VLSI architecture of stochastic genetic algorithm for real time training of deep neural network

In this letter, attempt has been made to successfully design a pipelined VLSI architecture for the computation of genetic algorithm (GA). The concept of stochastic computing is uniquely exploited in the proposed pipelined GA architecture to attain significant area and power efficiency with reasonabl...

Full description

Saved in:
Bibliographic Details
Published inSadhana (Bangalore) Vol. 49; no. 2; p. 175
Main Authors Chakraborty, Anirban, Dutta, Sayantan, Chakrabarti, Indrajit, Banerjee, Ayan
Format Journal Article
LanguageEnglish
Published New Delhi Springer India 09.05.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0973-7677
0256-2499
0973-7677
DOI10.1007/s12046-024-02527-7

Cover

Abstract In this letter, attempt has been made to successfully design a pipelined VLSI architecture for the computation of genetic algorithm (GA). The concept of stochastic computing is uniquely exploited in the proposed pipelined GA architecture to attain significant area and power efficiency with reasonably high speed of operation. The prototype 8-bit fixed point GA architecture is realised using VHDL on Xilinx Vivado 2020.3 and implemented on Zynq Ultrascale+ MPSoC (XCZU7EV-2FFVC1156) to train an arbitrary 4:3:2 fully connected neural network in real-time. The performance of the prototype GA architecture in case of real-time training of the neural network outshines the software and other existing GA architectures. The proposed GA-trained 4:3:2 network exhibits 6 X reduction in training time and 720 X increase in power efficiency, only at the cost of 0.06 % reduction in accuracy with respect to other existing works and software in case of the image classification of MNIST data-set.
AbstractList In this letter, attempt has been made to successfully design a pipelined VLSI architecture for the computation of genetic algorithm (GA). The concept of stochastic computing is uniquely exploited in the proposed pipelined GA architecture to attain significant area and power efficiency with reasonably high speed of operation. The prototype 8-bit fixed point GA architecture is realised using VHDL on Xilinx Vivado 2020.3 and implemented on Zynq Ultrascale+ MPSoC (XCZU7EV-2FFVC1156) to train an arbitrary 4:3:2 fully connected neural network in real-time. The performance of the prototype GA architecture in case of real-time training of the neural network outshines the software and other existing GA architectures. The proposed GA-trained 4:3:2 network exhibits 6X reduction in training time and 720X increase in power efficiency, only at the cost of 0.06% reduction in accuracy with respect to other existing works and software in case of the image classification of MNIST data-set.
In this letter, attempt has been made to successfully design a pipelined VLSI architecture for the computation of genetic algorithm (GA). The concept of stochastic computing is uniquely exploited in the proposed pipelined GA architecture to attain significant area and power efficiency with reasonably high speed of operation. The prototype 8-bit fixed point GA architecture is realised using VHDL on Xilinx Vivado 2020.3 and implemented on Zynq Ultrascale+ MPSoC (XCZU7EV-2FFVC1156) to train an arbitrary 4:3:2 fully connected neural network in real-time. The performance of the prototype GA architecture in case of real-time training of the neural network outshines the software and other existing GA architectures. The proposed GA-trained 4:3:2 network exhibits 6 X reduction in training time and 720 X increase in power efficiency, only at the cost of 0.06 % reduction in accuracy with respect to other existing works and software in case of the image classification of MNIST data-set.
ArticleNumber 175
Author Chakraborty, Anirban
Chakrabarti, Indrajit
Dutta, Sayantan
Banerjee, Ayan
Author_xml – sequence: 1
  givenname: Anirban
  orcidid: 0000-0003-4398-0777
  surname: Chakraborty
  fullname: Chakraborty, Anirban
  email: anirban.uemk@gmail.com
  organization: Department of Computer Science and Technology, University of Engineering and Management (UEM)
– sequence: 2
  givenname: Sayantan
  surname: Dutta
  fullname: Dutta, Sayantan
  organization: Department of Electronics and Electrical Communication Engineering, IIT, Kharagpur
– sequence: 3
  givenname: Indrajit
  surname: Chakrabarti
  fullname: Chakrabarti, Indrajit
  organization: Department of Electronics and Electrical Communication Engineering, IIT, Kharagpur
– sequence: 4
  givenname: Ayan
  surname: Banerjee
  fullname: Banerjee, Ayan
  organization: Department of Electronics and Telecommunication Engineering, IIEST Shibpur
BookMark eNp9kE1LAzEQhoNUsFb_gKeA59VJtpukRyl-FAoe_LiGNDvZbm03Ncki_ntTV9CTh-EdmPeZGd5TMup8h4RcMLhiAPI6Mg5TUQCf5qq4LOQRGcNMloUUUo7-9CfkNMYNAJegyjHRr8unBTXBrtuENvUBqXc0Jm_XJqbW0gY7PKjZNj60ab2jzgca0GxpandIUzBt13bNAasR97TDPuRhpj58eDsjx85sI57_6IS83N0-zx-K5eP9Yn6zLGx-JBVcMIerleDARclqxysUtTS1nTmomKp4PVNOIEouBedgmalACa6mBgCUMeWEXA5798G_9xiT3vg-dPmkLnklczCVUtnFB5cNPsaATu9DuzPhUzPQhyD1EKTOfv0dpJYZKgcoZnPXYPhd_Q_1BbaMd7o
Cites_doi 10.1109/TIM.2007.913807
10.1016/0925-2312(93)90006-O
10.1145/2465787.2465794
10.1007/s00034-019-01037-w
10.17977/um018v2i12019p41-46
10.23919/JSEE.2021.000091
10.1016/j.asoc.2017.09.044
10.1109/TCYB.2015.2451595
10.1007/s12626-021-00074-9
10.1109/ICAIIS49377.2020.9194828
10.1109/CANDARW51189.2020.00026
ContentType Journal Article
Copyright Indian Academy of Sciences 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Indian Academy of Sciences 2024.
Copyright_xml – notice: Indian Academy of Sciences 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Indian Academy of Sciences 2024.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AEUYN
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
P5Z
P62
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s12046-024-02527-7
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest One Sustainability
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Technology Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 0973-7677
ExternalDocumentID 10_1007_s12046_024_02527_7
GroupedDBID -5B
-5G
-BR
-EM
-~C
-~X
.86
.VR
06D
0R~
0VY
123
1N0
203
29P
29~
2J2
2JN
2JY
2KG
2KM
2LR
2WC
2~H
30V
4.4
406
408
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABDBF
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABLLD
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFLOW
AFQWF
AFWTZ
AFZKB
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AYJHY
B-.
BA0
BGNMA
CS3
CSCUP
DDRTE
DNIVK
DPUIP
E3Z
EAD
EAP
EBLON
EBS
EIOEI
EJD
EOJEC
ESBYG
ESX
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GROUPED_DOAJ
HG5
HG6
HMJXF
HRMNR
I-F
IJ-
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KOV
KQ8
LLZTM
M4Y
MA-
MK~
NF0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OBODZ
OK1
P19
P2P
P9P
PF0
PT4
PT5
QOK
QOS
R89
R9I
RAB
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TR2
TSG
TSK
TSV
TUS
U2A
UG4
UOJIU
UTJUX
VC2
W48
WK8
XSB
YLTOR
Z45
Z7R
Z7S
Z7X
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
_50
~8M
~A9
~EX
AAPKM
AAYXX
ABDBE
ABRTQ
AFDZB
AFOHR
AHPBZ
ATHPR
CITATION
OVT
8FE
8FG
ABJCF
AEUYN
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
P62
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-c270t-261febb6202631df25e6d7adc9f051852d98f6ee7276220c1a5086284a0008aa3
IEDL.DBID BENPR
ISSN 0973-7677
0256-2499
IngestDate Tue Oct 07 06:14:25 EDT 2025
Wed Oct 01 04:21:07 EDT 2025
Fri Feb 21 02:39:02 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords genetic algorithm
pipeline
Artificial neural network
VLSI
FPGA
hardware acceleration
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-261febb6202631df25e6d7adc9f051852d98f6ee7276220c1a5086284a0008aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4398-0777
PQID 3257024588
PQPubID 2043821
ParticipantIDs proquest_journals_3257024588
crossref_primary_10_1007_s12046_024_02527_7
springer_journals_10_1007_s12046_024_02527_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-05-09
PublicationDateYYYYMMDD 2024-05-09
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-09
  day: 09
PublicationDecade 2020
PublicationPlace New Delhi
PublicationPlace_xml – name: New Delhi
– name: Dordrecht
PublicationSubtitle Published by the Indian Academy of Sciences
PublicationTitle Sadhana (Bangalore)
PublicationTitleAbbrev Sādhanā
PublicationYear 2024
Publisher Springer India
Springer Nature B.V
Publisher_xml – name: Springer India
– name: Springer Nature B.V
References CR2
Alaghi, Hayes (CR6) 2013; 12
Schmitt (CR1) 2001; 259
Jais, Ismail, Nisa (CR5) 2019; 2
Peker (CR9) 2018; 62
Yongbin, Chenyu, Quanxin, Tashi, Shouyi, Chen (CR13) 2021; 32
Chen, Chen, Chang, Shieh, Malki (CR7) 2008; 57
CR14
CR12
Feng, Zhao, Kita (CR3) 2021; 15
CR11
Torquato, Fernandes (CR10) 2019; 38
Alinodehi, Moshfe, Zaeimian, Khoei, Hadidi (CR8) 2015; 46
Amari (CR4) 1993; 5
2527_CR14
YU Yongbin (2527_CR13) 2021; 32
SPH Alinodehi (2527_CR8) 2015; 46
2527_CR2
IKM Jais (2527_CR5) 2019; 2
2527_CR11
PY Chen (2527_CR7) 2008; 57
2527_CR12
MF Torquato (2527_CR10) 2019; 38
SI Amari (2527_CR4) 1993; 5
LM Schmitt (2527_CR1) 2001; 259
A Alaghi (2527_CR6) 2013; 12
M Peker (2527_CR9) 2018; 62
X Feng (2527_CR3) 2021; 15
References_xml – volume: 57
  start-page: 699
  issue: 4
  year: 2008
  end-page: 705
  ident: CR7
  article-title: Hardware implementation for a genetic algorithm
  publication-title: IEEE T. Instrum. Meas.
  doi: 10.1109/TIM.2007.913807
– volume: 5
  start-page: 185
  issue: 4–5
  year: 1993
  end-page: 196
  ident: CR4
  article-title: Backpropagation and stochastic gradient descent method
  publication-title: Neurocomputing. Elsevier.
  doi: 10.1016/0925-2312(93)90006-O
– volume: 12
  start-page: 1
  issue: 2s
  year: 2013
  end-page: 19
  ident: CR6
  article-title: Survey of stochastic computing
  publication-title: ACM T. Embed. Comput. S.
  doi: 10.1145/2465787.2465794
– volume: 259
  start-page: 1
  issue: 1–2
  year: 2001
  end-page: 61
  ident: CR1
  article-title: Theory of genetic algorithms
  publication-title: Theor. Comput. Sci. Elsevier
– ident: CR14
– ident: CR2
– volume: 38
  start-page: 4014
  issue: 9
  year: 2019
  end-page: 4039
  ident: CR10
  article-title: High-performance parallel implementation of genetic algorithm on fpga
  publication-title: Circ. Syst. Signal Pr. Springer.
  doi: 10.1007/s00034-019-01037-w
– ident: CR12
– ident: CR11
– volume: 2
  start-page: 41
  issue: 1
  year: 2019
  end-page: 46
  ident: CR5
  article-title: Adam optimization algorithm for wide and deep neural network
  publication-title: Knowl. Eng. Data Sc.
  doi: 10.17977/um018v2i12019p41-46
– volume: 32
  start-page: 1062
  issue: 5
  year: 2021
  end-page: 1070
  ident: CR13
  article-title: Memristive network-based genetic algorithm and its application to image edge detection
  publication-title: J Syst. Eng. Electron. BIAI.
  doi: 10.23919/JSEE.2021.000091
– volume: 62
  start-page: 1066
  year: 2018
  end-page: 1076
  ident: CR9
  article-title: A fully customizable hardware implementation for general purpose genetic algorithms
  publication-title: Appl. Soft Comput. Elsevier.
  doi: 10.1016/j.asoc.2017.09.044
– volume: 46
  start-page: 1551
  issue: 7
  year: 2015
  end-page: 1565
  ident: CR8
  article-title: High-speed general purpose genetic algorithm processor
  publication-title: IEEE T. Cybernetics.
  doi: 10.1109/TCYB.2015.2451595
– volume: 15
  start-page: 27
  issue: 1
  year: 2021
  end-page: 47
  ident: CR3
  article-title: Genetic algorithm-based optimization of deep neural network ensemble
  publication-title: The Review of Socionetwork Strategies. Springer.
  doi: 10.1007/s12626-021-00074-9
– ident: 2527_CR12
  doi: 10.1109/ICAIIS49377.2020.9194828
– volume: 57
  start-page: 699
  issue: 4
  year: 2008
  ident: 2527_CR7
  publication-title: IEEE T. Instrum. Meas.
  doi: 10.1109/TIM.2007.913807
– volume: 259
  start-page: 1
  issue: 1–2
  year: 2001
  ident: 2527_CR1
  publication-title: Theor. Comput. Sci. Elsevier
– volume: 46
  start-page: 1551
  issue: 7
  year: 2015
  ident: 2527_CR8
  publication-title: IEEE T. Cybernetics.
  doi: 10.1109/TCYB.2015.2451595
– volume: 5
  start-page: 185
  issue: 4–5
  year: 1993
  ident: 2527_CR4
  publication-title: Neurocomputing. Elsevier.
  doi: 10.1016/0925-2312(93)90006-O
– ident: 2527_CR2
– volume: 62
  start-page: 1066
  year: 2018
  ident: 2527_CR9
  publication-title: Appl. Soft Comput. Elsevier.
  doi: 10.1016/j.asoc.2017.09.044
– ident: 2527_CR11
  doi: 10.1109/CANDARW51189.2020.00026
– ident: 2527_CR14
– volume: 38
  start-page: 4014
  issue: 9
  year: 2019
  ident: 2527_CR10
  publication-title: Circ. Syst. Signal Pr. Springer.
  doi: 10.1007/s00034-019-01037-w
– volume: 2
  start-page: 41
  issue: 1
  year: 2019
  ident: 2527_CR5
  publication-title: Knowl. Eng. Data Sc.
  doi: 10.17977/um018v2i12019p41-46
– volume: 32
  start-page: 1062
  issue: 5
  year: 2021
  ident: 2527_CR13
  publication-title: J Syst. Eng. Electron. BIAI.
  doi: 10.23919/JSEE.2021.000091
– volume: 12
  start-page: 1
  issue: 2s
  year: 2013
  ident: 2527_CR6
  publication-title: ACM T. Embed. Comput. S.
  doi: 10.1145/2465787.2465794
– volume: 15
  start-page: 27
  issue: 1
  year: 2021
  ident: 2527_CR3
  publication-title: The Review of Socionetwork Strategies. Springer.
  doi: 10.1007/s12626-021-00074-9
SSID ssj0027083
Score 2.3435102
Snippet In this letter, attempt has been made to successfully design a pipelined VLSI architecture for the computation of genetic algorithm (GA). The concept of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 175
SubjectTerms Algorithms
Artificial neural networks
Critical path
Design
Engineering
Genetic algorithms
Image classification
Neural networks
Optimization
Power efficiency
Prototypes
Real time
Software
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8MwDLVgXOCA2AAxGCgHDiCItKZNP44TYhoIuMDQblHSJAxptNNW_j9O16oDwYFDT2kq1XbiZ9l-BjhPlDS-8hXFwEvTIFCWxhZtGcFrGBlXeVxSCj0-haNxcD_hk6opbFlXu9cpyfKmbprdGMZyFH0KPpxFNNqELe7ovNCKx2zQhFmIKqr2mN_3fXdBDa78kQotPcxwD3YraEgGK122YcNkHdhZIwzsQLs6iktyUfFFX-6DeH14viPrGQGSW4KgLp1Kx8JM0EZcqyKRs7d88V5MPwgiVYJocUbcaHlSj4lw27Qxc-JILnExW5WIH8B4ePtyM6LV3ASa4s8XFIMia5QKGcZXvqct4ybUkdRpYvEIxpzpJLahMQhdQsb6qSe5C2ziQDpEIKV_CK0sz8wREJ_ZFDd4qfVsoGLULHozq3mimfTCRHXhqhalmK_oMURDhOwEL1DwohS8iLrQq6UtqqOyFL6bo8dcw2wXrmsNNMt_f-34f6-fwDYrjYDTftKDVrH4NKcIKAp1VtrPF1Q7wpE
  priority: 102
  providerName: Springer Nature
Title VLSI architecture of stochastic genetic algorithm for real time training of deep neural network
URI https://link.springer.com/article/10.1007/s12046-024-02527-7
https://www.proquest.com/docview/3257024588
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 0973-7677
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0027083
  issn: 0973-7677
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 0973-7677
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0027083
  issn: 0973-7677
  databaseCode: KQ8
  dateStart: 19780701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 0973-7677
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0027083
  issn: 0973-7677
  databaseCode: ABDBF
  dateStart: 20060601
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 0973-7677
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0027083
  issn: 0973-7677
  databaseCode: ADMLS
  dateStart: 20060601
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 0973-7677
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0027083
  issn: 0973-7677
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 0973-7677
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0027083
  issn: 0973-7677
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgu3BBPMV4TDlwAEHEmr4PCG2w8Z4QMASnKmkSdoBtwPj_2H2ogASHqocoqWIn8ec6_gywHStpXOUqjo6X5p6nLI8srmUEr0Fo6OZxRil03Q_OBt7Fo_84A_0yF4auVZZnYnZQ63FK_8gPXCq3Jiiv8mjyxqlqFEVXyxIasiitoA8zirFZqAtixqpBvdPt39xWLlgrJ-ZEQ8_R8YiLNJo8mU6gr8jxG_j4IuThT1NV4c9fIdPMEvUWYL6AkKyd63wRZsxoCRaLTfrBdgom6d1lSB6u7s7Z91gBG1uGcC8dSuJnZrh6KImRyZdnnOt0-MoQwzLEkS-Mis6zsoAEddPGTBjRX2LjKL88vgKDXvf--IwXFRV4ilOfcnSXrFEqEOh5uY62wjeBDqVOY4ubM_KFjiMbGIOgJhCilTrSJ5cn8iRhBSndVaiNxiOzBswVNsUOTmod66kIdY52zmo_1kI6QawasFcKL5nkxBlJRZFMok5Q1Ekm6iRswGYp36TYRB9JpfIG7Jcyr5r_Hm39_9E2YE5kavZ5K96E2vT902whtJiqJsxGvdMm1Nudk06P3qdPl91msYqwdSDaXw29zmQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LThsxFL2CsCibitCipuXhBZVaFasZz3sRIZ5KmoeqklTsjD22mwVNUhKE-Dm-jesZjwaQyi6LWVljae6c8T1n7HsuwH4qhfalLykKL0WDQBqaGMQyktco1vbkcW4p1B9E7VHw4zK8XIGHshbGHqss18R8oVbTzP4j_-7bdmvM1lUezv5R2zXK7q6WLTSEa62gWrnFmCvs6Or7O5Rw81bnFN_3Z8bOz4Ynbeq6DNCMxc0FRQlhtJQRQzXie8qwUEcqFipLDQI2CZlKExNpjYk-YqyZeSK0MiAJhM2fQvg47yqsBX6QovhbOz4b_PxVSb5mYQSKxIKi0Eld2U5RvMdQm1J8JrxCFtP4eWqs-O6LLdo8851vwFtHWclRgbE6rOjJJtTdojAnX5xz9dd3wH_3Ljrk6d4EmRqC9DIbC-sHTRCttmiSiOs_GNvF-C9BzkyQt14T2-SelA0r7G1K6xmxdps4OCkOq7-H0VJiuwW1yXSiPwDxmcnwBi8znglkghjDvGpUmComvCiVDfhWBo_PCqMOXlky21BzDDXPQ83jBmyX8eXuo53zCmINOChjXg3_f7aPr8-2B2_aw36P9zqD7idYZ_krD2kz3Yba4uZW7yCtWchdhx0CV8uG6yOV9QUW
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60guhBbFWsVt2DB0WXms37WNTS-kLQSm_LbnZXhZqWNv5_Z9OEVNGDh5w2E8g8mG-YnW8AjmMptCtdSbHwUtTzpKGRQV9G8BqE2t48zimF7h-C3sC7GfrDhSn-_LZ72ZKczzRYlqY0a0-UaVeDbwzrOor5BR-fhTRchhXPEiWgRw9Ypyq5EGEUozK_y31PRxXG_NEWzbNNdxM2CphIOnO71mFJpw1YXyAPbEC9CMsZOSm4o0-3gL_cPfXJYneAjA1BgJe8CcvITNBf7NgiEaPX8fQ9e_sgiFoJIscRsWvmSbkywooprSfEEl7iYTq_Lr4Ng-7182WPFjsUaII_n1EskIyWMmBYa7mOMszXgQqFSmKD4Rj5TMWRCbRGGBMwdpE4wrdFTuQJiw6EcHeglo5TvQvEZSZBAScxjvFkhFbGzGaUHysmnCCWTTgrVcknc6oMXpEiW8VzVDzPFc_DJrRKbfMibGbctTv1mB2ebcJ5aYHq-O-v7f3v9SNYfbzq8rv-w-0-rLHcH3x6Ebeglk0_9QHijEwe5q70BTrFybk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=VLSI+architecture+of+stochastic+genetic+algorithm+for+real+time+training+of+deep+neural+network&rft.jtitle=Sadhana+%28Bangalore%29&rft.au=Chakraborty%2C+Anirban&rft.au=Dutta%2C+Sayantan&rft.au=Chakrabarti%2C+Indrajit&rft.au=Banerjee%2C+Ayan&rft.date=2024-05-09&rft.pub=Springer+Nature+B.V&rft.issn=0256-2499&rft.eissn=0973-7677&rft.volume=49&rft.issue=2&rft.spage=175&rft_id=info:doi/10.1007%2Fs12046-024-02527-7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0973-7677&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0973-7677&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0973-7677&client=summon