3pLnYmnQtpNl32oKj-O34adB4ULnHrJJcoo-uLYn-0ZfwAv0EssW1KmM-tIh1R6GsPYamIqi0lGhIUccD4cxcOT8ONpdLoCP7uzMLKtsvOJtaMuL6zUyLcDU48fi0L_7fS7FtUo6a52EhrYSiuUO_WIsfZgxz5dXXIKN9_Z6_P3fmnM7uD4w1C3KgPamsRbaI64KEPEbGEL5yVo-AVFHxBNSgZ930Y-Zg6xtL7lbC5wWWSld8fcP3HOYsDr3oK1MAgzTv7W3g9GR5-7WBAIH6gntppYcy5imr4qUyYv3LYTknnhJnrDMTU2wd-R8Zruri-rKV5d4nj8R-TbvQt3Wsqq3jU2dg9WqLoPG50chGq9wwM4HzIcC9VvWj7qaCY9IPnuSgTXxqrenaCEcy5npL7UAjxyF6tSDao5TYoxqT7RVLVDX8-VVInVJ_Zqk28_qFRf6zruQzi5EYQfwWp1UdFjUJSWqY346sT7GA9dkHouDF0SR5g6rwevOgzzaTOuI-c0pwY8F8BzATxvAO_BVody3v658_zaznrw-jfy_1_syb8Xew7rw-PDg_xgb7S_CbflwaaQswWri9mSnjK1WRTPWvtRcHbTJvsLkSsL6Q
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60HjxZn1hR2YMnJXWTZvM4Flspgg_Qop7CZDMrYhpLmyD6651NUq0iqJcQyLKEmdmdb3Zmv2HsAISvyJJCK1QaLRcTYYHrKQsJyoIfIkJsLjifX3iDoXt2J-9qsmhzF2Yuf0_AQrjHaoSGVduRbfI85KsX2ZInCXY32NLw4qp7X_KhOp5FSN_5eJfCqzKYP8_x1Qd9AsvlIhvD6wuk6ZyPOW1W1VnTkprQlJY8tYs8bqu3b8SNf_r9VbZSI03erUxjjS1gts6asy4OvF7UG-xhQMae816VqeFXE5O6Meripk9aysuiAm6gYjFBfl32zTFfIUt4P5viKE6R9xDHvOZqfeDmcJdf0mY0enzDhN-Wx6-bbHjavzkZWHX7BUs5vsgtgiJg2NVUrGItfHBIc6ZxIjgBOmDbStoQaoBE2YrC3I4OpTJJTQqKfK0VdLZYI3vOcJtxDJJASXpqs2k4AnQnENp1te9JCLRoscOZQqJxxbIRUXRSijAyIoyMCKNKhC22O1NZVC-4KQ0t2emka7fY0Ycaf59s51-jd1kjnxS4Rzgkj_drC3wHz1vYOw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heart+Disease+Prediction+Model+Using+Feature+Selection+and+Ensemble+Deep+Learning+with+Optimized+Weight&rft.jtitle=Computer+modeling+in+engineering+%26+sciences&rft.au=Al-Mahdi%2C+Iman+S.&rft.au=Darwish%2C+Saad+M.&rft.au=Madbouly%2C+Magda+M.&rft.date=2025&rft.issn=1526-1506&rft.eissn=1526-1506&rft.volume=143&rft.issue=1&rft.spage=875&rft.epage=909&rft_id=info:doi/10.32604%2Fcmes.2025.061623&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmes_2025_061623
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1526-1506&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1526-1506&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1526-1506&client=summon