Differential Epidemic Models and Scenarios of Restrictive Measures

Algorithms for calculating the spread of epidemics and analyzing the consequences of introducing or lifting restrictive measures based on an SIR model and the Hamilton–Jacobi–Bellman equations are considered. After studying the identifiability and sensitivity of SIR models, their well-posedness in t...

Full description

Saved in:
Bibliographic Details
Published inComputational mathematics and mathematical physics Vol. 65; no. 6; pp. 1300 - 1313
Main Authors Kabanikhin, S. I., Krivorotko, O. I., Neverov, A. V.
Format Journal Article
LanguageEnglish
Published Moscow Pleiades Publishing 01.06.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0965-5425
1555-6662
DOI10.1134/S0965542525700459

Cover

Abstract Algorithms for calculating the spread of epidemics and analyzing the consequences of introducing or lifting restrictive measures based on an SIR model and the Hamilton–Jacobi–Bellman equations are considered. After studying the identifiability and sensitivity of SIR models, their well-posedness in the vicinity of the exact solution, and the convergence of numerical algorithms for solving direct and inverse problems, an optimal control problem is formulated. The results of numerical simulation showed that feedback control can help determine the vaccination policy. The use of physics-informed neural networks (PINNs) made it possible to reduce the calculation time by five times, which is important for promptly changing restrictive measures.
AbstractList Algorithms for calculating the spread of epidemics and analyzing the consequences of introducing or lifting restrictive measures based on an SIR model and the Hamilton–Jacobi–Bellman equations are considered. After studying the identifiability and sensitivity of SIR models, their well-posedness in the vicinity of the exact solution, and the convergence of numerical algorithms for solving direct and inverse problems, an optimal control problem is formulated. The results of numerical simulation showed that feedback control can help determine the vaccination policy. The use of physics-informed neural networks (PINNs) made it possible to reduce the calculation time by five times, which is important for promptly changing restrictive measures.
Author Krivorotko, O. I.
Kabanikhin, S. I.
Neverov, A. V.
Author_xml – sequence: 1
  givenname: S. I.
  surname: Kabanikhin
  fullname: Kabanikhin, S. I.
  organization: Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
– sequence: 2
  givenname: O. I.
  surname: Krivorotko
  fullname: Krivorotko, O. I.
  email: krivorotko.olya@mail.ru
  organization: Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
– sequence: 3
  givenname: A. V.
  surname: Neverov
  fullname: Neverov, A. V.
  organization: Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
BookMark eNp1kEtLAzEUhYNUsFZ_gLuA69G8J1lqrQ9oEayuh0zmRlLapCZTwX_vlAouxNVdnPOdczmnaBRTBIQuKLmilIvrJTFKSsEkkzUhQpojNKZSykopxUZovJervX6CTktZEUKV0XyMbu-C95Ah9sGu8WwbOtgEhxepg3XBNnZ46SDaHFLByeMXKH0Org-fgBdgyy5DOUPH3q4LnP_cCXq7n71OH6v588PT9GZeOVaTvmJACFDmjBQGFGd1C53kkjvjWsOV1p550ykiHHDjvdBKggVoawe67ZznE3R5yN3m9LEbHmlWaZfjUNlwJo3QRBsyuOjB5XIqJYNvtjlsbP5qKGn2UzV_phoYdmDK4I3vkH-T_4e-AZITbJA
Cites_doi 10.1137/060672911
10.1063/5.0041868
10.1101/2021.09.01.21263002
10.14716/ijtech.v11i8.4529
10.1201/9781420011418
10.1134/S096554252310007X
10.1101/2021.10.07.21264713
10.1515/jiip-2020-0010
10.1101/2020.04.27.20079962
10.4236/am.2021.121005
10.1098/rspa.1927.0118
10.1016/j.jmaa.2022.126271
10.1137/20M1342690
10.1016/j.chaos.2020.110241
10.33693/2313-223X-2020-7-1-99-105
10.1090/S0002-9904-1954-09848-8
10.1016/j.chaos.2020.109846
10.1016/j.chaos.2020.110054
10.1007/978-1-4612-1466-3
10.1063/5.0082002
10.1016/j.chaos.2020.110058
10.1093/imamci/17.2.167
10.3390/math12223581
10.1051/mmnp/20149407
10.1134/S0965542521030155
10.1134/S0965542520110068
10.17537/2023.18.177
10.1134/S1995423920040047
10.1002/cpa.3160050303
10.1016/j.procs.2020.11.032
10.3934/mbe.2020121
ContentType Journal Article
Copyright Pleiades Publishing, Ltd. 2025 ISSN 0965-5425, Computational Mathematics and Mathematical Physics, 2025, Vol. 65, No. 6, pp. 1300–1313. © Pleiades Publishing, Ltd., 2025.
Pleiades Publishing, Ltd. 2025.
Copyright_xml – notice: Pleiades Publishing, Ltd. 2025 ISSN 0965-5425, Computational Mathematics and Mathematical Physics, 2025, Vol. 65, No. 6, pp. 1300–1313. © Pleiades Publishing, Ltd., 2025.
– notice: Pleiades Publishing, Ltd. 2025.
DBID AAYXX
CITATION
7SC
7TB
7U5
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1134/S0965542525700459
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Public Health
EISSN 1555-6662
EndPage 1313
ExternalDocumentID 10_1134_S0965542525700459
GeographicLocations Europe
China
GeographicLocations_xml – name: China
– name: Europe
GroupedDBID --K
-Y2
-~X
.VR
06D
0R~
0VY
1B1
1N0
29F
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
408
40D
40E
5GY
5VS
6J9
6NX
7WY
88I
8FE
8FG
8FH
8FL
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDBE
ABDZT
ABECU
ABEFU
ABFSG
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFFNX
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMVHM
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BAPOH
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
H13
HCIFZ
HF~
HG6
HLICF
HMJXF
HRMNR
HVGLF
HZ~
H~9
I-F
IHE
IJ-
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
JBSCW
JZLTJ
K60
K6V
K6~
K7-
KOV
L6V
LK5
LLZTM
M0C
M2P
M41
M4Y
M7R
M7S
MA-
MK~
N2Q
NB0
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9J
P62
P9R
PF0
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PT4
PTHSS
Q2X
QOS
R89
R9I
RIG
RNS
ROL
RPZ
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TUC
TUS
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VOH
W23
W48
WK8
XPP
YLTOR
ZMTXR
~A9
AAYXX
CITATION
PUEGO
7SC
7TB
7U5
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c270t-2e00e12c9549e6327bed5353c9cb93688f2f9d604ce39ff4865eaeeb7ce8bdcf3
IEDL.DBID AGYKE
ISSN 0965-5425
IngestDate Sat Oct 11 06:55:13 EDT 2025
Wed Oct 01 05:31:31 EDT 2025
Thu Aug 07 06:02:36 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords epidemiology
Hamilton–Jacobi–Bellman equation
optimization
inverse problems
SIR models
optimal control
development scenarios
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-2e00e12c9549e6327bed5353c9cb93688f2f9d604ce39ff4865eaeeb7ce8bdcf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3259480890
PQPubID 60276
PageCount 14
ParticipantIDs proquest_journals_3259480890
crossref_primary_10_1134_S0965542525700459
springer_journals_10_1134_S0965542525700459
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250600
2025-06-00
20250601
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 6
  year: 2025
  text: 20250600
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
PublicationTitle Computational mathematics and mathematical physics
PublicationTitleAbbrev Comput. Math. and Math. Phys
PublicationYear 2025
Publisher Pleiades Publishing
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer Nature B.V
References R. Courant (2251_CR32) 1952; 5
O. I. Krivorotko (2251_CR20) 2020; 13
2251_CR4
J. Yong (2251_CR34) 1999
V. Petrakova (2251_CR42) 2023; Vol. 2023
2251_CR9
A. I. Borovkov (2251_CR21) 2020; 11
2251_CR22
V. S. Petrakova (2251_CR39) 2023; 4
2251_CR23
S. I. Vinitsky (2251_CR5) 2021; 61
S. Lenhart (2251_CR3) 2007
Hee-Dae Kwon and Jeehyun (2251_CR31) 2020; 17
2251_CR24
O. I. Krivorotko (2251_CR28) 2021; 25
O. I. Krivorotko (2251_CR25) 2022; 10
O. I. Krivorotko (2251_CR29) 2023; 63
2251_CR40
F. M. Penkov (2251_CR6) 2021; 616
W. O. Kermack (2251_CR12) 1927; 115
R. Bellman (2251_CR33) 1954; 60
I. Lazzizzera (2251_CR7) 2021; 12
E. V. Grigorieva (2251_CR38) 2014; 9
O. I. Krivorotko (2251_CR26) 2023; 20
2251_CR18
O. I. Krivorotko (2251_CR27) 2023; 18
M. Bardi (2251_CR35) 2008
Y. Chen (2251_CR16) 2020; 28
H. R. Joshi (2251_CR2) 2006
W. Lee (2251_CR36) 2021; 81
E. M. Koltsova (2251_CR15) 2020; 7
C. Zhuliang (2251_CR11) 2008; 30
2251_CR13
M. V. Tamm (2251_CR17) 2020; 13
2251_CR14
S. Wang (2251_CR10) 2000; 17
V. Petrakova (2251_CR37) 2024; 12
2251_CR30
A. V. Sokolov (2251_CR8) 2020; 178
2251_CR1
S. I. Kabanikhin (2251_CR19) 2020; 60
V. Petrakova (2251_CR41) 2023
References_xml – volume: 30
  start-page: 339
  year: 2008
  ident: 2251_CR11
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/060672911
– volume-title: AMS Volume on Mathematical Studies on Human Disease Dynamics: Emerging Paradigms and Challenges
  year: 2006
  ident: 2251_CR2
– ident: 2251_CR23
  doi: 10.1063/5.0041868
– ident: 2251_CR24
  doi: 10.1101/2021.09.01.21263002
– volume: 11
  start-page: 1579
  year: 2020
  ident: 2251_CR21
  publication-title: Int. J. Technol.
  doi: 10.14716/ijtech.v11i8.4529
– volume-title: “Mean field optimal control problem for predicting the spread of viral infections,” 19th International Asian School-Seminar on Optimization Problems of Complex Systems
  year: 2023
  ident: 2251_CR41
– volume: Vol. 2023
  start-page: 45
  year: 2023
  ident: 2251_CR42
  publication-title: IEEE CSGB
– volume-title: Optimal Control Applied to Biological Models.
  year: 2007
  ident: 2251_CR3
  doi: 10.1201/9781420011418
– volume: 63
  start-page: 1929
  year: 2023
  ident: 2251_CR29
  publication-title: Comput. Math. Math. Phys.
  doi: 10.1134/S096554252310007X
– ident: 2251_CR9
  doi: 10.1101/2021.10.07.21264713
– volume: 28
  start-page: 243
  year: 2020
  ident: 2251_CR16
  publication-title: J. Inverse Ill-Posed Probl.
  doi: 10.1515/jiip-2020-0010
– ident: 2251_CR18
  doi: 10.1101/2020.04.27.20079962
– volume: 12
  start-page: 58
  year: 2021
  ident: 2251_CR7
  publication-title: Appl. Math.
  doi: 10.4236/am.2021.121005
– volume: 13
  start-page: 43
  year: 2020
  ident: 2251_CR17
  publication-title: Pharmacoepidem.
– ident: 2251_CR30
– volume: 115
  start-page: 700
  year: 1927
  ident: 2251_CR12
  publication-title: Proc. R. Soc. London, Ser. A
  doi: 10.1098/rspa.1927.0118
– ident: 2251_CR40
  doi: 10.1016/j.jmaa.2022.126271
– volume: 81
  start-page: 190
  year: 2021
  ident: 2251_CR36
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/20M1342690
– volume: 4
  start-page: 24
  year: 2023
  ident: 2251_CR39
  publication-title: Usp. Kibernetiki
– volume: 616
  start-page: 53
  year: 2021
  ident: 2251_CR6
  publication-title: Commun. Techn.
– ident: 2251_CR13
  doi: 10.1016/j.chaos.2020.110241
– volume: 7
  start-page: 99
  year: 2020
  ident: 2251_CR15
  publication-title: Comput. Nanotechnol.
  doi: 10.33693/2313-223X-2020-7-1-99-105
– volume: 60
  start-page: 503
  year: 1954
  ident: 2251_CR33
  publication-title: Bull. Am. Math. Soc.
  doi: 10.1090/S0002-9904-1954-09848-8
– ident: 2251_CR22
  doi: 10.1016/j.chaos.2020.109846
– ident: 2251_CR1
  doi: 10.1016/j.chaos.2020.110054
– volume-title: Stochastic Controls: Hamiltonian Systems and HJB Equations
  year: 1999
  ident: 2251_CR34
  doi: 10.1007/978-1-4612-1466-3
– volume: 25
  start-page: 82
  year: 2021
  ident: 2251_CR28
  publication-title: Vavilov. Zh. Gen. Sel.
– ident: 2251_CR4
  doi: 10.1063/5.0082002
– ident: 2251_CR14
  doi: 10.1016/j.chaos.2020.110058
– volume: 17
  start-page: 167
  year: 2000
  ident: 2251_CR10
  publication-title: IMA J. Math. Contr. Inf.
  doi: 10.1093/imamci/17.2.167
– volume: 12
  start-page: 3581
  year: 2024
  ident: 2251_CR37
  publication-title: Mathematics
  doi: 10.3390/math12223581
– volume: 9
  start-page: 105
  year: 2014
  ident: 2251_CR38
  publication-title: Math. Model. Nat. Phenom.
  doi: 10.1051/mmnp/20149407
– volume: 61
  start-page: 376
  year: 2021
  ident: 2251_CR5
  publication-title: Comput. Math. Math. Phys.
  doi: 10.1134/S0965542521030155
– volume-title: Optimal Control and Viscosity Solutions of Hamilton–Jacobi–Bellman Equations
  year: 2008
  ident: 2251_CR35
– volume: 10
  start-page: 51
  year: 2022
  ident: 2251_CR25
  publication-title: Eurasian J. Math. Comput. Appl.
– volume: 20
  start-page: 1211
  year: 2023
  ident: 2251_CR26
  publication-title: Sib. Eelektron. Mat. Izv.
– volume: 60
  start-page: 1889
  year: 2020
  ident: 2251_CR19
  publication-title: Comput. Math. Math. Phys.
  doi: 10.1134/S0965542520110068
– volume: 18
  start-page: 177
  year: 2023
  ident: 2251_CR27
  publication-title: Mat. Biol. Bioinf.
  doi: 10.17537/2023.18.177
– volume: 13
  start-page: 332
  year: 2020
  ident: 2251_CR20
  publication-title: Numer. Anal. Appl.
  doi: 10.1134/S1995423920040047
– volume: 5
  start-page: 243
  year: 1952
  ident: 2251_CR32
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.3160050303
– volume: 178
  start-page: 301
  year: 2020
  ident: 2251_CR8
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2020.11.032
– volume: 17
  start-page: 2284
  year: 2020
  ident: 2251_CR31
  publication-title: Math. Bioscie. Eng.
  doi: 10.3934/mbe.2020121
SSID ssj0016983
Score 2.3363914
Snippet Algorithms for calculating the spread of epidemics and analyzing the consequences of introducing or lifting restrictive measures based on an SIR model and the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 1300
SubjectTerms Algorithms
Computational Mathematics and Numerical Analysis
Coronaviruses
COVID-19 vaccines
Epidemics
Exact solutions
Feedback control
Immunization
Infections
Infectious diseases
Influenza
Inverse problems
Mathematical models
Mathematics
Mathematics and Statistics
Neural networks
Numerical analysis
Optimal control
Ordinary Differential Equation
Ordinary differential equations
Pandemics
Public health
Quarantine
Simulation
Social distancing
Title Differential Epidemic Models and Scenarios of Restrictive Measures
URI https://link.springer.com/article/10.1134/S0965542525700459
https://www.proquest.com/docview/3259480890
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1555-6662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016983
  issn: 0965-5425
  databaseCode: AFBBN
  dateStart: 20060101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1555-6662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016983
  issn: 0965-5425
  databaseCode: AGYKE
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1Bu8DAN6JQKg9MoJQ0tlN7bKGlApUBWqlMUexcFqoUkbLw67ETh4qvgTn2ybHP57Of_R7AWRLzWCDnHpcSPftU0xOqm3q6k1ClaJzoQhtwfB-Opux2xmfuHXde3XavIMkiUpe6I-zy0fKUcONiQUHJzuU61Au6rRrUezdPd4NP8CCUJfumKe_ZCg7M_NXI1-VolWN-g0WL1Wa4DZOqneUlk-f221K19fs3Csd__sgObLnsk_RKd9mFNcz2YNtlosTN83wPNsefbK75PvSvnYqKiQZzMig1ZTWxMmrznMSZrYmZ2XQvcrJIyQNaLZAijpJxeQSZH8B0OJhcjTynveDpoOsvvQB9HzuBtigghjToKkw45VRLrSQNhUiDVCahzzRSmaZMhBxjRNXVKFSiU3oItWyR4REQi-ZwLZkpKlgcJzFlIjWhhSUd7IQibMB5NQTRS0mxERVbE8qiH33VgGY1SJGbbXlk7EsmfCH9BlxUfb76_Kex43-VPoGNwIr_FkcwTagtX9_w1GQkS9UyHjjs9-9bzhM_AOjj1mo
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BOwAD5SkKBTwwgQJpbKf2yKOlPMoARYIpip3LQpUiUhZ-PXbitOI1MOd8cuzz-c6ffR_AQRLzWCDnHpcSPftU0xOqk3q6nVClaJzoghtwcBf2H9n1E39y77jz6rZ7BUkWnrrkHWEnD7ZOCTcmFhQl2bmchzoz-UlQg_rp5fNNdwoehLKsvmnkPdvAgZm_Kvm6Hc1izG-waLHb9BowrPpZXjJ5OX6fqGP98a2E4z9_ZAWWXfRJTktzWYU5zNag4SJR4tZ5vgZLg2k113wdzi4ci4rxBiPSLTllNbE0aqOcxJltiZlJusc5GafkHi0XSOFHyaA8gsw34LHXHZ73Pce94Omg40-8AH0f24G2KCCGNOgoTDjlVEutJA2FSINUJqHPNFKZpkyEHGNE1dEoVKJTugm1bJzhFhCL5nAtmREVLI6TmDKRGtfCkja2QxE24bCagui1LLERFakJZdGPsWpCq5qkyK22PDL6JRO-kH4Tjqoxn33-U9n2v6T3YaE_HNxGt1d3NzuwGFgi4OI4pgW1yds77proZKL2nDV-Ajui180
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xkBAcSnmJbZfWB05UgWxsJ_ZxW3ahwCLEQ4JTiO3xBZRFJFz662snDqiUHirOGY8cezye8djfB7BtCl4I5DziUmLkn2pGQmU20gNDlaKF0Q034OQ0PbxiR9f8OvCcVt1t964k2b5p8ChNZb33YGzgIGF7Fx6zhDtzSxp4di5nYd5lJpkz9Pnhwc3x6LmQkMoWidPJR75BKGy-qeTPrekl3nxVIm12nvEy3HZ9bi-c3O0-1WpX_3oF5_iOn_oIH0JUSoatGa3ADJarsBwiVBLWf7UKS5NnlNdqDb7vB3YV5yXuyajlmtXE06vdV6QofUssXTI-rcjUknP0HCGNfyWT9miyWoer8ejyx2EUOBkinWRxHSUYxzhItK8OYkqTTKHhlFMttZI0FcImVpo0ZhqptJaJlGOBqDKNQhlt6QbMldMSN4H4Kg_XkjlRwYrCFJQJ61wOMwMcpCLtwU43HflDC72RNykLZflfY9WDfjdheViFVe70SyZiIeMefOvG_-XzP5V9-i_pr7Bwtj_OT36eHn-GxcTzAzenNH2Yqx-fcMsFLbX6EgzzN9X54LE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differential+Epidemic+Models+and+Scenarios+of+Restrictive+Measures&rft.jtitle=Computational+mathematics+and+mathematical+physics&rft.au=Kabanikhin%2C+S.+I&rft.au=Krivorotko%2C+O.+I&rft.au=Neverov%2C+A.+V&rft.date=2025-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0965-5425&rft.eissn=1555-6662&rft.volume=65&rft.issue=6&rft.spage=1300&rft.epage=1313&rft_id=info:doi/10.1134%2FS0965542525700459&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0965-5425&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0965-5425&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0965-5425&client=summon