Trends in Arctic summer cloud variability from 2000 to 2022 and the potential causes
Climate change in the Arctic serves as a pivotal indicator of alterations in the global climate system, with clouds playing an essential role in regulating the surface radiative energy balance in the Arctic. Elucidating the patterns of Arctic cloud variability and the underlying mechanisms is of par...
Saved in:
| Published in | Science China. Earth sciences Vol. 68; no. 4; pp. 1245 - 1260 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Beijing
Science China Press
01.04.2025
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1674-7313 1869-1897 |
| DOI | 10.1007/s11430-024-1523-5 |
Cover
| Abstract | Climate change in the Arctic serves as a pivotal indicator of alterations in the global climate system, with clouds playing an essential role in regulating the surface radiative energy balance in the Arctic. Elucidating the patterns of Arctic cloud variability and the underlying mechanisms is of paramount scientific importance for understanding Arctic climate change. Spatiotemporal analysis of Arctic cloud characteristics reveals that since the onset of the 21st century, low clouds have predominantly comprised the Arctic summer cloud fraction (approximately 60%), followed by middle clouds (approximately 30%). The total-cloud fraction has exhibited a marked increasing trend, especially in the Beaufort Sea and Chukchi Sea (0.45%/yr). An attribution analysis suggests that the changes in the Arctic cloud fraction are chiefly driven by trends in two atmospheric circulation modes: The Arctic Oscillation (AO) and the Arctic dipole anomaly (DA). During positive phases of the AO, the cloud fraction increases across all Arctic basins. Conversely, in the positive phases of the DA, the cloud fraction decreases in the Beaufort Sea, Chukchi Sea, and Greenland Sea, whereas it increases in the East Siberian Sea, Kara Sea, and Barents Sea, indicating an “east-west” dipole distribution. Since 2000, the AO has been on an upward trend, whereas the DA has been declining. The combined effect of these two modes has resulted in a significant increase in the cloud fraction within the Beaufort Sea region. Further examination of cloud radiative effects indicates that an increase in the cloud fraction intensifies both longwave warming and shortwave cooling effects, leading to an overall net negative radiative effect. Analyzing the long-term trends in Arctic summer clouds enhances our comprehension of Arctic climate change. |
|---|---|
| AbstractList | Climate change in the Arctic serves as a pivotal indicator of alterations in the global climate system, with clouds playing an essential role in regulating the surface radiative energy balance in the Arctic. Elucidating the patterns of Arctic cloud variability and the underlying mechanisms is of paramount scientific importance for understanding Arctic climate change. Spatiotemporal analysis of Arctic cloud characteristics reveals that since the onset of the 21st century, low clouds have predominantly comprised the Arctic summer cloud fraction (approximately 60%), followed by middle clouds (approximately 30%). The total-cloud fraction has exhibited a marked increasing trend, especially in the Beaufort Sea and Chukchi Sea (0.45%/yr). An attribution analysis suggests that the changes in the Arctic cloud fraction are chiefly driven by trends in two atmospheric circulation modes: The Arctic Oscillation (AO) and the Arctic dipole anomaly (DA). During positive phases of the AO, the cloud fraction increases across all Arctic basins. Conversely, in the positive phases of the DA, the cloud fraction decreases in the Beaufort Sea, Chukchi Sea, and Greenland Sea, whereas it increases in the East Siberian Sea, Kara Sea, and Barents Sea, indicating an “east-west” dipole distribution. Since 2000, the AO has been on an upward trend, whereas the DA has been declining. The combined effect of these two modes has resulted in a significant increase in the cloud fraction within the Beaufort Sea region. Further examination of cloud radiative effects indicates that an increase in the cloud fraction intensifies both longwave warming and shortwave cooling effects, leading to an overall net negative radiative effect. Analyzing the long-term trends in Arctic summer clouds enhances our comprehension of Arctic climate change. |
| Author | Fan, Hao Zhao, Chuanfeng Yang, Yikun Zhao, Xin Chen, Annan Li, Jiefeng Zhang, Haotian Zhou, Yue |
| Author_xml | – sequence: 1 givenname: Haotian surname: Zhang fullname: Zhang, Haotian organization: Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University – sequence: 2 givenname: Chuanfeng surname: Zhao fullname: Zhao, Chuanfeng email: cfzhao@pku.edu.cn organization: Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University – sequence: 3 givenname: Annan surname: Chen fullname: Chen, Annan organization: Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University – sequence: 4 givenname: Yikun surname: Yang fullname: Yang, Yikun organization: Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University – sequence: 5 givenname: Jiefeng surname: Li fullname: Li, Jiefeng organization: Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University – sequence: 6 givenname: Xin surname: Zhao fullname: Zhao, Xin organization: Faculty of Geographical Science, Beijing Normal University – sequence: 7 givenname: Yue surname: Zhou fullname: Zhou, Yue organization: Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology – sequence: 8 givenname: Hao surname: Fan fullname: Fan, Hao organization: School of Systems Science, Beijing Normal University |
| BookMark | eNp1UE1LAzEQDaJgrf0B3gKeo0km2WyPpfgFBS_1HGI20S27SU2yQv-9KRU8OZc3MO_NvHlX6DzE4BC6YfSOUaruM2MCKKFcECY5EHmGZqxtloS1S3Ve-0YJooDBJVrkvKO1oE64mqHtNrnQZdwHvEq29BbnaRxdwnaIU4e_TerNez_05YB9iiPmVYtLrMg5NqHD5dPhfSwulN4M2Jopu3yNLrwZslv84hy9PT5s189k8_r0sl5tiOWKFgK-8dx1suPgGZOUtuA7z5mRwkI12BlvPVSrVkLbAIi2FdI2ijlBHVgLc3R72rtP8WtyuehdnFKoJzXU_xmIhqnKYieWTTHn5Lzep3406aAZ1cf89Ck_XfPTx_y0rBp-0uTKDR8u_W3-X_QDST9xtg |
| Cites_doi | 10.1175/JCLI-D-23-0452.1 10.1038/s41558-020-00969-5 10.1126/sciadv.1700584 10.1016/j.atmosres.2022.106080 10.1038/s41586-022-05058-5 10.5194/acp-24-7899-2024 10.1038/s43247-021-00114-w 10.5194/acp-22-9313-2022 10.1175/2008JCLI2637.1 10.1175/1520-0442(2004)017<0616:CRFOTA>2.0.CO;2 10.5194/acp-23-4115-2023 10.1016/j.atmosres.2004.03.029 10.5194/acp-23-7015-2023 10.1175/JCLI-D-19-0638.1 10.1029/2005GL024723 10.1007/s00376-023-2231-6 10.1002/qj.3803 10.1002/2014GL062015 10.1175/JCLI3619.1 10.1029/2009JD013489 10.1007/s40641-016-0051-9 10.1175/JCLI3591.1 10.1175/JCLI-D-22-0718.1 10.1098/rsta.2014.0159 10.3390/atmos13020316 10.1002/2016JD025099 10.1175/JCLI-D-20-0621.1 10.1175/1520-0442(2004)017<0603:TIOCFO>2.0.CO;2 10.1029/2019JD031085 10.1029/2022GL102349 10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2 10.1007/s10584-016-1772-4 10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2 10.1111/nyas.13856 10.1029/2006GL028112 10.1073/pnas.1416884112 10.1029/2022GL102115 10.5194/acp-20-14983-2020 10.3724/SP.J.1084.2012.00187 10.1109/TGRS.2019.2926620 10.1175/JCLI-D-23-0117.1 10.1029/2004JC002381 10.1002/2017JD027248 10.1002/2015JD024502 10.1038/s41558-020-0892-z 10.1109/TGRS.2012.2227333 10.1175/JCLI-D-19-0843.1 10.1029/2022GL102077 10.1007/s40641-018-0089-y 10.1038/nclimate3402 10.1029/2022JD038098 10.1029/2008GL033451 10.1175/JCLI-D-19-0242.1 10.1175/JCLI-D-21-0924.1 10.1029/2019JD032136 |
| ContentType | Journal Article |
| Copyright | Science China Press 2025 Copyright Springer Nature B.V. Apr 2025 |
| Copyright_xml | – notice: Science China Press 2025 – notice: Copyright Springer Nature B.V. Apr 2025 |
| DBID | AAYXX CITATION 7TG 7UA C1K F1W H96 KL. L.G |
| DOI | 10.1007/s11430-024-1523-5 |
| DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| EISSN | 1869-1897 |
| EndPage | 1260 |
| ExternalDocumentID | 10_1007_s11430_024_1523_5 |
| GeographicLocations | Chukchi Sea Beaufort Sea Arctic region |
| GeographicLocations_xml | – name: Arctic region – name: Chukchi Sea – name: Beaufort Sea |
| GroupedDBID | -SA -S~ -Y2 .VR 06D 0R~ 0VY 1N0 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 40D 40E 5VR 5VS 67M 88I 8FE 8FH 8TC 8UJ 95- 95. 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDBE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACIHN ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHIR ADHKG ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFKRA AFLOW AFQWF AFRAH AFUIB AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AOCGG ARMRJ ASPBG AVWKF AXYYD AYFIA AZFZN AZQEC B-. BDATZ BENPR BGNMA BHPHI BKSAR BPHCQ BSONS CAG CAJEA CCEZO CCPQU CCVFK CHBEP CJPJV COF CSCUP CW9 DDRTE DNIVK DPUIP DWQXO EBD EBLON EBS EIOEI EJD ESBYG FA0 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 H13 HCIFZ HF~ HG6 HMJXF HRMNR HVGLF HZ~ I-F IJ- IKXTQ IWAJR IXD I~X I~Z J-C JBSCW JZLTJ KOV L8X LK5 LLZTM M2P M4Y M7R MA- N2Q N9A NB0 NPVJJ NQJWS NU0 O9J PCBAR PF0 PHGZT PQQKQ PROAC PT4 Q-- Q2X QOS R89 RIG ROL RSV S16 S3B SAP SCL SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN TR2 TSG TUC TUS U1G U2A U5K UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR ZMTXR ~02 ~A9 AAYXX ABBRH ABRTQ AFDZB AFOHR AGQPQ ATHPR CITATION PHGZM PUEGO 7TG 7UA C1K F1W H96 KL. L.G |
| ID | FETCH-LOGICAL-c270t-3f6f2ed5d23f1150083fdf21a54c3389dafcf3038c53863348845c671e40e3cc3 |
| IEDL.DBID | AGYKE |
| ISSN | 1674-7313 |
| IngestDate | Fri Jul 25 21:04:02 EDT 2025 Wed Oct 01 06:36:38 EDT 2025 Fri Apr 04 01:15:50 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Arctic oscillation Arctic dipole anomaly Arctic cloud Atmospheric circulation Cloud radiative effect |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c270t-3f6f2ed5d23f1150083fdf21a54c3389dafcf3038c53863348845c671e40e3cc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3186134617 |
| PQPubID | 54336 |
| PageCount | 16 |
| ParticipantIDs | proquest_journals_3186134617 crossref_primary_10_1007_s11430_024_1523_5 springer_journals_10_1007_s11430_024_1523_5 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20250400 2025-04-00 20250401 |
| PublicationDateYYYYMMDD | 2025-04-01 |
| PublicationDate_xml | – month: 4 year: 2025 text: 20250400 |
| PublicationDecade | 2020 |
| PublicationPlace | Beijing |
| PublicationPlace_xml | – name: Beijing – name: Dordrecht |
| PublicationTitle | Science China. Earth sciences |
| PublicationTitleAbbrev | Sci. China Earth Sci |
| PublicationYear | 2025 |
| Publisher | Science China Press Springer Nature B.V |
| Publisher_xml | – name: Science China Press – name: Springer Nature B.V |
| References | J Liu (1523_CR28) 2005; 110 A L Morrison (1523_CR30) 2018; 123 S Hofer (1523_CR16) 2017; 3 H Zhang (1523_CR57) 2023; 36 S Becker (1523_CR3) 2023; 23 H Hersbach (1523_CR15) 2020; 146 C Barrientos-Velasco (1523_CR2) 2022; 22 Y Huang (1523_CR17) 2021; 2 M D Shupe (1523_CR42) 2004; 17 G V Cesana (1523_CR6) 2024; 24 X Dong (1523_CR8) 2010; 115 D G Groves (1523_CR10) 2002; 107 J E Kay (1523_CR21) 2016; 2 Y Sun (1523_CR43) 2024; 41 J Zeng (1523_CR56) 2023; 50 E Watanabe (1523_CR51) 2006; 33 S Kato (1523_CR19) 2018; 31 J E Kay (1523_CR20) 2008; 35 M C Serreze (1523_CR41) 2019; 1436 C Frankignoul (1523_CR9) 2024; 37 M D Zelinka (1523_CR55) 2017; 7 H Yeo (1523_CR54) 2022; 270 P C Taylor (1523_CR44) 2023; 128 J C Landy (1523_CR26) 2022; 609 J K Ridley (1523_CR38) 2016; 139 J Schmale (1523_CR39) 2021; 11 Q Z Trepte (1523_CR45) 2019; 57 K Hartmuth (1523_CR13) 2023; 50 T Nygård (1523_CR32) 2019; 32 D Wang (1523_CR49) 2020; 125 S Vavrus (1523_CR47) 2004; 17 L Papritz (1523_CR36) 2020; 33 S Vavrus (1523_CR48) 2006; 33 L Oreopoulos (1523_CR33) 2005; 18 G Hao (1523_CR12) 2018; 40 R Kistler (1523_CR24) 2001; 82 P Achtert (1523_CR1) 2020; 20 B Wu (1523_CR53) 2006; 19 H Bi (1523_CR4) 2021; 34 N G Loeb (1523_CR29) 2009; 22 J Mülmenstädt (1523_CR31) 2018; 4 J Y Park (1523_CR37) 2015; 112 R Zhang (1523_CR60) 2022; 35 L Zhang (1523_CR58) 2021; 34 Y Li (1523_CR27) 2022; 34 R Clancy (1523_CR7) 2021; 34 X Wang (1523_CR50) 2022; 13 M C Serreze (1523_CR40) 2015; 373 C Zhao (1523_CR61) 2015; 42 R C Boeke (1523_CR5) 2016; 121 L Landrum (1523_CR25) 2020; 10 J He (1523_CR14) 2012; 24 B A Wielicki (1523_CR52) 1996; 77 E Gryspeerdt (1523_CR11) 2023; 23 R Pan (1523_CR35) 2023; 50 L Oreopoulos (1523_CR34) 2016; 121 E L Key (1523_CR22) 2004; 72 N Zhang (1523_CR59) 2023; 54 M D King (1523_CR23) 2013; 51 M T Jenkins (1523_CR18) 2024; 37 E Tyrlis (1523_CR46) 2019; 124 |
| References_xml | – volume: 37 start-page: 4257 year: 2024 ident: 1523_CR9 publication-title: J Clim doi: 10.1175/JCLI-D-23-0452.1 – volume: 11 start-page: 95 year: 2021 ident: 1523_CR39 publication-title: Nat Clim Chang doi: 10.1038/s41558-020-00969-5 – volume: 3 start-page: e1700584 year: 2017 ident: 1523_CR16 publication-title: Sci Adv doi: 10.1126/sciadv.1700584 – volume: 270 start-page: 106080 year: 2022 ident: 1523_CR54 publication-title: Atmos Res doi: 10.1016/j.atmosres.2022.106080 – volume: 609 start-page: 517 year: 2022 ident: 1523_CR26 publication-title: Nature doi: 10.1038/s41586-022-05058-5 – volume: 24 start-page: 7899 year: 2024 ident: 1523_CR6 publication-title: Atmos Chem Phys doi: 10.5194/acp-24-7899-2024 – volume: 2 start-page: 38 year: 2021 ident: 1523_CR17 publication-title: Commun Earth Environ doi: 10.1038/s43247-021-00114-w – volume: 22 start-page: 9313 year: 2022 ident: 1523_CR2 publication-title: Atmos Chem Phys doi: 10.5194/acp-22-9313-2022 – volume: 22 start-page: 748 year: 2009 ident: 1523_CR29 publication-title: J Clim doi: 10.1175/2008JCLI2637.1 – volume: 17 start-page: 616 year: 2004 ident: 1523_CR42 publication-title: J Clim doi: 10.1175/1520-0442(2004)017<0616:CRFOTA>2.0.CO;2 – volume: 31 start-page: 4501 year: 2018 ident: 1523_CR19 publication-title: JClim – volume: 23 start-page: 4115 year: 2023 ident: 1523_CR11 publication-title: Atmos Chem Phys doi: 10.5194/acp-23-4115-2023 – volume: 72 start-page: 57 year: 2004 ident: 1523_CR22 publication-title: Atmos Res doi: 10.1016/j.atmosres.2004.03.029 – volume: 23 start-page: 7015 year: 2023 ident: 1523_CR3 publication-title: Atmos Chem Phys doi: 10.5194/acp-23-7015-2023 – volume: 33 start-page: 993 year: 2020 ident: 1523_CR36 publication-title: J Clim doi: 10.1175/JCLI-D-19-0638.1 – volume: 33 start-page: 2005GL024723 year: 2006 ident: 1523_CR48 publication-title: Geophys Res Lett doi: 10.1029/2005GL024723 – volume: 41 start-page: 310 year: 2024 ident: 1523_CR43 publication-title: Adv Atmos Sci doi: 10.1007/s00376-023-2231-6 – volume: 146 start-page: 1999 year: 2020 ident: 1523_CR15 publication-title: Q J R Meteorol Soc doi: 10.1002/qj.3803 – volume: 42 start-page: 557 year: 2015 ident: 1523_CR61 publication-title: Geophys Res Lett doi: 10.1002/2014GL062015 – volume: 19 start-page: 210 year: 2006 ident: 1523_CR53 publication-title: J Clim doi: 10.1175/JCLI3619.1 – volume: 115 start-page: 2009JD013489 year: 2010 ident: 1523_CR8 publication-title: J Geophys Res doi: 10.1029/2009JD013489 – volume: 2 start-page: 159 year: 2016 ident: 1523_CR21 publication-title: Curr Clim Change Rep doi: 10.1007/s40641-016-0051-9 – volume: 18 start-page: 5110 year: 2005 ident: 1523_CR33 publication-title: J Clim doi: 10.1175/JCLI3591.1 – volume: 54 start-page: 625 year: 2023 ident: 1523_CR59 publication-title: Oceanol Limnol Sin – volume: 36 start-page: 3203 year: 2023 ident: 1523_CR57 publication-title: J Clim doi: 10.1175/JCLI-D-22-0718.1 – volume: 373 start-page: 20140159 year: 2015 ident: 1523_CR40 publication-title: Phil Trans R Soc A doi: 10.1098/rsta.2014.0159 – volume: 13 start-page: 316 year: 2022 ident: 1523_CR50 publication-title: Atmosphere doi: 10.3390/atmos13020316 – volume: 121 start-page: 8525 year: 2016 ident: 1523_CR5 publication-title: J Geophys Res-Atmos doi: 10.1002/2016JD025099 – volume: 34 start-page: 9585 year: 2021 ident: 1523_CR7 publication-title: J Clim – volume: 34 start-page: 4159 year: 2021 ident: 1523_CR58 publication-title: J Clim doi: 10.1175/JCLI-D-20-0621.1 – volume: 17 start-page: 603 year: 2004 ident: 1523_CR47 publication-title: J Clim doi: 10.1175/1520-0442(2004)017<0603:TIOCFO>2.0.CO;2 – volume: 124 start-page: 11313 year: 2019 ident: 1523_CR46 publication-title: J Geophys Res-Atmos doi: 10.1029/2019JD031085 – volume: 50 start-page: GL102349 year: 2023 ident: 1523_CR13 publication-title: Geophys Res Lett doi: 10.1029/2022GL102349 – volume: 82 start-page: 247 year: 2001 ident: 1523_CR24 publication-title: Bull Amer Meteorol Soc doi: 10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2 – volume: 139 start-page: 325 year: 2016 ident: 1523_CR38 publication-title: Clim Change doi: 10.1007/s10584-016-1772-4 – volume: 77 start-page: 853 year: 1996 ident: 1523_CR52 publication-title: Bull Amer Meteorol Soc doi: 10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2 – volume: 1436 start-page: 36 year: 2019 ident: 1523_CR41 publication-title: Ann New York Acad Sci doi: 10.1111/nyas.13856 – volume: 33 start-page: L23703 year: 2006 ident: 1523_CR51 publication-title: Geophys Res Lett doi: 10.1029/2006GL028112 – volume: 112 start-page: 5921 year: 2015 ident: 1523_CR37 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1416884112 – volume: 50 start-page: e2022GL102115 year: 2023 ident: 1523_CR56 publication-title: Geophys Res Lett doi: 10.1029/2022GL102115 – volume: 20 start-page: 14983 year: 2020 ident: 1523_CR1 publication-title: Atmos Chem Phys doi: 10.5194/acp-20-14983-2020 – volume: 24 start-page: 187 year: 2012 ident: 1523_CR14 publication-title: Chin J Polar Res doi: 10.3724/SP.J.1084.2012.00187 – volume: 57 start-page: 9410 year: 2019 ident: 1523_CR45 publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2019.2926620 – volume: 107 start-page: 4785 year: 2002 ident: 1523_CR10 publication-title: J Geophys Res – volume: 37 start-page: 735 year: 2024 ident: 1523_CR18 publication-title: J Clim doi: 10.1175/JCLI-D-23-0117.1 – volume: 110 start-page: 2004JC002381 year: 2005 ident: 1523_CR28 publication-title: J Geophys Res doi: 10.1029/2004JC002381 – volume: 123 start-page: 473 year: 2018 ident: 1523_CR30 publication-title: J Geophys Res-Atmos doi: 10.1002/2017JD027248 – volume: 121 start-page: 2299 year: 2016 ident: 1523_CR34 publication-title: J Geophys Res-Atmos doi: 10.1002/2015JD024502 – volume: 10 start-page: 1108 year: 2020 ident: 1523_CR25 publication-title: Nat Clim Chang doi: 10.1038/s41558-020-0892-z – volume: 51 start-page: 3826 year: 2013 ident: 1523_CR23 publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2012.2227333 – volume: 34 start-page: 3003 year: 2021 ident: 1523_CR4 publication-title: J Clim doi: 10.1175/JCLI-D-19-0843.1 – volume: 50 start-page: e2022GL102077 year: 2023 ident: 1523_CR35 publication-title: Geophys Res Lett doi: 10.1029/2022GL102077 – volume: 4 start-page: 23 year: 2018 ident: 1523_CR31 publication-title: Curr Clim Change Rep doi: 10.1007/s40641-018-0089-y – volume: 40 start-page: 54 year: 2018 ident: 1523_CR12 publication-title: Haiyang Xuebao – volume: 7 start-page: 674 year: 2017 ident: 1523_CR55 publication-title: Nat Clim Change doi: 10.1038/nclimate3402 – volume: 34 start-page: 177 year: 2022 ident: 1523_CR27 publication-title: Chin J Polar Res – volume: 128 start-page: e2022JD038098 year: 2023 ident: 1523_CR44 publication-title: J Geophys Res-Atmos doi: 10.1029/2022JD038098 – volume: 35 start-page: 2008GL033451 year: 2008 ident: 1523_CR20 publication-title: Geophys Res Lett doi: 10.1029/2008GL033451 – volume: 32 start-page: 8771 year: 2019 ident: 1523_CR32 publication-title: J Clim doi: 10.1175/JCLI-D-19-0242.1 – volume: 35 start-page: 5399 year: 2022 ident: 1523_CR60 publication-title: J Clim doi: 10.1175/JCLI-D-21-0924.1 – volume: 125 start-page: e2019JD032136 year: 2020 ident: 1523_CR49 publication-title: J Geophys Res-Atmos doi: 10.1029/2019JD032136 |
| SSID | ssj0000389727 |
| Score | 2.4139912 |
| Snippet | Climate change in the Arctic serves as a pivotal indicator of alterations in the global climate system, with clouds playing an essential role in regulating the... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 1245 |
| SubjectTerms | Arctic climate changes Arctic climates Arctic clouds Arctic Oscillation Atmospheric circulation Climate change Climate system Climatic analysis Clouds Cooling effects Dipoles Earth and Environmental Science Earth Sciences Energy balance Global climate Low clouds Summer Trends Variability |
| Title | Trends in Arctic summer cloud variability from 2000 to 2022 and the potential causes |
| URI | https://link.springer.com/article/10.1007/s11430-024-1523-5 https://www.proquest.com/docview/3186134617 |
| Volume | 68 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1869-1897 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000389727 issn: 1674-7313 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1869-1897 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000389727 issn: 1674-7313 databaseCode: U2A dateStart: 20101201 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5si-DFt1itZQ-elC15bdIci9gWRU8t1FPY7ANESUqbCPXXO5sHwaKHnnLIsklmJzPf7sx8A3Aba6ZkGHDKucWop6Sm3Nc2tXmsmKFvCYqVfnn1p3PvacEWVR33us52r0OShaVuit3QtVsUfQpFn-NS1oJOQbfVhs5o8vbcHK0YzrigaNZqUuxp4NpuHc_8a57fHqmBmVuR0cLhjI9gVr9qmWfyMcizeCC-t1gcd_yWYzisACgZlRpzAnsqOYX9SdHgd3MGszJJlrwnOMTUTxGjqmpFxGeaS_KFW-uS2XtDTGUKMTU4JEvx6jiEJ5IgoCTLNDNJSPgYwfO1Wp_DfPw4e5jSqvMCFU5gZdTVvnaUZNJxtYGMiNO01I7NmSdwTxtKroVG5zcUaC99U8w79JjwA1t5lnKFcC-gnaSJugQifIQYwg0tIdFYxAzx6FCKMI6Zr7jPWBfuaulHy5JgI2qolI2YIhRTZMQU4eBevT5R9a-tI7RKiEk8hGJduK_F3dz-d7KrnUZfw4FjWv8WSTs9aGerXN0gHsnifqV_fWjNndEPbDXT6Q |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86Eb2InzidmoMnJdCmTboehzinbjttsFtI8wGCtGPthP33vvTDoujBUw99pPBL8t4vzXu_h9BtYpnRcSSJlB4jodGWSG594svEMCffEpUzPZny0Tx8WbBFXcedN9nuzZVk6anbYjcI7R6BmEIg5gSEbaMdp1_lBPPndPD1Y8UpxkVlq1aXYE-iwA-a28zfRvkej1qS-eNetAw3w0N0UPNEPKgm9ghtmfQY7T6VfXg3J2hW5bLitxRMXJkTdivKrLB6z9Yaf8AJuBLg3mBXQIJdqQwuMnhSimWqMfA-vMwKlysEn1FynZv8FM2Hj7OHEakbJBBFI68ggeWWGs00DaxjdkCnrLbUlyxUcPSMtbTKQozqK3Br3NXc9kOmeOSb0DOBUsEZ6qRZas4RVhyYgApiT2nY0wkD2tjXKk4Sxo3kjHXRXQOTWFY6GKJVPHaYCsBUOEwFGPcaIEW9JXIBzgOoQwiMqYvuG3Db138OdvEv6xu0N5pNxmL8PH29RPvUdest82x6qFOs1uYKKESRXJdL5hO0p7kp |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86UbyInzidmoMnJaxNmnY9DnXOr-Fhg91Cmg8QpB1rJ-y_96VdLYoePPXQR6C_vOT90rz3ewhdJpYbHUeSSOlxEhhtiQytT3yZGO7kW6Jypl9G4XASPE75dNXnNK-z3esryaqmwak0pUV3pm23KXyDMO8RiC8E4g8jfB1tBE4nARx6QvtfP1mcelxUtm11yfYkYj6rbzZ_G-V7bGoI54870jL0DHbRzooz4n41yXtozaT7aPO-7Mm7PEDjKq8Vv6Vg4kqesPMuM8fqPVto_AGn4UqMe4ldMQl2ZTO4yOBJKZapxsAB8Sxznw_OiJVc5CY_RJPB3fhmSFbNEoiikVcQZkNLjeaaMutYHlArqy31JQ8UHENjLa2yEK96Cra40NXf9gKuwsg3gWeYUuwItdIsNccIqxBYgWKxpzSs74QDhexpFScJD40MOW-jqxomMas0MUSjfuwwFYCpcJgKMO7UQIrV8sgFbCRAIwJgT210XYPbvP5zsJN_WV-grdfbgXh-GD2dom3qGveWKTcd1CrmC3MGbKJIzkuP-QTz-b1l |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Trends+in+Arctic+summer+cloud+variability+from+2000+to+2022+and+the+potential+causes&rft.jtitle=Science+China.+Earth+sciences&rft.date=2025-04-01&rft.pub=Springer+Nature+B.V&rft.issn=1674-7313&rft.eissn=1869-1897&rft.volume=68&rft.issue=4&rft.spage=1245&rft.epage=1260&rft_id=info:doi/10.1007%2Fs11430-024-1523-5&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-7313&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-7313&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-7313&client=summon |