Trends in Arctic summer cloud variability from 2000 to 2022 and the potential causes

Climate change in the Arctic serves as a pivotal indicator of alterations in the global climate system, with clouds playing an essential role in regulating the surface radiative energy balance in the Arctic. Elucidating the patterns of Arctic cloud variability and the underlying mechanisms is of par...

Full description

Saved in:
Bibliographic Details
Published inScience China. Earth sciences Vol. 68; no. 4; pp. 1245 - 1260
Main Authors Zhang, Haotian, Zhao, Chuanfeng, Chen, Annan, Yang, Yikun, Li, Jiefeng, Zhao, Xin, Zhou, Yue, Fan, Hao
Format Journal Article
LanguageEnglish
Published Beijing Science China Press 01.04.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1674-7313
1869-1897
DOI10.1007/s11430-024-1523-5

Cover

Abstract Climate change in the Arctic serves as a pivotal indicator of alterations in the global climate system, with clouds playing an essential role in regulating the surface radiative energy balance in the Arctic. Elucidating the patterns of Arctic cloud variability and the underlying mechanisms is of paramount scientific importance for understanding Arctic climate change. Spatiotemporal analysis of Arctic cloud characteristics reveals that since the onset of the 21st century, low clouds have predominantly comprised the Arctic summer cloud fraction (approximately 60%), followed by middle clouds (approximately 30%). The total-cloud fraction has exhibited a marked increasing trend, especially in the Beaufort Sea and Chukchi Sea (0.45%/yr). An attribution analysis suggests that the changes in the Arctic cloud fraction are chiefly driven by trends in two atmospheric circulation modes: The Arctic Oscillation (AO) and the Arctic dipole anomaly (DA). During positive phases of the AO, the cloud fraction increases across all Arctic basins. Conversely, in the positive phases of the DA, the cloud fraction decreases in the Beaufort Sea, Chukchi Sea, and Greenland Sea, whereas it increases in the East Siberian Sea, Kara Sea, and Barents Sea, indicating an “east-west” dipole distribution. Since 2000, the AO has been on an upward trend, whereas the DA has been declining. The combined effect of these two modes has resulted in a significant increase in the cloud fraction within the Beaufort Sea region. Further examination of cloud radiative effects indicates that an increase in the cloud fraction intensifies both longwave warming and shortwave cooling effects, leading to an overall net negative radiative effect. Analyzing the long-term trends in Arctic summer clouds enhances our comprehension of Arctic climate change.
AbstractList Climate change in the Arctic serves as a pivotal indicator of alterations in the global climate system, with clouds playing an essential role in regulating the surface radiative energy balance in the Arctic. Elucidating the patterns of Arctic cloud variability and the underlying mechanisms is of paramount scientific importance for understanding Arctic climate change. Spatiotemporal analysis of Arctic cloud characteristics reveals that since the onset of the 21st century, low clouds have predominantly comprised the Arctic summer cloud fraction (approximately 60%), followed by middle clouds (approximately 30%). The total-cloud fraction has exhibited a marked increasing trend, especially in the Beaufort Sea and Chukchi Sea (0.45%/yr). An attribution analysis suggests that the changes in the Arctic cloud fraction are chiefly driven by trends in two atmospheric circulation modes: The Arctic Oscillation (AO) and the Arctic dipole anomaly (DA). During positive phases of the AO, the cloud fraction increases across all Arctic basins. Conversely, in the positive phases of the DA, the cloud fraction decreases in the Beaufort Sea, Chukchi Sea, and Greenland Sea, whereas it increases in the East Siberian Sea, Kara Sea, and Barents Sea, indicating an “east-west” dipole distribution. Since 2000, the AO has been on an upward trend, whereas the DA has been declining. The combined effect of these two modes has resulted in a significant increase in the cloud fraction within the Beaufort Sea region. Further examination of cloud radiative effects indicates that an increase in the cloud fraction intensifies both longwave warming and shortwave cooling effects, leading to an overall net negative radiative effect. Analyzing the long-term trends in Arctic summer clouds enhances our comprehension of Arctic climate change.
Author Fan, Hao
Zhao, Chuanfeng
Yang, Yikun
Zhao, Xin
Chen, Annan
Li, Jiefeng
Zhang, Haotian
Zhou, Yue
Author_xml – sequence: 1
  givenname: Haotian
  surname: Zhang
  fullname: Zhang, Haotian
  organization: Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University
– sequence: 2
  givenname: Chuanfeng
  surname: Zhao
  fullname: Zhao, Chuanfeng
  email: cfzhao@pku.edu.cn
  organization: Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University
– sequence: 3
  givenname: Annan
  surname: Chen
  fullname: Chen, Annan
  organization: Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University
– sequence: 4
  givenname: Yikun
  surname: Yang
  fullname: Yang, Yikun
  organization: Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University
– sequence: 5
  givenname: Jiefeng
  surname: Li
  fullname: Li, Jiefeng
  organization: Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University
– sequence: 6
  givenname: Xin
  surname: Zhao
  fullname: Zhao, Xin
  organization: Faculty of Geographical Science, Beijing Normal University
– sequence: 7
  givenname: Yue
  surname: Zhou
  fullname: Zhou, Yue
  organization: Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology
– sequence: 8
  givenname: Hao
  surname: Fan
  fullname: Fan, Hao
  organization: School of Systems Science, Beijing Normal University
BookMark eNp1UE1LAzEQDaJgrf0B3gKeo0km2WyPpfgFBS_1HGI20S27SU2yQv-9KRU8OZc3MO_NvHlX6DzE4BC6YfSOUaruM2MCKKFcECY5EHmGZqxtloS1S3Ve-0YJooDBJVrkvKO1oE64mqHtNrnQZdwHvEq29BbnaRxdwnaIU4e_TerNez_05YB9iiPmVYtLrMg5NqHD5dPhfSwulN4M2Jopu3yNLrwZslv84hy9PT5s189k8_r0sl5tiOWKFgK-8dx1suPgGZOUtuA7z5mRwkI12BlvPVSrVkLbAIi2FdI2ijlBHVgLc3R72rtP8WtyuehdnFKoJzXU_xmIhqnKYieWTTHn5Lzep3406aAZ1cf89Ck_XfPTx_y0rBp-0uTKDR8u_W3-X_QDST9xtg
Cites_doi 10.1175/JCLI-D-23-0452.1
10.1038/s41558-020-00969-5
10.1126/sciadv.1700584
10.1016/j.atmosres.2022.106080
10.1038/s41586-022-05058-5
10.5194/acp-24-7899-2024
10.1038/s43247-021-00114-w
10.5194/acp-22-9313-2022
10.1175/2008JCLI2637.1
10.1175/1520-0442(2004)017<0616:CRFOTA>2.0.CO;2
10.5194/acp-23-4115-2023
10.1016/j.atmosres.2004.03.029
10.5194/acp-23-7015-2023
10.1175/JCLI-D-19-0638.1
10.1029/2005GL024723
10.1007/s00376-023-2231-6
10.1002/qj.3803
10.1002/2014GL062015
10.1175/JCLI3619.1
10.1029/2009JD013489
10.1007/s40641-016-0051-9
10.1175/JCLI3591.1
10.1175/JCLI-D-22-0718.1
10.1098/rsta.2014.0159
10.3390/atmos13020316
10.1002/2016JD025099
10.1175/JCLI-D-20-0621.1
10.1175/1520-0442(2004)017<0603:TIOCFO>2.0.CO;2
10.1029/2019JD031085
10.1029/2022GL102349
10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2
10.1007/s10584-016-1772-4
10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2
10.1111/nyas.13856
10.1029/2006GL028112
10.1073/pnas.1416884112
10.1029/2022GL102115
10.5194/acp-20-14983-2020
10.3724/SP.J.1084.2012.00187
10.1109/TGRS.2019.2926620
10.1175/JCLI-D-23-0117.1
10.1029/2004JC002381
10.1002/2017JD027248
10.1002/2015JD024502
10.1038/s41558-020-0892-z
10.1109/TGRS.2012.2227333
10.1175/JCLI-D-19-0843.1
10.1029/2022GL102077
10.1007/s40641-018-0089-y
10.1038/nclimate3402
10.1029/2022JD038098
10.1029/2008GL033451
10.1175/JCLI-D-19-0242.1
10.1175/JCLI-D-21-0924.1
10.1029/2019JD032136
ContentType Journal Article
Copyright Science China Press 2025
Copyright Springer Nature B.V. Apr 2025
Copyright_xml – notice: Science China Press 2025
– notice: Copyright Springer Nature B.V. Apr 2025
DBID AAYXX
CITATION
7TG
7UA
C1K
F1W
H96
KL.
L.G
DOI 10.1007/s11430-024-1523-5
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1869-1897
EndPage 1260
ExternalDocumentID 10_1007_s11430_024_1523_5
GeographicLocations Chukchi Sea
Beaufort Sea
Arctic region
GeographicLocations_xml – name: Arctic region
– name: Chukchi Sea
– name: Beaufort Sea
GroupedDBID -SA
-S~
-Y2
.VR
06D
0R~
0VY
1N0
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
40D
40E
5VR
5VS
67M
88I
8FE
8FH
8TC
8UJ
95-
95.
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDBE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHIR
ADHKG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFKRA
AFLOW
AFQWF
AFRAH
AFUIB
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AZFZN
AZQEC
B-.
BDATZ
BENPR
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CAJEA
CCEZO
CCPQU
CCVFK
CHBEP
CJPJV
COF
CSCUP
CW9
DDRTE
DNIVK
DPUIP
DWQXO
EBD
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
H13
HCIFZ
HF~
HG6
HMJXF
HRMNR
HVGLF
HZ~
I-F
IJ-
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
JBSCW
JZLTJ
KOV
L8X
LK5
LLZTM
M2P
M4Y
M7R
MA-
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9J
PCBAR
PF0
PHGZT
PQQKQ
PROAC
PT4
Q--
Q2X
QOS
R89
RIG
ROL
RSV
S16
S3B
SAP
SCL
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
TR2
TSG
TUC
TUS
U1G
U2A
U5K
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
ZMTXR
~02
~A9
AAYXX
ABBRH
ABRTQ
AFDZB
AFOHR
AGQPQ
ATHPR
CITATION
PHGZM
PUEGO
7TG
7UA
C1K
F1W
H96
KL.
L.G
ID FETCH-LOGICAL-c270t-3f6f2ed5d23f1150083fdf21a54c3389dafcf3038c53863348845c671e40e3cc3
IEDL.DBID AGYKE
ISSN 1674-7313
IngestDate Fri Jul 25 21:04:02 EDT 2025
Wed Oct 01 06:36:38 EDT 2025
Fri Apr 04 01:15:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Arctic oscillation
Arctic dipole anomaly
Arctic cloud
Atmospheric circulation
Cloud radiative effect
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-3f6f2ed5d23f1150083fdf21a54c3389dafcf3038c53863348845c671e40e3cc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3186134617
PQPubID 54336
PageCount 16
ParticipantIDs proquest_journals_3186134617
crossref_primary_10_1007_s11430_024_1523_5
springer_journals_10_1007_s11430_024_1523_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250400
2025-04-00
20250401
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 4
  year: 2025
  text: 20250400
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
– name: Dordrecht
PublicationTitle Science China. Earth sciences
PublicationTitleAbbrev Sci. China Earth Sci
PublicationYear 2025
Publisher Science China Press
Springer Nature B.V
Publisher_xml – name: Science China Press
– name: Springer Nature B.V
References J Liu (1523_CR28) 2005; 110
A L Morrison (1523_CR30) 2018; 123
S Hofer (1523_CR16) 2017; 3
H Zhang (1523_CR57) 2023; 36
S Becker (1523_CR3) 2023; 23
H Hersbach (1523_CR15) 2020; 146
C Barrientos-Velasco (1523_CR2) 2022; 22
Y Huang (1523_CR17) 2021; 2
M D Shupe (1523_CR42) 2004; 17
G V Cesana (1523_CR6) 2024; 24
X Dong (1523_CR8) 2010; 115
D G Groves (1523_CR10) 2002; 107
J E Kay (1523_CR21) 2016; 2
Y Sun (1523_CR43) 2024; 41
J Zeng (1523_CR56) 2023; 50
E Watanabe (1523_CR51) 2006; 33
S Kato (1523_CR19) 2018; 31
J E Kay (1523_CR20) 2008; 35
M C Serreze (1523_CR41) 2019; 1436
C Frankignoul (1523_CR9) 2024; 37
M D Zelinka (1523_CR55) 2017; 7
H Yeo (1523_CR54) 2022; 270
P C Taylor (1523_CR44) 2023; 128
J C Landy (1523_CR26) 2022; 609
J K Ridley (1523_CR38) 2016; 139
J Schmale (1523_CR39) 2021; 11
Q Z Trepte (1523_CR45) 2019; 57
K Hartmuth (1523_CR13) 2023; 50
T Nygård (1523_CR32) 2019; 32
D Wang (1523_CR49) 2020; 125
S Vavrus (1523_CR47) 2004; 17
L Papritz (1523_CR36) 2020; 33
S Vavrus (1523_CR48) 2006; 33
L Oreopoulos (1523_CR33) 2005; 18
G Hao (1523_CR12) 2018; 40
R Kistler (1523_CR24) 2001; 82
P Achtert (1523_CR1) 2020; 20
B Wu (1523_CR53) 2006; 19
H Bi (1523_CR4) 2021; 34
N G Loeb (1523_CR29) 2009; 22
J Mülmenstädt (1523_CR31) 2018; 4
J Y Park (1523_CR37) 2015; 112
R Zhang (1523_CR60) 2022; 35
L Zhang (1523_CR58) 2021; 34
Y Li (1523_CR27) 2022; 34
R Clancy (1523_CR7) 2021; 34
X Wang (1523_CR50) 2022; 13
M C Serreze (1523_CR40) 2015; 373
C Zhao (1523_CR61) 2015; 42
R C Boeke (1523_CR5) 2016; 121
L Landrum (1523_CR25) 2020; 10
J He (1523_CR14) 2012; 24
B A Wielicki (1523_CR52) 1996; 77
E Gryspeerdt (1523_CR11) 2023; 23
R Pan (1523_CR35) 2023; 50
L Oreopoulos (1523_CR34) 2016; 121
E L Key (1523_CR22) 2004; 72
N Zhang (1523_CR59) 2023; 54
M D King (1523_CR23) 2013; 51
M T Jenkins (1523_CR18) 2024; 37
E Tyrlis (1523_CR46) 2019; 124
References_xml – volume: 37
  start-page: 4257
  year: 2024
  ident: 1523_CR9
  publication-title: J Clim
  doi: 10.1175/JCLI-D-23-0452.1
– volume: 11
  start-page: 95
  year: 2021
  ident: 1523_CR39
  publication-title: Nat Clim Chang
  doi: 10.1038/s41558-020-00969-5
– volume: 3
  start-page: e1700584
  year: 2017
  ident: 1523_CR16
  publication-title: Sci Adv
  doi: 10.1126/sciadv.1700584
– volume: 270
  start-page: 106080
  year: 2022
  ident: 1523_CR54
  publication-title: Atmos Res
  doi: 10.1016/j.atmosres.2022.106080
– volume: 609
  start-page: 517
  year: 2022
  ident: 1523_CR26
  publication-title: Nature
  doi: 10.1038/s41586-022-05058-5
– volume: 24
  start-page: 7899
  year: 2024
  ident: 1523_CR6
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-24-7899-2024
– volume: 2
  start-page: 38
  year: 2021
  ident: 1523_CR17
  publication-title: Commun Earth Environ
  doi: 10.1038/s43247-021-00114-w
– volume: 22
  start-page: 9313
  year: 2022
  ident: 1523_CR2
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-22-9313-2022
– volume: 22
  start-page: 748
  year: 2009
  ident: 1523_CR29
  publication-title: J Clim
  doi: 10.1175/2008JCLI2637.1
– volume: 17
  start-page: 616
  year: 2004
  ident: 1523_CR42
  publication-title: J Clim
  doi: 10.1175/1520-0442(2004)017<0616:CRFOTA>2.0.CO;2
– volume: 31
  start-page: 4501
  year: 2018
  ident: 1523_CR19
  publication-title: JClim
– volume: 23
  start-page: 4115
  year: 2023
  ident: 1523_CR11
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-23-4115-2023
– volume: 72
  start-page: 57
  year: 2004
  ident: 1523_CR22
  publication-title: Atmos Res
  doi: 10.1016/j.atmosres.2004.03.029
– volume: 23
  start-page: 7015
  year: 2023
  ident: 1523_CR3
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-23-7015-2023
– volume: 33
  start-page: 993
  year: 2020
  ident: 1523_CR36
  publication-title: J Clim
  doi: 10.1175/JCLI-D-19-0638.1
– volume: 33
  start-page: 2005GL024723
  year: 2006
  ident: 1523_CR48
  publication-title: Geophys Res Lett
  doi: 10.1029/2005GL024723
– volume: 41
  start-page: 310
  year: 2024
  ident: 1523_CR43
  publication-title: Adv Atmos Sci
  doi: 10.1007/s00376-023-2231-6
– volume: 146
  start-page: 1999
  year: 2020
  ident: 1523_CR15
  publication-title: Q J R Meteorol Soc
  doi: 10.1002/qj.3803
– volume: 42
  start-page: 557
  year: 2015
  ident: 1523_CR61
  publication-title: Geophys Res Lett
  doi: 10.1002/2014GL062015
– volume: 19
  start-page: 210
  year: 2006
  ident: 1523_CR53
  publication-title: J Clim
  doi: 10.1175/JCLI3619.1
– volume: 115
  start-page: 2009JD013489
  year: 2010
  ident: 1523_CR8
  publication-title: J Geophys Res
  doi: 10.1029/2009JD013489
– volume: 2
  start-page: 159
  year: 2016
  ident: 1523_CR21
  publication-title: Curr Clim Change Rep
  doi: 10.1007/s40641-016-0051-9
– volume: 18
  start-page: 5110
  year: 2005
  ident: 1523_CR33
  publication-title: J Clim
  doi: 10.1175/JCLI3591.1
– volume: 54
  start-page: 625
  year: 2023
  ident: 1523_CR59
  publication-title: Oceanol Limnol Sin
– volume: 36
  start-page: 3203
  year: 2023
  ident: 1523_CR57
  publication-title: J Clim
  doi: 10.1175/JCLI-D-22-0718.1
– volume: 373
  start-page: 20140159
  year: 2015
  ident: 1523_CR40
  publication-title: Phil Trans R Soc A
  doi: 10.1098/rsta.2014.0159
– volume: 13
  start-page: 316
  year: 2022
  ident: 1523_CR50
  publication-title: Atmosphere
  doi: 10.3390/atmos13020316
– volume: 121
  start-page: 8525
  year: 2016
  ident: 1523_CR5
  publication-title: J Geophys Res-Atmos
  doi: 10.1002/2016JD025099
– volume: 34
  start-page: 9585
  year: 2021
  ident: 1523_CR7
  publication-title: J Clim
– volume: 34
  start-page: 4159
  year: 2021
  ident: 1523_CR58
  publication-title: J Clim
  doi: 10.1175/JCLI-D-20-0621.1
– volume: 17
  start-page: 603
  year: 2004
  ident: 1523_CR47
  publication-title: J Clim
  doi: 10.1175/1520-0442(2004)017<0603:TIOCFO>2.0.CO;2
– volume: 124
  start-page: 11313
  year: 2019
  ident: 1523_CR46
  publication-title: J Geophys Res-Atmos
  doi: 10.1029/2019JD031085
– volume: 50
  start-page: GL102349
  year: 2023
  ident: 1523_CR13
  publication-title: Geophys Res Lett
  doi: 10.1029/2022GL102349
– volume: 82
  start-page: 247
  year: 2001
  ident: 1523_CR24
  publication-title: Bull Amer Meteorol Soc
  doi: 10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2
– volume: 139
  start-page: 325
  year: 2016
  ident: 1523_CR38
  publication-title: Clim Change
  doi: 10.1007/s10584-016-1772-4
– volume: 77
  start-page: 853
  year: 1996
  ident: 1523_CR52
  publication-title: Bull Amer Meteorol Soc
  doi: 10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2
– volume: 1436
  start-page: 36
  year: 2019
  ident: 1523_CR41
  publication-title: Ann New York Acad Sci
  doi: 10.1111/nyas.13856
– volume: 33
  start-page: L23703
  year: 2006
  ident: 1523_CR51
  publication-title: Geophys Res Lett
  doi: 10.1029/2006GL028112
– volume: 112
  start-page: 5921
  year: 2015
  ident: 1523_CR37
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1416884112
– volume: 50
  start-page: e2022GL102115
  year: 2023
  ident: 1523_CR56
  publication-title: Geophys Res Lett
  doi: 10.1029/2022GL102115
– volume: 20
  start-page: 14983
  year: 2020
  ident: 1523_CR1
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-20-14983-2020
– volume: 24
  start-page: 187
  year: 2012
  ident: 1523_CR14
  publication-title: Chin J Polar Res
  doi: 10.3724/SP.J.1084.2012.00187
– volume: 57
  start-page: 9410
  year: 2019
  ident: 1523_CR45
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2019.2926620
– volume: 107
  start-page: 4785
  year: 2002
  ident: 1523_CR10
  publication-title: J Geophys Res
– volume: 37
  start-page: 735
  year: 2024
  ident: 1523_CR18
  publication-title: J Clim
  doi: 10.1175/JCLI-D-23-0117.1
– volume: 110
  start-page: 2004JC002381
  year: 2005
  ident: 1523_CR28
  publication-title: J Geophys Res
  doi: 10.1029/2004JC002381
– volume: 123
  start-page: 473
  year: 2018
  ident: 1523_CR30
  publication-title: J Geophys Res-Atmos
  doi: 10.1002/2017JD027248
– volume: 121
  start-page: 2299
  year: 2016
  ident: 1523_CR34
  publication-title: J Geophys Res-Atmos
  doi: 10.1002/2015JD024502
– volume: 10
  start-page: 1108
  year: 2020
  ident: 1523_CR25
  publication-title: Nat Clim Chang
  doi: 10.1038/s41558-020-0892-z
– volume: 51
  start-page: 3826
  year: 2013
  ident: 1523_CR23
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2012.2227333
– volume: 34
  start-page: 3003
  year: 2021
  ident: 1523_CR4
  publication-title: J Clim
  doi: 10.1175/JCLI-D-19-0843.1
– volume: 50
  start-page: e2022GL102077
  year: 2023
  ident: 1523_CR35
  publication-title: Geophys Res Lett
  doi: 10.1029/2022GL102077
– volume: 4
  start-page: 23
  year: 2018
  ident: 1523_CR31
  publication-title: Curr Clim Change Rep
  doi: 10.1007/s40641-018-0089-y
– volume: 40
  start-page: 54
  year: 2018
  ident: 1523_CR12
  publication-title: Haiyang Xuebao
– volume: 7
  start-page: 674
  year: 2017
  ident: 1523_CR55
  publication-title: Nat Clim Change
  doi: 10.1038/nclimate3402
– volume: 34
  start-page: 177
  year: 2022
  ident: 1523_CR27
  publication-title: Chin J Polar Res
– volume: 128
  start-page: e2022JD038098
  year: 2023
  ident: 1523_CR44
  publication-title: J Geophys Res-Atmos
  doi: 10.1029/2022JD038098
– volume: 35
  start-page: 2008GL033451
  year: 2008
  ident: 1523_CR20
  publication-title: Geophys Res Lett
  doi: 10.1029/2008GL033451
– volume: 32
  start-page: 8771
  year: 2019
  ident: 1523_CR32
  publication-title: J Clim
  doi: 10.1175/JCLI-D-19-0242.1
– volume: 35
  start-page: 5399
  year: 2022
  ident: 1523_CR60
  publication-title: J Clim
  doi: 10.1175/JCLI-D-21-0924.1
– volume: 125
  start-page: e2019JD032136
  year: 2020
  ident: 1523_CR49
  publication-title: J Geophys Res-Atmos
  doi: 10.1029/2019JD032136
SSID ssj0000389727
Score 2.4139912
Snippet Climate change in the Arctic serves as a pivotal indicator of alterations in the global climate system, with clouds playing an essential role in regulating the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 1245
SubjectTerms Arctic climate changes
Arctic climates
Arctic clouds
Arctic Oscillation
Atmospheric circulation
Climate change
Climate system
Climatic analysis
Clouds
Cooling effects
Dipoles
Earth and Environmental Science
Earth Sciences
Energy balance
Global climate
Low clouds
Summer
Trends
Variability
Title Trends in Arctic summer cloud variability from 2000 to 2022 and the potential causes
URI https://link.springer.com/article/10.1007/s11430-024-1523-5
https://www.proquest.com/docview/3186134617
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1869-1897
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000389727
  issn: 1674-7313
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1869-1897
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000389727
  issn: 1674-7313
  databaseCode: U2A
  dateStart: 20101201
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5si-DFt1itZQ-elC15bdIci9gWRU8t1FPY7ANESUqbCPXXO5sHwaKHnnLIsklmJzPf7sx8A3Aba6ZkGHDKucWop6Sm3Nc2tXmsmKFvCYqVfnn1p3PvacEWVR33us52r0OShaVuit3QtVsUfQpFn-NS1oJOQbfVhs5o8vbcHK0YzrigaNZqUuxp4NpuHc_8a57fHqmBmVuR0cLhjI9gVr9qmWfyMcizeCC-t1gcd_yWYzisACgZlRpzAnsqOYX9SdHgd3MGszJJlrwnOMTUTxGjqmpFxGeaS_KFW-uS2XtDTGUKMTU4JEvx6jiEJ5IgoCTLNDNJSPgYwfO1Wp_DfPw4e5jSqvMCFU5gZdTVvnaUZNJxtYGMiNO01I7NmSdwTxtKroVG5zcUaC99U8w79JjwA1t5lnKFcC-gnaSJugQifIQYwg0tIdFYxAzx6FCKMI6Zr7jPWBfuaulHy5JgI2qolI2YIhRTZMQU4eBevT5R9a-tI7RKiEk8hGJduK_F3dz-d7KrnUZfw4FjWv8WSTs9aGerXN0gHsnifqV_fWjNndEPbDXT6Q
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86Eb2InzidmoMnJdCmTboehzinbjttsFtI8wGCtGPthP33vvTDoujBUw99pPBL8t4vzXu_h9BtYpnRcSSJlB4jodGWSG594svEMCffEpUzPZny0Tx8WbBFXcedN9nuzZVk6anbYjcI7R6BmEIg5gSEbaMdp1_lBPPndPD1Y8UpxkVlq1aXYE-iwA-a28zfRvkej1qS-eNetAw3w0N0UPNEPKgm9ghtmfQY7T6VfXg3J2hW5bLitxRMXJkTdivKrLB6z9Yaf8AJuBLg3mBXQIJdqQwuMnhSimWqMfA-vMwKlysEn1FynZv8FM2Hj7OHEakbJBBFI68ggeWWGs00DaxjdkCnrLbUlyxUcPSMtbTKQozqK3Br3NXc9kOmeOSb0DOBUsEZ6qRZas4RVhyYgApiT2nY0wkD2tjXKk4Sxo3kjHXRXQOTWFY6GKJVPHaYCsBUOEwFGPcaIEW9JXIBzgOoQwiMqYvuG3Db138OdvEv6xu0N5pNxmL8PH29RPvUdest82x6qFOs1uYKKESRXJdL5hO0p7kp
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86UbyInzidmoMnJaxNmnY9DnXOr-Fhg91Cmg8QpB1rJ-y_96VdLYoePPXQR6C_vOT90rz3ewhdJpYbHUeSSOlxEhhtiQytT3yZGO7kW6Jypl9G4XASPE75dNXnNK-z3esryaqmwak0pUV3pm23KXyDMO8RiC8E4g8jfB1tBE4nARx6QvtfP1mcelxUtm11yfYkYj6rbzZ_G-V7bGoI54870jL0DHbRzooz4n41yXtozaT7aPO-7Mm7PEDjKq8Vv6Vg4kqesPMuM8fqPVto_AGn4UqMe4ldMQl2ZTO4yOBJKZapxsAB8Sxznw_OiJVc5CY_RJPB3fhmSFbNEoiikVcQZkNLjeaaMutYHlArqy31JQ8UHENjLa2yEK96Cra40NXf9gKuwsg3gWeYUuwItdIsNccIqxBYgWKxpzSs74QDhexpFScJD40MOW-jqxomMas0MUSjfuwwFYCpcJgKMO7UQIrV8sgFbCRAIwJgT210XYPbvP5zsJN_WV-grdfbgXh-GD2dom3qGveWKTcd1CrmC3MGbKJIzkuP-QTz-b1l
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Trends+in+Arctic+summer+cloud+variability+from+2000+to+2022+and+the+potential+causes&rft.jtitle=Science+China.+Earth+sciences&rft.date=2025-04-01&rft.pub=Springer+Nature+B.V&rft.issn=1674-7313&rft.eissn=1869-1897&rft.volume=68&rft.issue=4&rft.spage=1245&rft.epage=1260&rft_id=info:doi/10.1007%2Fs11430-024-1523-5&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-7313&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-7313&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-7313&client=summon