VLSI architecture of stochastic genetic algorithm for real time training of deep neural network
In this letter, attempt has been made to successfully design a pipelined VLSI architecture for the computation of genetic algorithm (GA). The concept of stochastic computing is uniquely exploited in the proposed pipelined GA architecture to attain significant area and power efficiency with reasonabl...
Saved in:
| Published in | Sadhana (Bangalore) Vol. 49; no. 2; p. 175 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New Delhi
Springer India
09.05.2024
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0973-7677 0256-2499 0973-7677 |
| DOI | 10.1007/s12046-024-02527-7 |
Cover
| Abstract | In this letter, attempt has been made to successfully design a pipelined VLSI architecture for the computation of genetic algorithm (GA). The concept of stochastic computing is uniquely exploited in the proposed pipelined GA architecture to attain significant area and power efficiency with reasonably high speed of operation. The prototype 8-bit fixed point GA architecture is realised using VHDL on Xilinx Vivado 2020.3 and implemented on Zynq Ultrascale+ MPSoC (XCZU7EV-2FFVC1156) to train an arbitrary 4:3:2 fully connected neural network in real-time. The performance of the prototype GA architecture in case of real-time training of the neural network outshines the software and other existing GA architectures. The proposed GA-trained 4:3:2 network exhibits 6
X
reduction in training time and 720
X
increase in power efficiency, only at the cost of
0.06
%
reduction in accuracy with respect to other existing works and software in case of the image classification of MNIST data-set. |
|---|---|
| AbstractList | In this letter, attempt has been made to successfully design a pipelined VLSI architecture for the computation of genetic algorithm (GA). The concept of stochastic computing is uniquely exploited in the proposed pipelined GA architecture to attain significant area and power efficiency with reasonably high speed of operation. The prototype 8-bit fixed point GA architecture is realised using VHDL on Xilinx Vivado 2020.3 and implemented on Zynq Ultrascale+ MPSoC (XCZU7EV-2FFVC1156) to train an arbitrary 4:3:2 fully connected neural network in real-time. The performance of the prototype GA architecture in case of real-time training of the neural network outshines the software and other existing GA architectures. The proposed GA-trained 4:3:2 network exhibits 6X reduction in training time and 720X increase in power efficiency, only at the cost of 0.06% reduction in accuracy with respect to other existing works and software in case of the image classification of MNIST data-set. In this letter, attempt has been made to successfully design a pipelined VLSI architecture for the computation of genetic algorithm (GA). The concept of stochastic computing is uniquely exploited in the proposed pipelined GA architecture to attain significant area and power efficiency with reasonably high speed of operation. The prototype 8-bit fixed point GA architecture is realised using VHDL on Xilinx Vivado 2020.3 and implemented on Zynq Ultrascale+ MPSoC (XCZU7EV-2FFVC1156) to train an arbitrary 4:3:2 fully connected neural network in real-time. The performance of the prototype GA architecture in case of real-time training of the neural network outshines the software and other existing GA architectures. The proposed GA-trained 4:3:2 network exhibits 6 X reduction in training time and 720 X increase in power efficiency, only at the cost of 0.06 % reduction in accuracy with respect to other existing works and software in case of the image classification of MNIST data-set. |
| ArticleNumber | 175 |
| Author | Chakraborty, Anirban Chakrabarti, Indrajit Dutta, Sayantan Banerjee, Ayan |
| Author_xml | – sequence: 1 givenname: Anirban orcidid: 0000-0003-4398-0777 surname: Chakraborty fullname: Chakraborty, Anirban email: anirban.uemk@gmail.com organization: Department of Computer Science and Technology, University of Engineering and Management (UEM) – sequence: 2 givenname: Sayantan surname: Dutta fullname: Dutta, Sayantan organization: Department of Electronics and Electrical Communication Engineering, IIT, Kharagpur – sequence: 3 givenname: Indrajit surname: Chakrabarti fullname: Chakrabarti, Indrajit organization: Department of Electronics and Electrical Communication Engineering, IIT, Kharagpur – sequence: 4 givenname: Ayan surname: Banerjee fullname: Banerjee, Ayan organization: Department of Electronics and Telecommunication Engineering, IIEST Shibpur |
| BookMark | eNp9kE1LAzEQhoNUsFb_gKeA59VJtpukRyl-FAoe_LiGNDvZbm03Ncki_ntTV9CTh-EdmPeZGd5TMup8h4RcMLhiAPI6Mg5TUQCf5qq4LOQRGcNMloUUUo7-9CfkNMYNAJegyjHRr8unBTXBrtuENvUBqXc0Jm_XJqbW0gY7PKjZNj60ab2jzgca0GxpandIUzBt13bNAasR97TDPuRhpj58eDsjx85sI57_6IS83N0-zx-K5eP9Yn6zLGx-JBVcMIerleDARclqxysUtTS1nTmomKp4PVNOIEouBedgmalACa6mBgCUMeWEXA5798G_9xiT3vg-dPmkLnklczCVUtnFB5cNPsaATu9DuzPhUzPQhyD1EKTOfv0dpJYZKgcoZnPXYPhd_Q_1BbaMd7o |
| Cites_doi | 10.1109/TIM.2007.913807 10.1016/0925-2312(93)90006-O 10.1145/2465787.2465794 10.1007/s00034-019-01037-w 10.17977/um018v2i12019p41-46 10.23919/JSEE.2021.000091 10.1016/j.asoc.2017.09.044 10.1109/TCYB.2015.2451595 10.1007/s12626-021-00074-9 10.1109/ICAIIS49377.2020.9194828 10.1109/CANDARW51189.2020.00026 |
| ContentType | Journal Article |
| Copyright | Indian Academy of Sciences 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Indian Academy of Sciences 2024. |
| Copyright_xml | – notice: Indian Academy of Sciences 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Indian Academy of Sciences 2024. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AEUYN AFKRA ARAPS BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S P5Z P62 PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.1007/s12046-024-02527-7 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest One Sustainability ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | CrossRef Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Technology Collection |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 0973-7677 |
| ExternalDocumentID | 10_1007_s12046_024_02527_7 |
| GroupedDBID | -5B -5G -BR -EM -~C -~X .86 .VR 06D 0R~ 0VY 123 1N0 203 29P 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2WC 2~H 30V 4.4 406 408 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABDBF ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABLLD ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFLOW AFQWF AFWTZ AFZKB AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD AYJHY B-. BA0 BGNMA CS3 CSCUP DDRTE DNIVK DPUIP E3Z EAD EAP EBLON EBS EIOEI EJD EOJEC ESBYG ESX FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GROUPED_DOAJ HG5 HG6 HMJXF HRMNR I-F IJ- IKXTQ IWAJR IXD I~X I~Z J-C J0Z JBSCW JZLTJ KOV KQ8 LLZTM M4Y MA- MK~ NF0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OBODZ OK1 P19 P2P P9P PF0 PT4 PT5 QOK QOS R89 R9I RAB RHV RNS ROL RPX RSV S16 S27 S3B SAP SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TR2 TSG TSK TSV TUS U2A UG4 UOJIU UTJUX VC2 W48 WK8 XSB YLTOR Z45 Z7R Z7S Z7X Z7Z Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR _50 ~8M ~A9 ~EX AAPKM AAYXX ABDBE ABRTQ AFDZB AFOHR AHPBZ ATHPR CITATION OVT 8FE 8FG ABJCF AEUYN AFKRA ARAPS BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S P62 PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| ID | FETCH-LOGICAL-c270t-261febb6202631df25e6d7adc9f051852d98f6ee7276220c1a5086284a0008aa3 |
| IEDL.DBID | BENPR |
| ISSN | 0973-7677 0256-2499 |
| IngestDate | Tue Oct 07 06:14:25 EDT 2025 Wed Oct 01 04:21:07 EDT 2025 Fri Feb 21 02:39:02 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | genetic algorithm pipeline Artificial neural network VLSI FPGA hardware acceleration |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c270t-261febb6202631df25e6d7adc9f051852d98f6ee7276220c1a5086284a0008aa3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4398-0777 |
| PQID | 3257024588 |
| PQPubID | 2043821 |
| ParticipantIDs | proquest_journals_3257024588 crossref_primary_10_1007_s12046_024_02527_7 springer_journals_10_1007_s12046_024_02527_7 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-05-09 |
| PublicationDateYYYYMMDD | 2024-05-09 |
| PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-09 day: 09 |
| PublicationDecade | 2020 |
| PublicationPlace | New Delhi |
| PublicationPlace_xml | – name: New Delhi – name: Dordrecht |
| PublicationSubtitle | Published by the Indian Academy of Sciences |
| PublicationTitle | Sadhana (Bangalore) |
| PublicationTitleAbbrev | Sādhanā |
| PublicationYear | 2024 |
| Publisher | Springer India Springer Nature B.V |
| Publisher_xml | – name: Springer India – name: Springer Nature B.V |
| References | CR2 Alaghi, Hayes (CR6) 2013; 12 Schmitt (CR1) 2001; 259 Jais, Ismail, Nisa (CR5) 2019; 2 Peker (CR9) 2018; 62 Yongbin, Chenyu, Quanxin, Tashi, Shouyi, Chen (CR13) 2021; 32 Chen, Chen, Chang, Shieh, Malki (CR7) 2008; 57 CR14 CR12 Feng, Zhao, Kita (CR3) 2021; 15 CR11 Torquato, Fernandes (CR10) 2019; 38 Alinodehi, Moshfe, Zaeimian, Khoei, Hadidi (CR8) 2015; 46 Amari (CR4) 1993; 5 2527_CR14 YU Yongbin (2527_CR13) 2021; 32 SPH Alinodehi (2527_CR8) 2015; 46 2527_CR2 IKM Jais (2527_CR5) 2019; 2 2527_CR11 PY Chen (2527_CR7) 2008; 57 2527_CR12 MF Torquato (2527_CR10) 2019; 38 SI Amari (2527_CR4) 1993; 5 LM Schmitt (2527_CR1) 2001; 259 A Alaghi (2527_CR6) 2013; 12 M Peker (2527_CR9) 2018; 62 X Feng (2527_CR3) 2021; 15 |
| References_xml | – volume: 57 start-page: 699 issue: 4 year: 2008 end-page: 705 ident: CR7 article-title: Hardware implementation for a genetic algorithm publication-title: IEEE T. Instrum. Meas. doi: 10.1109/TIM.2007.913807 – volume: 5 start-page: 185 issue: 4–5 year: 1993 end-page: 196 ident: CR4 article-title: Backpropagation and stochastic gradient descent method publication-title: Neurocomputing. Elsevier. doi: 10.1016/0925-2312(93)90006-O – volume: 12 start-page: 1 issue: 2s year: 2013 end-page: 19 ident: CR6 article-title: Survey of stochastic computing publication-title: ACM T. Embed. Comput. S. doi: 10.1145/2465787.2465794 – volume: 259 start-page: 1 issue: 1–2 year: 2001 end-page: 61 ident: CR1 article-title: Theory of genetic algorithms publication-title: Theor. Comput. Sci. Elsevier – ident: CR14 – ident: CR2 – volume: 38 start-page: 4014 issue: 9 year: 2019 end-page: 4039 ident: CR10 article-title: High-performance parallel implementation of genetic algorithm on fpga publication-title: Circ. Syst. Signal Pr. Springer. doi: 10.1007/s00034-019-01037-w – ident: CR12 – ident: CR11 – volume: 2 start-page: 41 issue: 1 year: 2019 end-page: 46 ident: CR5 article-title: Adam optimization algorithm for wide and deep neural network publication-title: Knowl. Eng. Data Sc. doi: 10.17977/um018v2i12019p41-46 – volume: 32 start-page: 1062 issue: 5 year: 2021 end-page: 1070 ident: CR13 article-title: Memristive network-based genetic algorithm and its application to image edge detection publication-title: J Syst. Eng. Electron. BIAI. doi: 10.23919/JSEE.2021.000091 – volume: 62 start-page: 1066 year: 2018 end-page: 1076 ident: CR9 article-title: A fully customizable hardware implementation for general purpose genetic algorithms publication-title: Appl. Soft Comput. Elsevier. doi: 10.1016/j.asoc.2017.09.044 – volume: 46 start-page: 1551 issue: 7 year: 2015 end-page: 1565 ident: CR8 article-title: High-speed general purpose genetic algorithm processor publication-title: IEEE T. Cybernetics. doi: 10.1109/TCYB.2015.2451595 – volume: 15 start-page: 27 issue: 1 year: 2021 end-page: 47 ident: CR3 article-title: Genetic algorithm-based optimization of deep neural network ensemble publication-title: The Review of Socionetwork Strategies. Springer. doi: 10.1007/s12626-021-00074-9 – ident: 2527_CR12 doi: 10.1109/ICAIIS49377.2020.9194828 – volume: 57 start-page: 699 issue: 4 year: 2008 ident: 2527_CR7 publication-title: IEEE T. Instrum. Meas. doi: 10.1109/TIM.2007.913807 – volume: 259 start-page: 1 issue: 1–2 year: 2001 ident: 2527_CR1 publication-title: Theor. Comput. Sci. Elsevier – volume: 46 start-page: 1551 issue: 7 year: 2015 ident: 2527_CR8 publication-title: IEEE T. Cybernetics. doi: 10.1109/TCYB.2015.2451595 – volume: 5 start-page: 185 issue: 4–5 year: 1993 ident: 2527_CR4 publication-title: Neurocomputing. Elsevier. doi: 10.1016/0925-2312(93)90006-O – ident: 2527_CR2 – volume: 62 start-page: 1066 year: 2018 ident: 2527_CR9 publication-title: Appl. Soft Comput. Elsevier. doi: 10.1016/j.asoc.2017.09.044 – ident: 2527_CR11 doi: 10.1109/CANDARW51189.2020.00026 – ident: 2527_CR14 – volume: 38 start-page: 4014 issue: 9 year: 2019 ident: 2527_CR10 publication-title: Circ. Syst. Signal Pr. Springer. doi: 10.1007/s00034-019-01037-w – volume: 2 start-page: 41 issue: 1 year: 2019 ident: 2527_CR5 publication-title: Knowl. Eng. Data Sc. doi: 10.17977/um018v2i12019p41-46 – volume: 32 start-page: 1062 issue: 5 year: 2021 ident: 2527_CR13 publication-title: J Syst. Eng. Electron. BIAI. doi: 10.23919/JSEE.2021.000091 – volume: 12 start-page: 1 issue: 2s year: 2013 ident: 2527_CR6 publication-title: ACM T. Embed. Comput. S. doi: 10.1145/2465787.2465794 – volume: 15 start-page: 27 issue: 1 year: 2021 ident: 2527_CR3 publication-title: The Review of Socionetwork Strategies. Springer. doi: 10.1007/s12626-021-00074-9 |
| SSID | ssj0027083 |
| Score | 2.3435102 |
| Snippet | In this letter, attempt has been made to successfully design a pipelined VLSI architecture for the computation of genetic algorithm (GA). The concept of... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 175 |
| SubjectTerms | Algorithms Artificial neural networks Critical path Design Engineering Genetic algorithms Image classification Neural networks Optimization Power efficiency Prototypes Real time Software |
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8MwDLVgXOCA2AAxGCgHDiCItKZNP44TYhoIuMDQblHSJAxptNNW_j9O16oDwYFDT2kq1XbiZ9l-BjhPlDS-8hXFwEvTIFCWxhZtGcFrGBlXeVxSCj0-haNxcD_hk6opbFlXu9cpyfKmbprdGMZyFH0KPpxFNNqELe7ovNCKx2zQhFmIKqr2mN_3fXdBDa78kQotPcxwD3YraEgGK122YcNkHdhZIwzsQLs6iktyUfFFX-6DeH14viPrGQGSW4KgLp1Kx8JM0EZcqyKRs7d88V5MPwgiVYJocUbcaHlSj4lw27Qxc-JILnExW5WIH8B4ePtyM6LV3ASa4s8XFIMia5QKGcZXvqct4ybUkdRpYvEIxpzpJLahMQhdQsb6qSe5C2ziQDpEIKV_CK0sz8wREJ_ZFDd4qfVsoGLULHozq3mimfTCRHXhqhalmK_oMURDhOwEL1DwohS8iLrQq6UtqqOyFL6bo8dcw2wXrmsNNMt_f-34f6-fwDYrjYDTftKDVrH4NKcIKAp1VtrPF1Q7wpE priority: 102 providerName: Springer Nature |
| Title | VLSI architecture of stochastic genetic algorithm for real time training of deep neural network |
| URI | https://link.springer.com/article/10.1007/s12046-024-02527-7 https://www.proquest.com/docview/3257024588 |
| Volume | 49 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 0973-7677 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0027083 issn: 0973-7677 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 0973-7677 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0027083 issn: 0973-7677 databaseCode: KQ8 dateStart: 19780701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 0973-7677 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0027083 issn: 0973-7677 databaseCode: ABDBF dateStart: 20060601 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 0973-7677 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0027083 issn: 0973-7677 databaseCode: ADMLS dateStart: 20060601 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 0973-7677 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0027083 issn: 0973-7677 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 0973-7677 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0027083 issn: 0973-7677 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgu3BBPMV4TDlwAEHEmr4PCG2w8Z4QMASnKmkSdoBtwPj_2H2ogASHqocoqWIn8ec6_gywHStpXOUqjo6X5p6nLI8srmUEr0Fo6OZxRil03Q_OBt7Fo_84A_0yF4auVZZnYnZQ63FK_8gPXCq3Jiiv8mjyxqlqFEVXyxIasiitoA8zirFZqAtixqpBvdPt39xWLlgrJ-ZEQ8_R8YiLNJo8mU6gr8jxG_j4IuThT1NV4c9fIdPMEvUWYL6AkKyd63wRZsxoCRaLTfrBdgom6d1lSB6u7s7Z91gBG1uGcC8dSuJnZrh6KImRyZdnnOt0-MoQwzLEkS-Mis6zsoAEddPGTBjRX2LjKL88vgKDXvf--IwXFRV4ilOfcnSXrFEqEOh5uY62wjeBDqVOY4ubM_KFjiMbGIOgJhCilTrSJ5cn8iRhBSndVaiNxiOzBswVNsUOTmod66kIdY52zmo_1kI6QawasFcKL5nkxBlJRZFMok5Q1Ekm6iRswGYp36TYRB9JpfIG7Jcyr5r_Hm39_9E2YE5kavZ5K96E2vT902whtJiqJsxGvdMm1Nudk06P3qdPl91msYqwdSDaXw29zmQ |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LThsxFL2CsCibitCipuXhBZVaFasZz3sRIZ5KmoeqklTsjD22mwVNUhKE-Dm-jesZjwaQyi6LWVljae6c8T1n7HsuwH4qhfalLykKL0WDQBqaGMQyktco1vbkcW4p1B9E7VHw4zK8XIGHshbGHqss18R8oVbTzP4j_-7bdmvM1lUezv5R2zXK7q6WLTSEa62gWrnFmCvs6Or7O5Rw81bnFN_3Z8bOz4Ynbeq6DNCMxc0FRQlhtJQRQzXie8qwUEcqFipLDQI2CZlKExNpjYk-YqyZeSK0MiAJhM2fQvg47yqsBX6QovhbOz4b_PxVSb5mYQSKxIKi0Eld2U5RvMdQm1J8JrxCFtP4eWqs-O6LLdo8851vwFtHWclRgbE6rOjJJtTdojAnX5xz9dd3wH_3Ljrk6d4EmRqC9DIbC-sHTRCttmiSiOs_GNvF-C9BzkyQt14T2-SelA0r7G1K6xmxdps4OCkOq7-H0VJiuwW1yXSiPwDxmcnwBi8znglkghjDvGpUmComvCiVDfhWBo_PCqMOXlky21BzDDXPQ83jBmyX8eXuo53zCmINOChjXg3_f7aPr8-2B2_aw36P9zqD7idYZ_krD2kz3Yba4uZW7yCtWchdhx0CV8uG6yOV9QUW |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60guhBbFWsVt2DB0WXms37WNTS-kLQSm_LbnZXhZqWNv5_Z9OEVNGDh5w2E8g8mG-YnW8AjmMptCtdSbHwUtTzpKGRQV9G8BqE2t48zimF7h-C3sC7GfrDhSn-_LZ72ZKczzRYlqY0a0-UaVeDbwzrOor5BR-fhTRchhXPEiWgRw9Ypyq5EGEUozK_y31PRxXG_NEWzbNNdxM2CphIOnO71mFJpw1YXyAPbEC9CMsZOSm4o0-3gL_cPfXJYneAjA1BgJe8CcvITNBf7NgiEaPX8fQ9e_sgiFoJIscRsWvmSbkywooprSfEEl7iYTq_Lr4Ng-7182WPFjsUaII_n1EskIyWMmBYa7mOMszXgQqFSmKD4Rj5TMWRCbRGGBMwdpE4wrdFTuQJiw6EcHeglo5TvQvEZSZBAScxjvFkhFbGzGaUHysmnCCWTTgrVcknc6oMXpEiW8VzVDzPFc_DJrRKbfMibGbctTv1mB2ebcJ5aYHq-O-v7f3v9SNYfbzq8rv-w-0-rLHcH3x6Ebeglk0_9QHijEwe5q70BTrFybk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=VLSI+architecture+of+stochastic+genetic+algorithm+for+real+time+training+of+deep+neural+network&rft.jtitle=Sadhana+%28Bangalore%29&rft.au=Chakraborty%2C+Anirban&rft.au=Dutta%2C+Sayantan&rft.au=Chakrabarti%2C+Indrajit&rft.au=Banerjee%2C+Ayan&rft.date=2024-05-09&rft.pub=Springer+Nature+B.V&rft.issn=0256-2499&rft.eissn=0973-7677&rft.volume=49&rft.issue=2&rft.spage=175&rft_id=info:doi/10.1007%2Fs12046-024-02527-7 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0973-7677&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0973-7677&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0973-7677&client=summon |