Optimization of FSW Parameters Using SA Algorithm and ANFIS-Based Models to Maximize Mechanical Properties of AZ80A Mg Alloy Joints
This paper deals with the experimental research, modeling and parametric-based optimization of the mechanical properties of the friction stir welded AZ80A Mg alloy. A four-factor, five-level-based central composite design matrix was employed to minimize the experimental runs. Adaptive neuro-fuzzy in...
Saved in:
| Published in | Journal of materials engineering and performance Vol. 34; no. 14; pp. 14487 - 14506 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.07.2025
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1059-9495 1544-1024 |
| DOI | 10.1007/s11665-024-10062-z |
Cover
| Abstract | This paper deals with the experimental research, modeling and parametric-based optimization of the mechanical properties of the friction stir welded AZ80A Mg alloy. A four-factor, five-level-based central composite design matrix was employed to minimize the experimental runs. Adaptive neuro-fuzzy inference system (i.e., ANFIS) was employed to map the relationship amid the parameters of FSW process (namely tool pin geometry, traverse speed, axial force, and rotational speed) and mechanical properties (including yield strength, tensile strength and hardness) of the joints. Later, the formulated ANFIS model was used along with simulated annealing (SA) algorithm determining the optimized parameters of FSW process so as to attain flaw free AZ80A Mg alloy joints. Formulated ANFIS model-SA algorithm anticipated that the friction stir welded AZ80A Mg alloy joints will possess a tensile strength of 240.52 MPa during the single-response optimization scenario and a tensile strength of 240.522 MPa during the multiple-response optimization scenario. Experimental results announced that the FSW process parameter combination of tool rotational speed of 1250 rpm, tool traverse speed of 1.75 mm/sec, axial force of 3 kN and tool possessing a threaded cylindrical pin geometry have contributed for attainment of largest values of mechanical properties during both the single-response and multiple-response optimization scenarios. During the confirmatory experimental work, the flaw free friction stir welded AZ80A Mg alloy joints exhibited a tensile strength of 242.16 MPa and the results of confirmatory experiment revealed that the ANFIS-SA system had exhibited superiority in modeling and optimization of the FSW process during joining of AZ80A Mg alloys. |
|---|---|
| AbstractList | This paper deals with the experimental research, modeling and parametric-based optimization of the mechanical properties of the friction stir welded AZ80A Mg alloy. A four-factor, five-level-based central composite design matrix was employed to minimize the experimental runs. Adaptive neuro-fuzzy inference system (i.e., ANFIS) was employed to map the relationship amid the parameters of FSW process (namely tool pin geometry, traverse speed, axial force, and rotational speed) and mechanical properties (including yield strength, tensile strength and hardness) of the joints. Later, the formulated ANFIS model was used along with simulated annealing (SA) algorithm determining the optimized parameters of FSW process so as to attain flaw free AZ80A Mg alloy joints. Formulated ANFIS model-SA algorithm anticipated that the friction stir welded AZ80A Mg alloy joints will possess a tensile strength of 240.52 MPa during the single-response optimization scenario and a tensile strength of 240.522 MPa during the multiple-response optimization scenario. Experimental results announced that the FSW process parameter combination of tool rotational speed of 1250 rpm, tool traverse speed of 1.75 mm/sec, axial force of 3 kN and tool possessing a threaded cylindrical pin geometry have contributed for attainment of largest values of mechanical properties during both the single-response and multiple-response optimization scenarios. During the confirmatory experimental work, the flaw free friction stir welded AZ80A Mg alloy joints exhibited a tensile strength of 242.16 MPa and the results of confirmatory experiment revealed that the ANFIS-SA system had exhibited superiority in modeling and optimization of the FSW process during joining of AZ80A Mg alloys. This paper deals with the experimental research, modeling and parametric-based optimization of the mechanical properties of the friction stir welded AZ80A Mg alloy. A four-factor, five-level-based central composite design matrix was employed to minimize the experimental runs. Adaptive neuro-fuzzy inference system (i.e., ANFIS) was employed to map the relationship amid the parameters of FSW process (namely tool pin geometry, traverse speed, axial force, and rotational speed) and mechanical properties (including yield strength, tensile strength and hardness) of the joints. Later, the formulated ANFIS model was used along with simulated annealing (SA) algorithm determining the optimized parameters of FSW process so as to attain flaw free AZ80A Mg alloy joints. Formulated ANFIS model-SA algorithm anticipated that the friction stir welded AZ80A Mg alloy joints will possess a tensile strength of 240.52 MPa during the single-response optimization scenario and a tensile strength of 240.522 MPa during the multiple-response optimization scenario. Experimental results announced that the FSW process parameter combination of tool rotational speed of 1250 rpm, tool traverse speed of 1.75 mm/sec, axial force of 3 kN and tool possessing a threaded cylindrical pin geometry have contributed for attainment of largest values of mechanical properties during both the single-response and multiple-response optimization scenarios. During the confirmatory experimental work, the flaw free friction stir welded AZ80A Mg alloy joints exhibited a tensile strength of 242.16 MPa and the results of confirmatory experiment revealed that the ANFIS-SA system had exhibited superiority in modeling and optimization of the FSW process during joining of AZ80A Mg alloys. |
| Author | Sevvel, P. Solomon, I. John Gunasekaran, J. Roy, J. Vasanthe |
| Author_xml | – sequence: 1 givenname: J. surname: Gunasekaran fullname: Gunasekaran, J. organization: Department of Mechanical Engineering, Panimalar Engineering College (Autonomous) – sequence: 2 givenname: P. orcidid: 0000-0003-4557-6444 surname: Sevvel fullname: Sevvel, P. email: drsevvel@saec.ac.in organization: Department of Mechanical Engineering, S.A. Engineering College (Autonomous) – sequence: 3 givenname: I. John surname: Solomon fullname: Solomon, I. John organization: Department of Mechanical Engineering, Panimalar Engineering College (Autonomous) – sequence: 4 givenname: J. Vasanthe surname: Roy fullname: Roy, J. Vasanthe organization: Department of Mechanical Engineering, S.A. Engineering College (Autonomous) |
| BookMark | eNp9kE1LAzEQhoMoWKt_wFPA82qSTfbjuIr1g9YWqgheQtydbSPbpCYRbK_-cVNX8OZpZuB9n4HnCO0bawChU0rOKSH5hac0y0RCGE_inbFku4cGVPDdyfh-3Ikok5KX4hAdef9GYokxPkBf03XQK71VQVuDbYtH82c8U06tIIDz-Mlrs8DzClfdwjodliusTIOrh9HdPLlUHho8sQ10HgeLJ-pzxwI8gXqpjK5Vh2fOrsEFDX5Hr14KUuHJIuI6u8H3Vpvgj9FBqzoPJ79ziJ5G149Xt8l4enN3VY2TmuUkJIyJrM5F2xRlykWRZ02qiKLQ8vxVcGB1yvKybtqaFhkAsCJVmShzooC-NiTl6RCd9dy1s-8f4IN8sx_OxJcyZULkWZRIYor1qdpZ7x20cu30SrmNpETuZMtetoxi5Y9suY2ltC_5GDYLcH_of1rf5guDXA |
| Cites_doi | 10.1016/j.matpr.2021.04.431 10.1016/j.mfglet.2022.01.004 10.3390/electronics8101071 10.1007/s00170-022-10650-0 10.1007/s00170-023-11175-w 10.1016/j.matdes.2005.06.003 10.1007/s11771-023-5475-5 10.1007/s00170-023-12316-x 10.1007/s12206-020-0916-7 10.1016/j.dt.2015.05.003 10.1007/s13369-023-08037-8 10.1007/s40031-022-00747-1 10.1186/s40712-015-0048-5 10.1007/s11665-008-9269-6 10.1016/j.matdes.2015.12.005 10.1016/j.jmatprotec.2016.07.021 10.1016/j.swevo.2023.101406 10.1007/s11665-023-08671-1 10.1007/978-3-319-23838-8 10.1007/s00158-020-02542-2 10.1016/j.matpr.2021.10.288 10.1007/s00170-023-12106-5 10.1007/s12633-023-02684-0 10.1016/j.swevo.2023.101373 10.1016/j.ultras.2018.08.014 10.1016/j.applthermaleng.2022.119233 10.1016/j.fraope.2023.100037 10.1515/pm-2022-1029 10.1016/j.matchar.2023.113088 10.1007/s12666-023-03096-9 10.1007/978-3-642-25859-6 10.1007/s00170-015-7337-2 10.1016/j.jmapro.2022.11.062 10.1007/s12666-023-02996-0 10.1016/j.promfg.2019.12.088 10.1016/j.jmst.2022.08.025 10.1007/s12597-023-00676-7 10.1016/j.ijleo.2020.165206 10.1007/s40194-023-01584-6 10.1016/j.radphyschem.2023.110959 10.1007/s11356-023-26239-3 10.1007/s11665-023-08527-8 10.1134/S0031918X23601506 10.1007/978-3-030-63986-0 10.1016/S0890-6955(00)00071-7 10.1016/j.apacoust.2021.108507 10.5545/sv-jme.2020.6929 |
| ContentType | Journal Article |
| Copyright | ASM International 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. ASM International 2024. |
| Copyright_xml | – notice: ASM International 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: ASM International 2024. |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s11665-024-10062-z |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1544-1024 |
| EndPage | 14506 |
| ExternalDocumentID | 10_1007_s11665_024_10062_z |
| GroupedDBID | -Y2 -~C .4S .86 .DC .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29K 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VS 67Z 6NX 6TJ 78A 88I 8AF 8FE 8FG 8TC 8UJ 8WZ 95- 95. 95~ 96X 9M8 A6W AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBRH ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSTC ACZOJ ADHHG ADHIR ADHKG ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ CAG CCPQU COF CS3 CSCUP CZ9 D-I D1I DDRTE DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 H13 HCIFZ HF~ HG5 HG6 HMJXF HRMNR HVGLF HZ~ I-F IJ- IKXTQ ITM IWAJR IXC IZQ I~X I~Z J-C J0Z JBSCW JZLTJ KB. KC. KDC KOV L6V LLZTM M2P M4Y M7S MA- MK~ N2Q NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9N PDBOC PF0 PHGZM PHGZT PQGLB PQQKQ PROAC PT4 PT5 PTHSS Q2X QF4 QM1 QN7 QO4 QOK QOR QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 ULE UOJIU UTJUX UZXMN VC2 VFIZW W48 W4F WK8 XSW YLTOR Z45 ZMTXR ~EX AAYXX CITATION PUEGO |
| ID | FETCH-LOGICAL-c270t-2256c75fd89345876d3a0a1ef47b54e2c3279cdfc186eee283a65970ae1bd0343 |
| IEDL.DBID | U2A |
| ISSN | 1059-9495 |
| IngestDate | Wed Oct 01 07:00:24 EDT 2025 Wed Oct 01 05:34:04 EDT 2025 Tue Jul 29 01:10:21 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 14 |
| Keywords | hardness tensile strength yield strength simulated annealing friction stir welding AZ80A Mg alloy ANFIS |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c270t-2256c75fd89345876d3a0a1ef47b54e2c3279cdfc186eee283a65970ae1bd0343 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4557-6444 |
| PQID | 3255761160 |
| PQPubID | 14822 |
| PageCount | 20 |
| ParticipantIDs | proquest_journals_3255761160 crossref_primary_10_1007_s11665_024_10062_z springer_journals_10_1007_s11665_024_10062_z |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20250700 2025-07-00 20250701 |
| PublicationDateYYYYMMDD | 2025-07-01 |
| PublicationDate_xml | – month: 7 year: 2025 text: 20250700 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Journal of materials engineering and performance |
| PublicationTitleAbbrev | J. of Materi Eng and Perform |
| PublicationYear | 2025 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | J Paulo Davim (10062_CR30) 2016 J Paulo Davim (10062_CR40) 2001; 41 D Wu (10062_CR33) 2017; 239 EE Kuruoglu (10062_CR43) 2023; 4 B Guo (10062_CR9) 2023; 85 P Salhan (10062_CR31) 2022; 32 B Selma (10062_CR46) 2022; 103 SM Senthil (10062_CR24) 2020; 62 VP Singh (10062_CR13) 2024; 33 PJ Lokesh Kumar (10062_CR50) 2023; 60 P Asadi (10062_CR2) 2015; 10 J Paulo Davim (10062_CR10) 2021 R Guo (10062_CR42) 2022; 187 A Laska (10062_CR12) 2023; 32 WB Rashid (10062_CR28) 2016; 82 B Wu (10062_CR8) 2024; 49 S Kunhirunbawon (10062_CR37) 2023; 128 MW Dewan (10062_CR21) 2016; 92 RS Mishra (10062_CR15) 2023; 76 S Jain (10062_CR29) 2024; 77 J Paulo Davim (10062_CR49) 2012 J Paulo Davim (10062_CR22) 2024 J Balaji (10062_CR11) 2024; 16 C Meng (10062_CR3) 2023; 203 B Choudhury (10062_CR18) 2020; 219 Y Liu (10062_CR1) 2023; 25 G Zhang (10062_CR4) 2023; 26 TA Shehabeldeen (10062_CR19) 2019; 37 F Hussain (10062_CR5) 2023; 124 G Rambabu (10062_CR26) 2015; 11 R Al-Sabur (10062_CR17) 2021; 47 MAA Al-qaness (10062_CR41) 2019; 8 L Teng (10062_CR51) 2023; 126 SD Dhanesh Babu (10062_CR6) 2020; 34 W Xiaokai (10062_CR20) 2019; 91 J Zhao (10062_CR14) 2023; 139 S Chakraborty (10062_CR27) 2023; 60 HX Liu (10062_CR7) 2024; 31 VN Gaitonde (10062_CR36) 2009; 18 H Okuyucu (10062_CR32) 2007; 28 X Dong (10062_CR34) 2023; 83 P Aghelpour (10062_CR45) 2023; 30 J Su (10062_CR44) 2023; 83 S Chakrabarty (10062_CR35) 2023; 209 X Hong (10062_CR39) 2023; 67 AN Salah (10062_CR23) 2022; 56 X Wang (10062_CR47) 2023; 124 CC Nwobi-Okoye (10062_CR38) 2019; 8 W Jiang (10062_CR16) 2023; 129 C Satheesh (10062_CR25) 2020; 66 YM Güzelel (10062_CR48) 2022; 217 |
| References_xml | – volume: 47 start-page: 5907 issue: 17 year: 2021 ident: 10062_CR17 publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2021.04.431 – volume: 32 start-page: 5 year: 2022 ident: 10062_CR31 publication-title: Manuf. Lett. doi: 10.1016/j.mfglet.2022.01.004 – volume: 8 start-page: 1071 issue: 10 year: 2019 ident: 10062_CR41 publication-title: Electronics doi: 10.3390/electronics8101071 – volume: 124 start-page: 2791 year: 2023 ident: 10062_CR47 publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-022-10650-0 – volume: 126 start-page: 1025 year: 2023 ident: 10062_CR51 publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-023-11175-w – volume: 28 start-page: 78 issue: 1 year: 2007 ident: 10062_CR32 publication-title: Mater. Des. doi: 10.1016/j.matdes.2005.06.003 – volume: 31 start-page: 59 year: 2024 ident: 10062_CR7 publication-title: J. Central South Univ. doi: 10.1007/s11771-023-5475-5 – volume: 129 start-page: 563 year: 2023 ident: 10062_CR16 publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-023-12316-x – volume: 34 start-page: 4239 year: 2020 ident: 10062_CR6 publication-title: J. Mech. Sci. Technol. doi: 10.1007/s12206-020-0916-7 – volume: 11 start-page: 330 year: 2015 ident: 10062_CR26 publication-title: Def. Technol. doi: 10.1016/j.dt.2015.05.003 – volume: 49 start-page: 1897 year: 2024 ident: 10062_CR8 publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-023-08037-8 – volume: 103 start-page: 1505 year: 2022 ident: 10062_CR46 publication-title: J. Inst. Eng. (India) Ser. B doi: 10.1007/s40031-022-00747-1 – volume: 10 start-page: 1 year: 2015 ident: 10062_CR2 publication-title: Int. J. Mech. Mater. Eng. doi: 10.1186/s40712-015-0048-5 – volume: 18 start-page: 231 year: 2009 ident: 10062_CR36 publication-title: J. Mater. Eng. Perform. doi: 10.1007/s11665-008-9269-6 – volume: 92 start-page: 288 year: 2016 ident: 10062_CR21 publication-title: Mater. Des. doi: 10.1016/j.matdes.2015.12.005 – volume: 239 start-page: 113 year: 2017 ident: 10062_CR33 publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2016.07.021 – volume: 83 start-page: 101406 year: 2023 ident: 10062_CR34 publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2023.101406 – volume: 32 start-page: 10655 year: 2023 ident: 10062_CR12 publication-title: J. Mater. Eng. Perform. doi: 10.1007/s11665-023-08671-1 – start-page: 57 volume-title: Design of Experiments in Production Engineering year: 2016 ident: 10062_CR30 doi: 10.1007/978-3-319-23838-8 – volume: 62 start-page: 1117 year: 2020 ident: 10062_CR24 publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-020-02542-2 – volume: 56 start-page: 1675 issue: 4 year: 2022 ident: 10062_CR23 publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2021.10.288 – volume: 128 start-page: 2589 year: 2023 ident: 10062_CR37 publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-023-12106-5 – volume: 16 start-page: 323 year: 2024 ident: 10062_CR11 publication-title: SILICON doi: 10.1007/s12633-023-02684-0 – volume: 83 start-page: 101373 year: 2023 ident: 10062_CR44 publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2023.101373 – volume: 91 start-page: 161 year: 2019 ident: 10062_CR20 publication-title: Ultrasonics doi: 10.1016/j.ultras.2018.08.014 – volume: 217 start-page: 119233 year: 2022 ident: 10062_CR48 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2022.119233 – volume: 4 start-page: 100037 year: 2023 ident: 10062_CR43 publication-title: Franklin Open doi: 10.1016/j.fraope.2023.100037 – volume: 60 start-page: 289 year: 2023 ident: 10062_CR50 publication-title: Prakt. Metallogr. doi: 10.1515/pm-2022-1029 – volume: 203 start-page: 113088 year: 2023 ident: 10062_CR3 publication-title: Mater Charact doi: 10.1016/j.matchar.2023.113088 – volume: 25 start-page: 3458 year: 2023 ident: 10062_CR1 publication-title: J. Market. Res. – volume: 77 start-page: 333 year: 2024 ident: 10062_CR29 publication-title: Trans. Indian Inst. Met. doi: 10.1007/s12666-023-03096-9 – start-page: 143 volume-title: Statistical and Computational Techniques in Manufacturing year: 2012 ident: 10062_CR49 doi: 10.1007/978-3-642-25859-6 – volume: 82 start-page: 451 year: 2016 ident: 10062_CR28 publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-015-7337-2 – volume: 85 start-page: 306 year: 2023 ident: 10062_CR9 publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2022.11.062 – volume: 76 start-page: 2993 year: 2023 ident: 10062_CR15 publication-title: Trans. Indian Inst. Met. doi: 10.1007/s12666-023-02996-0 – volume: 37 start-page: 555 year: 2019 ident: 10062_CR19 publication-title: Procedia Manuf. doi: 10.1016/j.promfg.2019.12.088 – volume: 139 start-page: 31 year: 2023 ident: 10062_CR14 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2022.08.025 – volume: 60 start-page: 1844 year: 2023 ident: 10062_CR27 publication-title: Opsearch doi: 10.1007/s12597-023-00676-7 – volume: 219 start-page: 165206 year: 2020 ident: 10062_CR18 publication-title: Optik doi: 10.1016/j.ijleo.2020.165206 – volume: 26 start-page: 1882 issue: 2023 year: 2023 ident: 10062_CR4 publication-title: J. Market. Res. – volume: 67 start-page: 2493 year: 2023 ident: 10062_CR39 publication-title: Weld. World doi: 10.1007/s40194-023-01584-6 – volume: 209 start-page: 110959 year: 2023 ident: 10062_CR35 publication-title: Radiat. Phys. Chem. doi: 10.1016/j.radphyschem.2023.110959 – volume: 30 start-page: 56440 year: 2023 ident: 10062_CR45 publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-023-26239-3 – volume: 33 start-page: 3706 year: 2024 ident: 10062_CR13 publication-title: J. Mater. Eng. Perform. doi: 10.1007/s11665-023-08527-8 – volume: 124 start-page: 1620 year: 2023 ident: 10062_CR5 publication-title: Phys. Met. Metall. doi: 10.1134/S0031918X23601506 – start-page: 314 volume-title: Welding Technology year: 2021 ident: 10062_CR10 doi: 10.1007/978-3-030-63986-0 – volume: 41 start-page: 21 year: 2001 ident: 10062_CR40 publication-title: Int. J. Mach. Tools Manuf doi: 10.1016/S0890-6955(00)00071-7 – volume: 187 start-page: 108507 year: 2022 ident: 10062_CR42 publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2021.108507 – volume: 8 start-page: 3054 issue: 3 year: 2019 ident: 10062_CR38 publication-title: J. Market. Res. – volume: 66 start-page: 736 year: 2020 ident: 10062_CR25 publication-title: Stroj. Vestn. J. Mech. Eng. doi: 10.5545/sv-jme.2020.6929 – start-page: 245 volume-title: Friction Stir Welding and Processing: Fundamentals to Advancements year: 2024 ident: 10062_CR22 |
| SSID | ssj0007224 |
| Score | 2.4041858 |
| Snippet | This paper deals with the experimental research, modeling and parametric-based optimization of the mechanical properties of the friction stir welded AZ80A Mg... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 14487 |
| SubjectTerms | Adaptive systems Algorithms Alloys Axial forces Characterization and Evaluation of Materials Chemistry and Materials Science Corrosion and Coatings Engineering Design Friction stir welding Magnesium base alloys Materials Science Mechanical properties Metals Modelling Optimization Optimization algorithms Original Research Article Process parameters Quality Control Reliability Residual stress Safety and Risk Simulated annealing Soft computing Tensile strength Tribology |
| Title | Optimization of FSW Parameters Using SA Algorithm and ANFIS-Based Models to Maximize Mechanical Properties of AZ80A Mg Alloy Joints |
| URI | https://link.springer.com/article/10.1007/s11665-024-10062-z https://www.proquest.com/docview/3255761160 |
| Volume | 34 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1544-1024 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007224 issn: 1059-9495 databaseCode: AFBBN dateStart: 19920201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1544-1024 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007224 issn: 1059-9495 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1544-1024 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007224 issn: 1059-9495 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZ4LDAgnqK8dAMbWEocx07GFBFeakEqFY8lSmIHkEqC2iABK3-cc5pQQDAwZbB1gz_f-XN83x0huzrxpSvtmEpHcsqzFF3KtR1qJ0a4zF3P8o1QuNMVx31-eu1e16KwUZPt3jxJVpF6InazhTBqYo6hwxKMvk2TWdeU88Jd3GfBZ_yVbNzKFokD9ZH_11KZ3218P44mHPPHs2h12oSLZKGmiRCMcV0iUzpfJvNfigeukPdz9PbHWkYJRQZh7wouYpNsZSpmQpUMAL0AgsFdMXwo7x8hzhUE3fCkR9t4eCkwjdAGIygL6MQvxpaGjjZSYIMcXJj_9ENTcNVYD249K4DOHZobFK9wWjzk5WiV9MPDy4NjWrdUoCmTVknRe0Uq3UwhTUEgpFBObMW2zrhMXK5Z6jDppypLbU9orZF7xAKvHFas7URZDnfWyExe5HqdgBaenwnhJUwlPBMMZ0mm_AwppPCUY7fIXrOy0dO4ckY0qZFscIgQh6jCIXprka1m8aPai0aRg_cdKXCu1SL7DSCT4b-tbfxv-iaZY6atb5WFu0VmyuGz3kauUSY7ZDYI2-2u-R7dnB3uVFvtA9zvy_Q |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6V7QE4QHlUXShlDr2Bq8Rx7OQYUJftI9tK2xWFS5TETluxTdBuKsFe-eOMswlLKzj0HGvkeMYz38jzzQDsmixUvnJTpjwlmChyulK-6zE3s8Rl4QdOaInC8UgOJ-Lw3D9vSWHzrtq9e5JsPPWK7OZKadnEglyHIzlbPIB1QQkK78F69OnL0f4fD6z4cpgtQQcWUgbQkmX-LeV2QFqhzDsPo028GTyFSbfTZZnJt72bOtvLF3eaON73VzbgSQtAMVpazDNYM-VzePxXW8IX8OuE_Mh1S9DEqsDB-DOepraMy_bixKbMAMcRRtOLanZVX15jWmqMRoODMftAYVGjHbE2nWNdYZz-sLIMxsaSjK1N4Kl9AZjZVq5WevQ1cCKML0jctPqJh9VVWc9fwmSwf_ZxyNphDSznyqkZ-QWZK7_QBIBIxUpqL3VS1xRCZb4wPPe4CnNd5G4gjTGEalJJyYyTGjfTjie8TeiVVWm2AI0MwkLKIOM6E4XktEpxHRYETmWgPbcP7zqNJd-XPTmSVfdle7QJHW3SHG2y6MN2p9SkvZ_zxKNMSkla6_Thfaej1ef_S3t1v-Vv4eHwLD5Ojg9GR6_hEbfDg5ta323o1bMb84YQTZ3ttAb8G3D26QQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFLZYkdB2mAYMrYPBO3ADi8Rx7OQYfkT8aqlUKhCXKIlthlSSqg3SxnX_OM9pSgGNA-dY7-DPz_4cv-97hGzrLJS-dFMqPckpNzmmlO961M2scJn7gRNaoXCnK44H_PTav36h4q-r3WdPklNNg3VpKqq9kTJ7c-GbK4RVFnPcRhzB6OMnssitUQKu6AGLnvdiyaZtbZFE0BDvAo1s5v8xXh9Nc7755om0Pnnib-RrQxkhmmK8TBZ0sUK-vDASXCX_LjDz7xtJJZQG4v4V9FJbeGXdM6EuDIB-BNHwthzfVb_vIS0URN34pE_38SBTYJuiDSdQldBJ_9hYGjrayoItitCz_-zH1nzVRo9uAieCzi2GG5Z_4bS8K6rJdzKIjy4PjmnTXoHmTDoVxUwWufSNQsqCoEihvNRJXW24zHyuWe4xGebK5G4gtNbIQ1KB1w8n1W6mHI97a6RVlIX-QUCLIDRCBBlTGTeC4SjJVGiQTopAeW6b7MxmNhlNXTSSuV-yxSFBHJIah-SxTTZmk580GTVJPLz7SIFjnTbZnQEy__x-tJ8fG75FlnqHcXJ-0j1bJ5-Z7fZbF-dukFY1ftC_kIJU2Wa9yp4A1QPQDA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+FSW+Parameters+Using+SA+Algorithm+and+ANFIS-Based+Models+to+Maximize+Mechanical+Properties+of+AZ80A+Mg+Alloy+Joints&rft.jtitle=Journal+of+materials+engineering+and+performance&rft.au=Gunasekaran%2C+J.&rft.au=Sevvel%2C+P.&rft.au=Solomon%2C+I.+John&rft.au=Roy%2C+J.+Vasanthe&rft.date=2025-07-01&rft.issn=1059-9495&rft.eissn=1544-1024&rft.volume=34&rft.issue=14&rft.spage=14487&rft.epage=14506&rft_id=info:doi/10.1007%2Fs11665-024-10062-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11665_024_10062_z |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1059-9495&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1059-9495&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1059-9495&client=summon |