Heart Disease Prediction Model Using Feature Selection and Ensemble Deep Learning with Optimized Weight
Heart disease prediction is a critical issue in healthcare, where accurate early diagnosis can save lives and reduce healthcare costs. The problem is inherently complex due to the high dimensionality of medical data, irrelevant or redundant features, and the variability in risk factors such as age,...
Saved in:
| Published in | Computer modeling in engineering & sciences Vol. 143; no. 1; pp. 875 - 909 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Henderson
Tech Science Press
2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1526-1506 1526-1492 1526-1506 |
| DOI | 10.32604/cmes.2025.061623 |
Cover
| Abstract | Heart disease prediction is a critical issue in healthcare, where accurate early diagnosis can save lives and reduce healthcare costs. The problem is inherently complex due to the high dimensionality of medical data, irrelevant or redundant features, and the variability in risk factors such as age, lifestyle, and medical history. These challenges often lead to inefficient and less accurate models. Traditional prediction methodologies face limitations in effectively handling large feature sets and optimizing classification performance, which can result in overfitting poor generalization, and high computational cost. This work proposes a novel classification model for heart disease prediction that addresses these challenges by integrating feature selection through a Genetic Algorithm (GA) with an ensemble deep learning approach optimized using the Tunicate Swarm Algorithm (TSA). GA selects the most relevant features, reducing dimensionality and improving model efficiency. The selected features are then used to train an ensemble of deep learning models, where the TSA optimizes the weight of each model in the ensemble to enhance prediction accuracy. This hybrid approach addresses key challenges in the field, such as high dimensionality, redundant features, and classification performance, by introducing an efficient feature selection mechanism and optimizing the weighting of deep learning models in the ensemble. These enhancements result in a model that achieves superior accuracy, generalization, and efficiency compared to traditional methods. The proposed model demonstrated notable advancements in both prediction accuracy and computational efficiency over traditional models. Specifically, it achieved an accuracy of 97.5%, a sensitivity of 97.2%, and a specificity of 97.8%. Additionally, with a 60–40 data split and 5-fold cross-validation, the model showed a significant reduction in training time (90 s), memory consumption (950 MB), and CPU usage (80%), highlighting its effectiveness in processing large, complex medical datasets for heart disease prediction. |
|---|---|
| AbstractList | Heart disease prediction is a critical issue in healthcare, where accurate early diagnosis can save lives and reduce healthcare costs. The problem is inherently complex due to the high dimensionality of medical data, irrelevant or redundant features, and the variability in risk factors such as age, lifestyle, and medical history. These challenges often lead to inefficient and less accurate models. Traditional prediction methodologies face limitations in effectively handling large feature sets and optimizing classification performance, which can result in overfitting poor generalization, and high computational cost. This work proposes a novel classification model for heart disease prediction that addresses these challenges by integrating feature selection through a Genetic Algorithm (GA) with an ensemble deep learning approach optimized using the Tunicate Swarm Algorithm (TSA). GA selects the most relevant features, reducing dimensionality and improving model efficiency. The selected features are then used to train an ensemble of deep learning models, where the TSA optimizes the weight of each model in the ensemble to enhance prediction accuracy. This hybrid approach addresses key challenges in the field, such as high dimensionality, redundant features, and classification performance, by introducing an efficient feature selection mechanism and optimizing the weighting of deep learning models in the ensemble. These enhancements result in a model that achieves superior accuracy, generalization, and efficiency compared to traditional methods. The proposed model demonstrated notable advancements in both prediction accuracy and computational efficiency over traditional models. Specifically, it achieved an accuracy of 97.5%, a sensitivity of 97.2%, and a specificity of 97.8%. Additionally, with a 60–40 data split and 5-fold cross-validation, the model showed a significant reduction in training time (90 s), memory consumption (950 MB), and CPU usage (80%), highlighting its effectiveness in processing large, complex medical datasets for heart disease prediction. |
| Author | Darwish, Saad M. Madbouly, Magda M. Al-Mahdi, Iman S. |
| Author_xml | – sequence: 1 givenname: Iman S. surname: Al-Mahdi fullname: Al-Mahdi, Iman S. – sequence: 2 givenname: Saad M. surname: Darwish fullname: Darwish, Saad M. – sequence: 3 givenname: Magda M. surname: Madbouly fullname: Madbouly, Magda M. |
| BookMark | eNqNkE1Lw0AQhhdRsK3-AG8LnlP3I7tpjtIPK1QqaPEYtptJuyXZxN0Npf56U-PBo6cZmOd9GZ4hurS1BYTuKBlzJkn8oCvwY0aYGBNJJeMXaEAFkxEVRF7-2a_R0PsDIVzySTpAuyUoF_DMeFAe8KuD3Ohgaotf6hxKvPHG7vACVGgd4Dcoob8qm-O59VBtS8AzgAavuiJ7ho8m7PG6CaYyX5DjDzC7fbhBV4UqPdz-zhHaLObv02W0Wj89Tx9XkWYJCZHkQsVSCL3V24IkiqUAMuVEsQkwRakWVKWFUrmmesITXqRCcxkLksqkKLTiI8T63tY26nRUZZk1zlTKnTJKsh9V2VlVdlaV9aq60H0falz92YIP2aFune3-7BKEUEZFTDuK9pR2tfcOin80fwOcSHug |
| ContentType | Journal Article |
| Copyright | 2025. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2025. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SC 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS ADTOC UNPAY |
| DOI | 10.32604/cmes.2025.061623 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1526-1506 |
| EndPage | 909 |
| ExternalDocumentID | 10.32604/cmes.2025.061623 10_32604_cmes_2025_061623 |
| GroupedDBID | -~X AAFWJ AAYXX ABJCF ACIWK ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS BENPR BGLVJ CCPQU CITATION EBS EJD F5P IPNFZ J9A K7- M7S OK1 PHGZM PHGZT PIMPY PQGLB PTHSS PUEGO RIG RTS 7SC 7TB 8FD 8FE 8FG ABUWG ARAPS AZQEC DWQXO FR3 GNUQQ HCIFZ JQ2 KR7 L6V L7M L~C L~D P62 PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY |
| ID | FETCH-LOGICAL-c270t-635a4655cbcbf07a29ee6930a28e2a11c51a9faadc1c8373f95c36450967ffca3 |
| IEDL.DBID | UNPAY |
| ISSN | 1526-1506 1526-1492 |
| IngestDate | Sun Sep 07 11:02:51 EDT 2025 Sat Sep 06 07:32:26 EDT 2025 Wed Oct 01 06:34:00 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c270t-635a4655cbcbf07a29ee6930a28e2a11c51a9faadc1c8373f95c36450967ffca3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.32604/cmes.2025.061623 |
| PQID | 3200121541 |
| PQPubID | 2048798 |
| PageCount | 35 |
| ParticipantIDs | unpaywall_primary_10_32604_cmes_2025_061623 proquest_journals_3200121541 crossref_primary_10_32604_cmes_2025_061623 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-00-00 20250101 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 2025-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | Henderson |
| PublicationPlace_xml | – name: Henderson |
| PublicationTitle | Computer modeling in engineering & sciences |
| PublicationYear | 2025 |
| Publisher | Tech Science Press |
| Publisher_xml | – name: Tech Science Press |
| SSID | ssj0036389 |
| Score | 2.3935983 |
| Snippet | Heart disease prediction is a critical issue in healthcare, where accurate early diagnosis can save lives and reduce healthcare costs. The problem is... |
| SourceID | unpaywall proquest crossref |
| SourceType | Open Access Repository Aggregation Database Index Database |
| StartPage | 875 |
| SubjectTerms | Accuracy Cardiovascular disease Classification Computational efficiency Computing costs Deep learning Efficiency Feature selection Genetic algorithms Health care Heart Heart diseases Machine learning Prediction models |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9tAEB7RcKCXFiiI0FDtgRPVEnv9PlSoJUEREimiRORmjdezqFJiQh6q4Nez4wfQC1x8sbWHmd2Zb2a83wdwiE6k7U5KZKINSZ9yR6IfakkWymKUEGHGF5wvhuFg5J-Pg_EaDJu7MPxbZRMTy0Cd32nukXc9VdKPBb57MruXrBrF09VGQgNraYX8R0kx9gHWFTNjtWD9V394edXEZo_zc8mgqkJpawNVzTkthHH8rp4S83er4NjmuFB5_2eqF_i5sSpm-PAPJ5NXmehsEz7VEFL8rHy-BWtUbMPnRp5B1Kf1C9wO7C5eil41ghGXc57JsB8EC6BNRPm3gGAMuJqT-FMK4vBbLHLRLxY0zSYkekQzUZOw3gru2orfNspM_z5SLm7KvuoOjM7616cDWesqSK0iZyktxkCmTdOZzowTobIuYUVEVDEpdF0duJgYxFy72tavnkkCzdNKW-1Exmj0dqFV3BW0B4LiPNaBfRqOBspB48WO8X0ThQHGxmnDUWPDdFbRZ6S27CgNnrLBUzZ4Whm8DZ3Gyml9khbpi9_b8P3Z8u8vtv_2Yl_hI39cNVM60FrOV3Rg4cUy-1bvmSftOs5q priority: 102 providerName: ProQuest |
| Title | Heart Disease Prediction Model Using Feature Selection and Ensemble Deep Learning with Optimized Weight |
| URI | https://www.proquest.com/docview/3200121541 https://doi.org/10.32604/cmes.2025.061623 |
| UnpaywallVersion | publishedVersion |
| Volume | 143 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1526-1506 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0036389 issn: 1526-1506 databaseCode: ADMLS dateStart: 20180301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1526-1506 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0036389 issn: 1526-1506 databaseCode: BENPR dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB6V5MCJRykiiEZ74NTK6drx-nGkkDRCahoVIuBkjdezCJGYKHFUlV_PrO3wqJCgF8uSVytrZnbnm53ZbwAOUYaaLSl2Ym3I8SmTDvqBdoihLIYxEab2gvPPYTAY-6eX6rImi7Z3YZ7l7xlYSP-bnpJl1fZUhz0P--o1aAaKYXcDmuPh6Oiq5EP1AoeRvvf4rmRQZTBfn-OlD3oCluvLfIZ__-Bk8szH9Der6qxFSU1oS0tuO8si7ej7f4gb3_X7W7BRI01xVJnGNnyg_CNsrro4iHpR78D1gI29ECdVpkaM5jZ1Y9UlbJ-0iSiLCoSFiss5ibOyb479inkmevmCpumExAnRTNRcrdfCHu6KX7wZTW_uKRMX5fHrJxj3e-fHA6duv-BoL5SFw1AELbuaTnVqZIgea842TkQvIg9dVysXY4OYaVdzmNs1sdI2qclBUWiMxu4uNPK7nPZAUJRFWvHT2E3Dk2i6kTS-b8JAYWRkC76sFJLMKpaNhKOTUoSJFWFiRZhUImzBwUplSb3gFjy0ZKdTvtuCr49qfHuy_f8afQCNYr6kz4xDirQNa1H_Rxua33vD0e92bY8Prlzauw |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLZKeygXylMsLTAHuICGJpP3oULAbrWl7VJBK3pLnYmnQtpNl32oKj-O34adB4ULnHrJJcoo-uLYn-0ZfwAv0EssW1KmM-tIh1R6GsPYamIqi0lGhIUccD4cxcOT8ONpdLoCP7uzMLKtsvOJtaMuL6zUyLcDU48fi0L_7fS7FtUo6a52EhrYSiuUO_WIsfZgxz5dXXIKN9_Z6_P3fmnM7uD4w1C3KgPamsRbaI64KEPEbGEL5yVo-AVFHxBNSgZ930Y-Zg6xtL7lbC5wWWSld8fcP3HOYsDr3oK1MAgzTv7W3g9GR5-7WBAIH6gntppYcy5imr4qUyYv3LYTknnhJnrDMTU2wd-R8Zruri-rKV5d4nj8R-TbvQt3Wsqq3jU2dg9WqLoPG50chGq9wwM4HzIcC9VvWj7qaCY9IPnuSgTXxqrenaCEcy5npL7UAjxyF6tSDao5TYoxqT7RVLVDX8-VVInVJ_Zqk28_qFRf6zruQzi5EYQfwWp1UdFjUJSWqY346sT7GA9dkHouDF0SR5g6rwevOgzzaTOuI-c0pwY8F8BzATxvAO_BVody3v658_zaznrw-jfy_1_syb8Xew7rw-PDg_xgb7S_CbflwaaQswWri9mSnjK1WRTPWvtRcHbTJvsLkSsL6Q |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60HjxZn1hR2YMnJXWTZvM4Flspgg_Qop7CZDMrYhpLmyD6651NUq0iqJcQyLKEmdmdb3Zmv2HsAISvyJJCK1QaLRcTYYHrKQsJyoIfIkJsLjifX3iDoXt2J-9qsmhzF2Yuf0_AQrjHaoSGVduRbfI85KsX2ZInCXY32NLw4qp7X_KhOp5FSN_5eJfCqzKYP8_x1Qd9AsvlIhvD6wuk6ZyPOW1W1VnTkprQlJY8tYs8bqu3b8SNf_r9VbZSI03erUxjjS1gts6asy4OvF7UG-xhQMae816VqeFXE5O6Meripk9aysuiAm6gYjFBfl32zTFfIUt4P5viKE6R9xDHvOZqfeDmcJdf0mY0enzDhN-Wx6-bbHjavzkZWHX7BUs5vsgtgiJg2NVUrGItfHBIc6ZxIjgBOmDbStoQaoBE2YrC3I4OpTJJTQqKfK0VdLZYI3vOcJtxDJJASXpqs2k4AnQnENp1te9JCLRoscOZQqJxxbIRUXRSijAyIoyMCKNKhC22O1NZVC-4KQ0t2emka7fY0Ycaf59s51-jd1kjnxS4Rzgkj_drC3wHz1vYOw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heart+Disease+Prediction+Model+Using+Feature+Selection+and+Ensemble+Deep+Learning+with+Optimized+Weight&rft.jtitle=Computer+modeling+in+engineering+%26+sciences&rft.au=Al-Mahdi%2C+Iman+S.&rft.au=Darwish%2C+Saad+M.&rft.au=Madbouly%2C+Magda+M.&rft.date=2025&rft.issn=1526-1506&rft.eissn=1526-1506&rft.volume=143&rft.issue=1&rft.spage=875&rft.epage=909&rft_id=info:doi/10.32604%2Fcmes.2025.061623&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmes_2025_061623 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1526-1506&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1526-1506&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1526-1506&client=summon |