Predictive Uncertainty Estimation of SOC with Ensemble Algorithms and Bayesian Optimization

Machine learning techniques have become popular in estimating soil organic carbon (SOC) due to their ability to handle complex, nonlinear relationships between soil properties and environmental variables. Previous studies focused on the point estimation of SOC rather than predicting a probability di...

Full description

Saved in:
Bibliographic Details
Published inEurasian soil science Vol. 58; no. 8
Main Authors Xuan-Linh Nguyen, Van Sang, Tran, Pham, Van-Manh, Nguyen, Quoc-Huy, Nguyen, Huu-Duy, Do, Nhung-Thi, Nguyen, Dinh-Hung, Bui, Quang-Thanh
Format Journal Article
LanguageEnglish
Published Moscow Pleiades Publishing 01.08.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1064-2293
1556-195X
DOI10.1134/S1064229324604293

Cover

Abstract Machine learning techniques have become popular in estimating soil organic carbon (SOC) due to their ability to handle complex, nonlinear relationships between soil properties and environmental variables. Previous studies focused on the point estimation of SOC rather than predicting a probability distribution. This paper evaluates the hybrid model that integrated the Bayesian optimizer into NGBoost using satellite data sets for SOC mapping. The investigation was carried out by obtaining about 250 soil samples in the Northeastern region of Vietnam, and the SOC content was analyzed in the laboratory using the Walkley-Black method. We obtained spectral indices from Sentinel 2A and Sentinel 1A as independent variables to predict the SOC contents at these sample locations. The hybrid models were trained in two successive stages: iteratively selecting hyper-parameters using Bayesian and regular model training using cross-validation methods. The tuned NGBoost performs well with RMSE = 2.0201, MAE = 1.5603, and R 2 = 0.674, and it was used to map SOC for a subset within the study area. The information generated from this study will help develop improved and more efficient monitoring techniques for SOC dynamics and promote sustainable land use and management.
AbstractList Machine learning techniques have become popular in estimating soil organic carbon (SOC) due to their ability to handle complex, nonlinear relationships between soil properties and environmental variables. Previous studies focused on the point estimation of SOC rather than predicting a probability distribution. This paper evaluates the hybrid model that integrated the Bayesian optimizer into NGBoost using satellite data sets for SOC mapping. The investigation was carried out by obtaining about 250 soil samples in the Northeastern region of Vietnam, and the SOC content was analyzed in the laboratory using the Walkley-Black method. We obtained spectral indices from Sentinel 2A and Sentinel 1A as independent variables to predict the SOC contents at these sample locations. The hybrid models were trained in two successive stages: iteratively selecting hyper-parameters using Bayesian and regular model training using cross-validation methods. The tuned NGBoost performs well with RMSE = 2.0201, MAE = 1.5603, and R2 = 0.674, and it was used to map SOC for a subset within the study area. The information generated from this study will help develop improved and more efficient monitoring techniques for SOC dynamics and promote sustainable land use and management.
Machine learning techniques have become popular in estimating soil organic carbon (SOC) due to their ability to handle complex, nonlinear relationships between soil properties and environmental variables. Previous studies focused on the point estimation of SOC rather than predicting a probability distribution. This paper evaluates the hybrid model that integrated the Bayesian optimizer into NGBoost using satellite data sets for SOC mapping. The investigation was carried out by obtaining about 250 soil samples in the Northeastern region of Vietnam, and the SOC content was analyzed in the laboratory using the Walkley-Black method. We obtained spectral indices from Sentinel 2A and Sentinel 1A as independent variables to predict the SOC contents at these sample locations. The hybrid models were trained in two successive stages: iteratively selecting hyper-parameters using Bayesian and regular model training using cross-validation methods. The tuned NGBoost performs well with RMSE = 2.0201, MAE = 1.5603, and R 2 = 0.674, and it was used to map SOC for a subset within the study area. The information generated from this study will help develop improved and more efficient monitoring techniques for SOC dynamics and promote sustainable land use and management.
ArticleNumber 103
Author Van Sang, Tran
Nguyen, Quoc-Huy
Nguyen, Huu-Duy
Nguyen, Dinh-Hung
Do, Nhung-Thi
Xuan-Linh Nguyen
Pham, Van-Manh
Bui, Quang-Thanh
Author_xml – sequence: 1
  surname: Xuan-Linh Nguyen
  fullname: Xuan-Linh Nguyen
  organization: VNU University of Science, Vietnam National University, Hanoi
– sequence: 2
  givenname: Tran
  surname: Van Sang
  fullname: Van Sang, Tran
  organization: Institute of Ecology and Work Protection
– sequence: 3
  givenname: Van-Manh
  surname: Pham
  fullname: Pham, Van-Manh
  organization: VNU University of Science, Vietnam National University, Hanoi
– sequence: 4
  givenname: Quoc-Huy
  surname: Nguyen
  fullname: Nguyen, Quoc-Huy
  organization: VNU University of Science, Vietnam National University, Hanoi
– sequence: 5
  givenname: Huu-Duy
  surname: Nguyen
  fullname: Nguyen, Huu-Duy
  organization: VNU University of Science, Vietnam National University, Hanoi
– sequence: 6
  givenname: Nhung-Thi
  surname: Do
  fullname: Do, Nhung-Thi
  organization: VNU University of Science, Vietnam National University, Hanoi
– sequence: 7
  givenname: Dinh-Hung
  surname: Nguyen
  fullname: Nguyen, Dinh-Hung
  organization: Forest Inventory and Planning Institute, Thanh Tri dist
– sequence: 8
  givenname: Quang-Thanh
  surname: Bui
  fullname: Bui, Quang-Thanh
  email: qthanh.bui@gmail.com, thanhbq@vnu.edu.vn
  organization: VNU University of Science, Vietnam National University, Hanoi
BookMark eNp1kE1LAzEQhoMo2FZ_gLeA59V8bZo91lI_oFChFgQPS5rM1pQ2W5NUqb_e1AoexNM7zLzPO8x00bFvPSB0QckVpVxcTymRgrGKMyGJyHqEOrQsZUGr8vk413lc7OenqBvjkhCulFAd9PIYwDqT3DvgmTcQknY-7fAoJrfWybUetw2eTob4w6VXPPIR1vMV4MFq0YbcWUesvcU3egfRaY8nm8y5z2_yDJ00ehXh_Ed7aHY7ehreF-PJ3cNwMC4M65NU8DkQzU3VgAVgVPUrbTlR3DAiK5A2mwRIpkDIfimNFWLODbW2rOy84VrxHro85G5C-7aFmOpluw0-r6w5Y1xSoliZXfTgMqGNMUBTb0I-MexqSur9D-s_P8wMOzAxe_0Cwm_y_9AX7cJ1iA
Cites_doi 10.1016/j.rse.2022.113260
10.1007/s10462-023-10698-8
10.1016/j.ecolind.2021.108517
10.3390/rs15174264
10.1016/j.scitotenv.2021.152690
10.1134/S1064229323603104
10.1016/j.catena.2020.104953
10.3390/land12020494
10.1080/03650340.2021.1925651
10.3390/rs15082118
10.3390/rs15153846
10.3390/rs14122917
10.1007/s10661-023-12172-y
10.1016/j.still.2022.105379
10.1002/saj2.20371
10.1134/S1064229324602014
10.1186/s13717-024-00515-7
10.1016/j.geoderma.2020.114260
10.3390/agriculture13050976
10.1016/j.rsase.2023.100969
10.1007/s40808-024-01963-y
10.1016/j.rse.2019.111383
10.1016/j.scitotenv.2020.142120
10.1109/JSTARS.2023.3281732
10.3390/rs16040655
10.1134/S106422932360207X
10.1080/17538947.2023.2192005
10.1111/ejss.12998
10.1016/0146-664X(79)90035-2
10.3390/agronomy13092302
10.1016/j.catena.2023.107409
10.3390/rs13245115
10.1016/j.rse.2022.113166
10.1016/j.isprsjprs.2023.03.016
ContentType Journal Article
Copyright Pleiades Publishing, Ltd. 2025 ISSN 1064-2293, Eurasian Soil Science, 2025, Vol. 58:103. © Pleiades Publishing, Ltd., 2025.
Copyright Springer Nature B.V. 2025
Copyright_xml – notice: Pleiades Publishing, Ltd. 2025 ISSN 1064-2293, Eurasian Soil Science, 2025, Vol. 58:103. © Pleiades Publishing, Ltd., 2025.
– notice: Copyright Springer Nature B.V. 2025
DBID AAYXX
CITATION
7QL
7ST
7T7
7U9
7UA
8FD
C1K
F1W
FR3
H94
H96
L.G
M7N
P64
SOI
DOI 10.1134/S1064229324604293
DatabaseName CrossRef
Bacteriology Abstracts (Microbiology B)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Virology and AIDS Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
AIDS and Cancer Research Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Virology and AIDS Abstracts
Technology Research Database
Water Resources Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1556-195X
ExternalDocumentID 10_1134_S1064229324604293
GroupedDBID -Y2
.VR
06D
0R~
0VY
1N0
29G
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
408
40D
40E
4P2
5GY
5VS
67M
6NX
7X2
7XC
88I
8FE
8FH
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMFV
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACSNA
ACSTC
ACUHS
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEUYN
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
ATHPR
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
H13
HCIFZ
HF~
HG6
HLICF
HMJXF
HRMNR
HVGLF
HZ~
IAG
IAO
IJ-
IKXTQ
ITC
IWAJR
IXD
I~X
I~Z
J-C
JBSCW
JZLTJ
KOV
L8X
LK5
LLZTM
M0K
M2P
M4Y
M7R
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
PATMY
PCBAR
PF0
PHGZM
PHGZT
PQQKQ
PROAC
PT4
PYCSY
Q2X
QOS
R89
R9I
ROL
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TUC
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
ZMTXR
~02
~A9
AAYXX
ABRTQ
CITATION
PUEGO
7QL
7ST
7T7
7U9
7UA
8FD
C1K
F1W
FR3
H94
H96
L.G
M7N
P64
SOI
ID FETCH-LOGICAL-c270t-3be0a3c9fedee21879ad3083c2069e6d2704e628e46756cd44b3c1dd59dbf3a83
IEDL.DBID AGYKE
ISSN 1064-2293
IngestDate Wed Sep 17 23:57:45 EDT 2025
Wed Oct 01 05:53:06 EDT 2025
Tue Jun 24 01:11:08 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords satellite data sets
soil organic carbon
Vietnam
machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-3be0a3c9fedee21879ad3083c2069e6d2704e628e46756cd44b3c1dd59dbf3a83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3223610825
PQPubID 54181
ParticipantIDs proquest_journals_3223610825
crossref_primary_10_1134_S1064229324604293
springer_journals_10_1134_S1064229324604293
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
– name: Silver Spring
PublicationTitle Eurasian soil science
PublicationTitleAbbrev Eurasian Soil Sc
PublicationYear 2025
Publisher Pleiades Publishing
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer Nature B.V
References V. R. Kunkel (2349_CR12) 2022; 817
L. J. Wang (2349_CR30) 2022; 68
F. Castaldi (2349_CR4) 2023; 199
P. Abdoli (2349_CR1) 2023; 30
J. K. M. Biney (2349_CR3) 2022; 220
2349_CR6
B. K. P. Horn (2349_CR10) 1979; 10
2349_CR2
I. El Jamaoui (2349_CR7) 2024; 10
J. Xiao (2349_CR33) 2019; 233
J. Lei (2349_CR13) 2024; 13
C. Luo (2349_CR15) 2023; 16
M. Pavlovic (2349_CR18) 2024; 16
N. B. Khitrov (2349_CR11) 2023; 56
2349_CR27
2349_CR29
2349_CR8
2349_CR22
2349_CR24
2349_CR20
F. A. Diaz-Gonzalez (2349_CR5) 2022; 135
N. T. B. Phuong (2349_CR26) 2020; 10
A. R. Suleymanov (2349_CR25) 2024; 57
G. B. M. Heuvelink (2349_CR9) 2020; 72
Y. Zhou (2349_CR37) 2022; 86
Y. Liu (2349_CR14) 2021; 196
2349_CR19
H. Zayani (2349_CR34) 2023; 15
T. Wang (2349_CR31) 2023; 15
X. Meng (2349_CR16) 2022; 280
2349_CR17
H. Zhang (2349_CR36) 2023; 16
E. V. Shamrikova (2349_CR21) 2024; 57
2349_CR35
A. Suleymanov (2349_CR23) 2023; 196
Z. Wu (2349_CR32) 2021; 754
D. Urbina-Salazar (2349_CR28) 2021; 13
References_xml – ident: 2349_CR17
  doi: 10.1016/j.rse.2022.113260
– ident: 2349_CR27
  doi: 10.1007/s10462-023-10698-8
– volume: 135
  start-page: 108517
  year: 2022
  ident: 2349_CR5
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2021.108517
– ident: 2349_CR35
  doi: 10.3390/rs15174264
– volume: 817
  start-page: 152690
  year: 2022
  ident: 2349_CR12
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.152690
– volume: 57
  start-page: 380
  year: 2024
  ident: 2349_CR21
  publication-title: Eurasian Soil Sci.
  doi: 10.1134/S1064229323603104
– volume: 196
  start-page: 104953
  year: 2021
  ident: 2349_CR14
  publication-title: Catena
  doi: 10.1016/j.catena.2020.104953
– ident: 2349_CR2
  doi: 10.3390/land12020494
– volume: 68
  start-page: 1711
  year: 2022
  ident: 2349_CR30
  publication-title: Arch. Agron. Soil Sci.
  doi: 10.1080/03650340.2021.1925651
– volume: 15
  start-page: 2118
  year: 2023
  ident: 2349_CR31
  publication-title: Remote Sens.
  doi: 10.3390/rs15082118
– ident: 2349_CR8
  doi: 10.3390/rs15153846
– ident: 2349_CR29
  doi: 10.3390/rs14122917
– volume: 196
  start-page: 23
  year: 2023
  ident: 2349_CR23
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-023-12172-y
– volume: 220
  start-page: 105379
  year: 2022
  ident: 2349_CR3
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2022.105379
– volume: 86
  start-page: 293
  year: 2022
  ident: 2349_CR37
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.1002/saj2.20371
– ident: 2349_CR6
  doi: 10.1016/j.ecolind.2021.108517
– volume: 57
  start-page: 1942
  year: 2024
  ident: 2349_CR25
  publication-title: Eurasian Soil Sci.
  doi: 10.1134/S1064229324602014
– volume: 13
  start-page: 32
  year: 2024
  ident: 2349_CR13
  publication-title: Ecol. Processes
  doi: 10.1186/s13717-024-00515-7
– ident: 2349_CR22
  doi: 10.1016/j.geoderma.2020.114260
– ident: 2349_CR24
  doi: 10.3390/agriculture13050976
– volume: 30
  start-page: 100969
  year: 2023
  ident: 2349_CR1
  publication-title: Remote Sensing Applications: Society and Environment
  doi: 10.1016/j.rsase.2023.100969
– volume: 10
  start-page: 3473
  year: 2024
  ident: 2349_CR7
  publication-title: Model. Earth Syst. Environ.
  doi: 10.1007/s40808-024-01963-y
– volume: 233
  start-page: 111383
  year: 2019
  ident: 2349_CR33
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111383
– volume: 15
  start-page: 4264
  year: 2023
  ident: 2349_CR34
  publication-title: Remote Sens.
  doi: 10.3390/rs15174264
– volume: 754
  start-page: 142120
  year: 2021
  ident: 2349_CR32
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.142120
– volume: 16
  start-page: 5219
  year: 2023
  ident: 2349_CR36
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2023.3281732
– volume: 16
  start-page: 655
  year: 2024
  ident: 2349_CR18
  publication-title: Remote Sens.
  doi: 10.3390/rs16040655
– volume: 56
  start-page: 1819
  year: 2023
  ident: 2349_CR11
  publication-title: Eurasian Soil Sci.
  doi: 10.1134/S106422932360207X
– volume: 16
  start-page: 1094
  year: 2023
  ident: 2349_CR15
  publication-title: Int. J. Digital Earth
  doi: 10.1080/17538947.2023.2192005
– volume: 72
  start-page: 1607
  year: 2020
  ident: 2349_CR9
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12998
– volume: 10
  start-page: 69
  year: 1979
  ident: 2349_CR10
  publication-title: Computer Graphics and Image Processing
  doi: 10.1016/0146-664X(79)90035-2
– ident: 2349_CR19
  doi: 10.3390/agronomy13092302
– ident: 2349_CR20
  doi: 10.1016/j.catena.2023.107409
– volume: 10
  start-page: 22
  year: 2020
  ident: 2349_CR26
  publication-title: Journal of Forestry Science and Technology
– volume: 13
  start-page: 5115
  year: 2021
  ident: 2349_CR28
  publication-title: Remote Sens.
  doi: 10.3390/rs13245115
– volume: 280
  start-page: 113166
  year: 2022
  ident: 2349_CR16
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2022.113166
– volume: 199
  start-page: 40
  year: 2023
  ident: 2349_CR4
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2023.03.016
SSID ssj0038848
Score 2.3392725
Snippet Machine learning techniques have become popular in estimating soil organic carbon (SOC) due to their ability to handle complex, nonlinear relationships between...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Bayesian analysis
Bayesian theory
Earth and Environmental Science
Earth Sciences
Estimation
Genesis and Geography of Soils
Geotechnical Engineering & Applied Earth Sciences
Independent variables
Land use
Machine learning
Mathematical models
Organic carbon
Probability distribution
Probability theory
Soil properties
Sustainable use
Title Predictive Uncertainty Estimation of SOC with Ensemble Algorithms and Bayesian Optimization
URI https://link.springer.com/article/10.1134/S1064229324604293
https://www.proquest.com/docview/3223610825
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1556-195X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0038848
  issn: 1064-2293
  databaseCode: AFBBN
  dateStart: 20060101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1556-195X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0038848
  issn: 1064-2293
  databaseCode: AGYKE
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BWWDgjSiPygMTKNDEjknGFrUgEBSpVAIxRHZ87UCbojQM8Os55yHEa-iaOE5in7_77HsBHKEO0EMlnNA0fUcoTzvKCHSCgNi462s3zFMK3d7Jq4G4fvQfyzjuWeXtXpkkc6Qu6o6Is75ruTJpJ09Ii6J8EZbydFs1WGpdPt10KgDm9J4iAk4Kxz5QGjP_7OS7OvrimD_Morm26a7BQ_WdhZPJy-lbpk_jjx8pHOf8kXVYLdknaxXisgELmGzCSmuUlhk4cAue71Nru7EoyAYkEbnHQPbOOoQFRZgjmw5Zv3fB7BEu6yQznOgxstZ4NE3pymTGVGJYW72jjc9kPcKkSRnsuQ2Dbufh4sopKzA4sXfezByusal4HA7RIHq2MLkynEhb7DVliNJQI4HSC5Dg1pexEULz2DXGD40echXwHagl0wR3gREtQFrsrrL5a9DIINSa6JERBn0lNa_DcTUR0WuRaCPKNyhcRL9GrA4H1VRF5ZqbRQRNnMggbXnrcFKN_Nftfzvbm6v1Pix7tgRw7gN4ALUsfcND4iWZbpAcdtvtu0Ypj58rH9jy
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFH6CMgADN6KcHphAgcZ2TDIWVCg3Eq0EYojs-JUBmqI2DPDrec4hxDWwJo6T2M-fv-d3AWyjCZGjll5kG4EnNTeethK9MCQ27gfGj_KUQpdXqt2VZ3fBXRnHPaq83SuTZI7URd0RuX_rO65MuxOXyqGoGIcJSfoJr8FE8-T-vFUBsKD3FBFwSnrugdKY-WsnX7ejT475zSya7zbHs9CpvrNwMnnae83MXvL-LYXjP39kDmZK9smahbjMwximCzDdfByWGThwER5uhs5241CQdUkico-B7I21CAuKMEc26LHb6yPmjnBZKx1h3zwjaz4_DoZ0pT9iOrXsUL-hi89k14RJ_TLYcwm6x63OUdsrKzB4CT9oZJ4w2NAiiXpoEbkrTK6tINKW8IaKUFlqJFHxEAluA5VYKY1IfGuDyJqe0KFYhlo6SHEFGNECpMXua5e_Bq0KI2OIHllpMdDKiDrsVBMRvxSJNuJcQREy_jFidVivpiou19woJmgSRAZJ5a3DbjXyn7f_7Gz1X623YLLdubyIL06vztdgirtywLk_4DrUsuErbhBHycxmKZMfh5XaVQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9pAEB61IFXNoe8qtKTdQ06tnGDverGPlEDzaAISRUrVg7vrHXIoGATmQH59Zu21UEh7qHq11-vHjL_9ZucFcIg6wgCV8GLTCj2hAu0pI9CLImLjfqj9uCgpdHklT8fi_Dq8dn1OV1W0e-WSLHMabJWmLD9emInrQSKOR77lzbRSBUJaROWPoU6WSZsUvd75-uOiV4Exp3uW2XBSePYC59j84yT3l6Yt39xxkRYrT_85_KqeuQw4-X20zvVRertTzvE_XuoFPHOslHVKNXoJjzB7BXudm6WrzIGv4edwaX06Fh3ZmDSliCTIN6xHGFGmP7L5hI0GXWa3dlkvW-FMT5F1pjfzJR2ZrZjKDPuiNmjzNtmAsGrmkkDfwLjf-9499VxnBi8N2q3c4xpbiqfxBA1iYBuWK8OJzKVBS8YoDQ0SKIMICYZDmRohNE99Y8LY6AlXEX8LtWye4T4wogtIIOArW9cGjYxirYk2GWEwVFLzBnyqhJIsygIcSWG4cJE8-GINaFZiS9y_uEoIsjiRRDKFG_C5ksL29F8ne_dPoz_Ck-FJP_l2dnXxHp4GtktwESbYhFq-XOMBUZdcf3DqeQdN0eM5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predictive+Uncertainty+Estimation+of+SOC+with+Ensemble+Algorithms+and+Bayesian+Optimization&rft.jtitle=Eurasian+soil+science&rft.date=2025-08-01&rft.pub=Springer+Nature+B.V&rft.issn=1064-2293&rft.eissn=1556-195X&rft.volume=58&rft.issue=8&rft_id=info:doi/10.1134%2FS1064229324604293&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1064-2293&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1064-2293&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1064-2293&client=summon