Predictive Uncertainty Estimation of SOC with Ensemble Algorithms and Bayesian Optimization
Machine learning techniques have become popular in estimating soil organic carbon (SOC) due to their ability to handle complex, nonlinear relationships between soil properties and environmental variables. Previous studies focused on the point estimation of SOC rather than predicting a probability di...
Saved in:
| Published in | Eurasian soil science Vol. 58; no. 8 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Moscow
Pleiades Publishing
01.08.2025
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1064-2293 1556-195X |
| DOI | 10.1134/S1064229324604293 |
Cover
| Abstract | Machine learning techniques have become popular in estimating soil organic carbon (SOC) due to their ability to handle complex, nonlinear relationships between soil properties and environmental variables. Previous studies focused on the point estimation of SOC rather than predicting a probability distribution. This paper evaluates the hybrid model that integrated the Bayesian optimizer into NGBoost using satellite data sets for SOC mapping. The investigation was carried out by obtaining about 250 soil samples in the Northeastern region of Vietnam, and the SOC content was analyzed in the laboratory using the Walkley-Black method. We obtained spectral indices from Sentinel 2A and Sentinel 1A as independent variables to predict the SOC contents at these sample locations. The hybrid models were trained in two successive stages: iteratively selecting hyper-parameters using Bayesian and regular model training using cross-validation methods. The tuned NGBoost performs well with RMSE = 2.0201, MAE = 1.5603, and
R
2
= 0.674, and it was used to map SOC for a subset within the study area. The information generated from this study will help develop improved and more efficient monitoring techniques for SOC dynamics and promote sustainable land use and management. |
|---|---|
| AbstractList | Machine learning techniques have become popular in estimating soil organic carbon (SOC) due to their ability to handle complex, nonlinear relationships between soil properties and environmental variables. Previous studies focused on the point estimation of SOC rather than predicting a probability distribution. This paper evaluates the hybrid model that integrated the Bayesian optimizer into NGBoost using satellite data sets for SOC mapping. The investigation was carried out by obtaining about 250 soil samples in the Northeastern region of Vietnam, and the SOC content was analyzed in the laboratory using the Walkley-Black method. We obtained spectral indices from Sentinel 2A and Sentinel 1A as independent variables to predict the SOC contents at these sample locations. The hybrid models were trained in two successive stages: iteratively selecting hyper-parameters using Bayesian and regular model training using cross-validation methods. The tuned NGBoost performs well with RMSE = 2.0201, MAE = 1.5603, and R2 = 0.674, and it was used to map SOC for a subset within the study area. The information generated from this study will help develop improved and more efficient monitoring techniques for SOC dynamics and promote sustainable land use and management. Machine learning techniques have become popular in estimating soil organic carbon (SOC) due to their ability to handle complex, nonlinear relationships between soil properties and environmental variables. Previous studies focused on the point estimation of SOC rather than predicting a probability distribution. This paper evaluates the hybrid model that integrated the Bayesian optimizer into NGBoost using satellite data sets for SOC mapping. The investigation was carried out by obtaining about 250 soil samples in the Northeastern region of Vietnam, and the SOC content was analyzed in the laboratory using the Walkley-Black method. We obtained spectral indices from Sentinel 2A and Sentinel 1A as independent variables to predict the SOC contents at these sample locations. The hybrid models were trained in two successive stages: iteratively selecting hyper-parameters using Bayesian and regular model training using cross-validation methods. The tuned NGBoost performs well with RMSE = 2.0201, MAE = 1.5603, and R 2 = 0.674, and it was used to map SOC for a subset within the study area. The information generated from this study will help develop improved and more efficient monitoring techniques for SOC dynamics and promote sustainable land use and management. |
| ArticleNumber | 103 |
| Author | Van Sang, Tran Nguyen, Quoc-Huy Nguyen, Huu-Duy Nguyen, Dinh-Hung Do, Nhung-Thi Xuan-Linh Nguyen Pham, Van-Manh Bui, Quang-Thanh |
| Author_xml | – sequence: 1 surname: Xuan-Linh Nguyen fullname: Xuan-Linh Nguyen organization: VNU University of Science, Vietnam National University, Hanoi – sequence: 2 givenname: Tran surname: Van Sang fullname: Van Sang, Tran organization: Institute of Ecology and Work Protection – sequence: 3 givenname: Van-Manh surname: Pham fullname: Pham, Van-Manh organization: VNU University of Science, Vietnam National University, Hanoi – sequence: 4 givenname: Quoc-Huy surname: Nguyen fullname: Nguyen, Quoc-Huy organization: VNU University of Science, Vietnam National University, Hanoi – sequence: 5 givenname: Huu-Duy surname: Nguyen fullname: Nguyen, Huu-Duy organization: VNU University of Science, Vietnam National University, Hanoi – sequence: 6 givenname: Nhung-Thi surname: Do fullname: Do, Nhung-Thi organization: VNU University of Science, Vietnam National University, Hanoi – sequence: 7 givenname: Dinh-Hung surname: Nguyen fullname: Nguyen, Dinh-Hung organization: Forest Inventory and Planning Institute, Thanh Tri dist – sequence: 8 givenname: Quang-Thanh surname: Bui fullname: Bui, Quang-Thanh email: qthanh.bui@gmail.com, thanhbq@vnu.edu.vn organization: VNU University of Science, Vietnam National University, Hanoi |
| BookMark | eNp1kE1LAzEQhoMo2FZ_gLeA59V8bZo91lI_oFChFgQPS5rM1pQ2W5NUqb_e1AoexNM7zLzPO8x00bFvPSB0QckVpVxcTymRgrGKMyGJyHqEOrQsZUGr8vk413lc7OenqBvjkhCulFAd9PIYwDqT3DvgmTcQknY-7fAoJrfWybUetw2eTob4w6VXPPIR1vMV4MFq0YbcWUesvcU3egfRaY8nm8y5z2_yDJ00ehXh_Ed7aHY7ehreF-PJ3cNwMC4M65NU8DkQzU3VgAVgVPUrbTlR3DAiK5A2mwRIpkDIfimNFWLODbW2rOy84VrxHro85G5C-7aFmOpluw0-r6w5Y1xSoliZXfTgMqGNMUBTb0I-MexqSur9D-s_P8wMOzAxe_0Cwm_y_9AX7cJ1iA |
| Cites_doi | 10.1016/j.rse.2022.113260 10.1007/s10462-023-10698-8 10.1016/j.ecolind.2021.108517 10.3390/rs15174264 10.1016/j.scitotenv.2021.152690 10.1134/S1064229323603104 10.1016/j.catena.2020.104953 10.3390/land12020494 10.1080/03650340.2021.1925651 10.3390/rs15082118 10.3390/rs15153846 10.3390/rs14122917 10.1007/s10661-023-12172-y 10.1016/j.still.2022.105379 10.1002/saj2.20371 10.1134/S1064229324602014 10.1186/s13717-024-00515-7 10.1016/j.geoderma.2020.114260 10.3390/agriculture13050976 10.1016/j.rsase.2023.100969 10.1007/s40808-024-01963-y 10.1016/j.rse.2019.111383 10.1016/j.scitotenv.2020.142120 10.1109/JSTARS.2023.3281732 10.3390/rs16040655 10.1134/S106422932360207X 10.1080/17538947.2023.2192005 10.1111/ejss.12998 10.1016/0146-664X(79)90035-2 10.3390/agronomy13092302 10.1016/j.catena.2023.107409 10.3390/rs13245115 10.1016/j.rse.2022.113166 10.1016/j.isprsjprs.2023.03.016 |
| ContentType | Journal Article |
| Copyright | Pleiades Publishing, Ltd. 2025 ISSN 1064-2293, Eurasian Soil Science, 2025, Vol. 58:103. © Pleiades Publishing, Ltd., 2025. Copyright Springer Nature B.V. 2025 |
| Copyright_xml | – notice: Pleiades Publishing, Ltd. 2025 ISSN 1064-2293, Eurasian Soil Science, 2025, Vol. 58:103. © Pleiades Publishing, Ltd., 2025. – notice: Copyright Springer Nature B.V. 2025 |
| DBID | AAYXX CITATION 7QL 7ST 7T7 7U9 7UA 8FD C1K F1W FR3 H94 H96 L.G M7N P64 SOI |
| DOI | 10.1134/S1064229324604293 |
| DatabaseName | CrossRef Bacteriology Abstracts (Microbiology B) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Virology and AIDS Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database AIDS and Cancer Research Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Environment Abstracts |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Virology and AIDS Abstracts Technology Research Database Water Resources Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts AIDS and Cancer Research Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Agriculture |
| EISSN | 1556-195X |
| ExternalDocumentID | 10_1134_S1064229324604293 |
| GroupedDBID | -Y2 .VR 06D 0R~ 0VY 1N0 29G 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 408 40D 40E 4P2 5GY 5VS 67M 6NX 7X2 7XC 88I 8FE 8FH 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDBE ABDBF ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIHN ACKNC ACMDZ ACMFV ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACSNA ACSTC ACUHS ACZOJ ADHHG ADHIR ADHKG ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AETLH AEUYN AEVLU AEXYK AEZWR AFBBN AFDZB AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS ATHPR AVWKF AXYYD AZFZN AZQEC B-. BA0 BDATZ BENPR BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 H13 HCIFZ HF~ HG6 HLICF HMJXF HRMNR HVGLF HZ~ IAG IAO IJ- IKXTQ ITC IWAJR IXD I~X I~Z J-C JBSCW JZLTJ KOV L8X LK5 LLZTM M0K M2P M4Y M7R MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J PATMY PCBAR PF0 PHGZM PHGZT PQQKQ PROAC PT4 PYCSY Q2X QOS R89 R9I ROL RSV S16 S1Z S27 S3B SAP SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TUC UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR ZMTXR ~02 ~A9 AAYXX ABRTQ CITATION PUEGO 7QL 7ST 7T7 7U9 7UA 8FD C1K F1W FR3 H94 H96 L.G M7N P64 SOI |
| ID | FETCH-LOGICAL-c270t-3be0a3c9fedee21879ad3083c2069e6d2704e628e46756cd44b3c1dd59dbf3a83 |
| IEDL.DBID | AGYKE |
| ISSN | 1064-2293 |
| IngestDate | Wed Sep 17 23:57:45 EDT 2025 Wed Oct 01 05:53:06 EDT 2025 Tue Jun 24 01:11:08 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | satellite data sets soil organic carbon Vietnam machine learning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c270t-3be0a3c9fedee21879ad3083c2069e6d2704e628e46756cd44b3c1dd59dbf3a83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3223610825 |
| PQPubID | 54181 |
| ParticipantIDs | proquest_journals_3223610825 crossref_primary_10_1134_S1064229324604293 springer_journals_10_1134_S1064229324604293 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-08-01 |
| PublicationDateYYYYMMDD | 2025-08-01 |
| PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Moscow |
| PublicationPlace_xml | – name: Moscow – name: Silver Spring |
| PublicationTitle | Eurasian soil science |
| PublicationTitleAbbrev | Eurasian Soil Sc |
| PublicationYear | 2025 |
| Publisher | Pleiades Publishing Springer Nature B.V |
| Publisher_xml | – name: Pleiades Publishing – name: Springer Nature B.V |
| References | V. R. Kunkel (2349_CR12) 2022; 817 L. J. Wang (2349_CR30) 2022; 68 F. Castaldi (2349_CR4) 2023; 199 P. Abdoli (2349_CR1) 2023; 30 J. K. M. Biney (2349_CR3) 2022; 220 2349_CR6 B. K. P. Horn (2349_CR10) 1979; 10 2349_CR2 I. El Jamaoui (2349_CR7) 2024; 10 J. Xiao (2349_CR33) 2019; 233 J. Lei (2349_CR13) 2024; 13 C. Luo (2349_CR15) 2023; 16 M. Pavlovic (2349_CR18) 2024; 16 N. B. Khitrov (2349_CR11) 2023; 56 2349_CR27 2349_CR29 2349_CR8 2349_CR22 2349_CR24 2349_CR20 F. A. Diaz-Gonzalez (2349_CR5) 2022; 135 N. T. B. Phuong (2349_CR26) 2020; 10 A. R. Suleymanov (2349_CR25) 2024; 57 G. B. M. Heuvelink (2349_CR9) 2020; 72 Y. Zhou (2349_CR37) 2022; 86 Y. Liu (2349_CR14) 2021; 196 2349_CR19 H. Zayani (2349_CR34) 2023; 15 T. Wang (2349_CR31) 2023; 15 X. Meng (2349_CR16) 2022; 280 2349_CR17 H. Zhang (2349_CR36) 2023; 16 E. V. Shamrikova (2349_CR21) 2024; 57 2349_CR35 A. Suleymanov (2349_CR23) 2023; 196 Z. Wu (2349_CR32) 2021; 754 D. Urbina-Salazar (2349_CR28) 2021; 13 |
| References_xml | – ident: 2349_CR17 doi: 10.1016/j.rse.2022.113260 – ident: 2349_CR27 doi: 10.1007/s10462-023-10698-8 – volume: 135 start-page: 108517 year: 2022 ident: 2349_CR5 publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2021.108517 – ident: 2349_CR35 doi: 10.3390/rs15174264 – volume: 817 start-page: 152690 year: 2022 ident: 2349_CR12 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.152690 – volume: 57 start-page: 380 year: 2024 ident: 2349_CR21 publication-title: Eurasian Soil Sci. doi: 10.1134/S1064229323603104 – volume: 196 start-page: 104953 year: 2021 ident: 2349_CR14 publication-title: Catena doi: 10.1016/j.catena.2020.104953 – ident: 2349_CR2 doi: 10.3390/land12020494 – volume: 68 start-page: 1711 year: 2022 ident: 2349_CR30 publication-title: Arch. Agron. Soil Sci. doi: 10.1080/03650340.2021.1925651 – volume: 15 start-page: 2118 year: 2023 ident: 2349_CR31 publication-title: Remote Sens. doi: 10.3390/rs15082118 – ident: 2349_CR8 doi: 10.3390/rs15153846 – ident: 2349_CR29 doi: 10.3390/rs14122917 – volume: 196 start-page: 23 year: 2023 ident: 2349_CR23 publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-023-12172-y – volume: 220 start-page: 105379 year: 2022 ident: 2349_CR3 publication-title: Soil Tillage Res. doi: 10.1016/j.still.2022.105379 – volume: 86 start-page: 293 year: 2022 ident: 2349_CR37 publication-title: Soil Sci. Soc. Am. J. doi: 10.1002/saj2.20371 – ident: 2349_CR6 doi: 10.1016/j.ecolind.2021.108517 – volume: 57 start-page: 1942 year: 2024 ident: 2349_CR25 publication-title: Eurasian Soil Sci. doi: 10.1134/S1064229324602014 – volume: 13 start-page: 32 year: 2024 ident: 2349_CR13 publication-title: Ecol. Processes doi: 10.1186/s13717-024-00515-7 – ident: 2349_CR22 doi: 10.1016/j.geoderma.2020.114260 – ident: 2349_CR24 doi: 10.3390/agriculture13050976 – volume: 30 start-page: 100969 year: 2023 ident: 2349_CR1 publication-title: Remote Sensing Applications: Society and Environment doi: 10.1016/j.rsase.2023.100969 – volume: 10 start-page: 3473 year: 2024 ident: 2349_CR7 publication-title: Model. Earth Syst. Environ. doi: 10.1007/s40808-024-01963-y – volume: 233 start-page: 111383 year: 2019 ident: 2349_CR33 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111383 – volume: 15 start-page: 4264 year: 2023 ident: 2349_CR34 publication-title: Remote Sens. doi: 10.3390/rs15174264 – volume: 754 start-page: 142120 year: 2021 ident: 2349_CR32 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.142120 – volume: 16 start-page: 5219 year: 2023 ident: 2349_CR36 publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2023.3281732 – volume: 16 start-page: 655 year: 2024 ident: 2349_CR18 publication-title: Remote Sens. doi: 10.3390/rs16040655 – volume: 56 start-page: 1819 year: 2023 ident: 2349_CR11 publication-title: Eurasian Soil Sci. doi: 10.1134/S106422932360207X – volume: 16 start-page: 1094 year: 2023 ident: 2349_CR15 publication-title: Int. J. Digital Earth doi: 10.1080/17538947.2023.2192005 – volume: 72 start-page: 1607 year: 2020 ident: 2349_CR9 publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12998 – volume: 10 start-page: 69 year: 1979 ident: 2349_CR10 publication-title: Computer Graphics and Image Processing doi: 10.1016/0146-664X(79)90035-2 – ident: 2349_CR19 doi: 10.3390/agronomy13092302 – ident: 2349_CR20 doi: 10.1016/j.catena.2023.107409 – volume: 10 start-page: 22 year: 2020 ident: 2349_CR26 publication-title: Journal of Forestry Science and Technology – volume: 13 start-page: 5115 year: 2021 ident: 2349_CR28 publication-title: Remote Sens. doi: 10.3390/rs13245115 – volume: 280 start-page: 113166 year: 2022 ident: 2349_CR16 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2022.113166 – volume: 199 start-page: 40 year: 2023 ident: 2349_CR4 publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2023.03.016 |
| SSID | ssj0038848 |
| Score | 2.3392725 |
| Snippet | Machine learning techniques have become popular in estimating soil organic carbon (SOC) due to their ability to handle complex, nonlinear relationships between... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| SubjectTerms | Bayesian analysis Bayesian theory Earth and Environmental Science Earth Sciences Estimation Genesis and Geography of Soils Geotechnical Engineering & Applied Earth Sciences Independent variables Land use Machine learning Mathematical models Organic carbon Probability distribution Probability theory Soil properties Sustainable use |
| Title | Predictive Uncertainty Estimation of SOC with Ensemble Algorithms and Bayesian Optimization |
| URI | https://link.springer.com/article/10.1134/S1064229324604293 https://www.proquest.com/docview/3223610825 |
| Volume | 58 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1556-195X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0038848 issn: 1064-2293 databaseCode: AFBBN dateStart: 20060101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1556-195X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0038848 issn: 1064-2293 databaseCode: AGYKE dateStart: 20060101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BWWDgjSiPygMTKNDEjknGFrUgEBSpVAIxRHZ87UCbojQM8Os55yHEa-iaOE5in7_77HsBHKEO0EMlnNA0fUcoTzvKCHSCgNi462s3zFMK3d7Jq4G4fvQfyzjuWeXtXpkkc6Qu6o6Is75ruTJpJ09Ii6J8EZbydFs1WGpdPt10KgDm9J4iAk4Kxz5QGjP_7OS7OvrimD_Morm26a7BQ_WdhZPJy-lbpk_jjx8pHOf8kXVYLdknaxXisgELmGzCSmuUlhk4cAue71Nru7EoyAYkEbnHQPbOOoQFRZgjmw5Zv3fB7BEu6yQznOgxstZ4NE3pymTGVGJYW72jjc9kPcKkSRnsuQ2Dbufh4sopKzA4sXfezByusal4HA7RIHq2MLkynEhb7DVliNJQI4HSC5Dg1pexEULz2DXGD40echXwHagl0wR3gREtQFrsrrL5a9DIINSa6JERBn0lNa_DcTUR0WuRaCPKNyhcRL9GrA4H1VRF5ZqbRQRNnMggbXnrcFKN_Nftfzvbm6v1Pix7tgRw7gN4ALUsfcND4iWZbpAcdtvtu0Ypj58rH9jy |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFH6CMgADN6KcHphAgcZ2TDIWVCg3Eq0EYojs-JUBmqI2DPDrec4hxDWwJo6T2M-fv-d3AWyjCZGjll5kG4EnNTeethK9MCQ27gfGj_KUQpdXqt2VZ3fBXRnHPaq83SuTZI7URd0RuX_rO65MuxOXyqGoGIcJSfoJr8FE8-T-vFUBsKD3FBFwSnrugdKY-WsnX7ejT475zSya7zbHs9CpvrNwMnnae83MXvL-LYXjP39kDmZK9smahbjMwximCzDdfByWGThwER5uhs5241CQdUkico-B7I21CAuKMEc26LHb6yPmjnBZKx1h3zwjaz4_DoZ0pT9iOrXsUL-hi89k14RJ_TLYcwm6x63OUdsrKzB4CT9oZJ4w2NAiiXpoEbkrTK6tINKW8IaKUFlqJFHxEAluA5VYKY1IfGuDyJqe0KFYhlo6SHEFGNECpMXua5e_Bq0KI2OIHllpMdDKiDrsVBMRvxSJNuJcQREy_jFidVivpiou19woJmgSRAZJ5a3DbjXyn7f_7Gz1X623YLLdubyIL06vztdgirtywLk_4DrUsuErbhBHycxmKZMfh5XaVQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9pAEB61IFXNoe8qtKTdQ06tnGDverGPlEDzaAISRUrVg7vrHXIoGATmQH59Zu21UEh7qHq11-vHjL_9ZucFcIg6wgCV8GLTCj2hAu0pI9CLImLjfqj9uCgpdHklT8fi_Dq8dn1OV1W0e-WSLHMabJWmLD9emInrQSKOR77lzbRSBUJaROWPoU6WSZsUvd75-uOiV4Exp3uW2XBSePYC59j84yT3l6Yt39xxkRYrT_85_KqeuQw4-X20zvVRertTzvE_XuoFPHOslHVKNXoJjzB7BXudm6WrzIGv4edwaX06Fh3ZmDSliCTIN6xHGFGmP7L5hI0GXWa3dlkvW-FMT5F1pjfzJR2ZrZjKDPuiNmjzNtmAsGrmkkDfwLjf-9499VxnBi8N2q3c4xpbiqfxBA1iYBuWK8OJzKVBS8YoDQ0SKIMICYZDmRohNE99Y8LY6AlXEX8LtWye4T4wogtIIOArW9cGjYxirYk2GWEwVFLzBnyqhJIsygIcSWG4cJE8-GINaFZiS9y_uEoIsjiRRDKFG_C5ksL29F8ne_dPoz_Ck-FJP_l2dnXxHp4GtktwESbYhFq-XOMBUZdcf3DqeQdN0eM5 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predictive+Uncertainty+Estimation+of+SOC+with+Ensemble+Algorithms+and+Bayesian+Optimization&rft.jtitle=Eurasian+soil+science&rft.date=2025-08-01&rft.pub=Springer+Nature+B.V&rft.issn=1064-2293&rft.eissn=1556-195X&rft.volume=58&rft.issue=8&rft_id=info:doi/10.1134%2FS1064229324604293&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1064-2293&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1064-2293&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1064-2293&client=summon |