What are the differences between student and ChatGPT-generated pseudocode? Detecting AI-generated pseudocode in high school programming using explainable machine learning

The ability of large language models (LLMs) to generate code has raised concerns in computer science education, as students may use tools like ChatGPT for programming assignments. While much research has focused on higher education, especially for languages like Java and Python, little attention has...

Full description

Saved in:
Bibliographic Details
Published inEducation and information technologies Vol. 30; no. 11; pp. 14853 - 14892
Main Authors Liu, Zifeng, Xing, Wanli, Jiao, Xinyue, Li, Chenglu, Zhu, Wangda
Format Journal Article
LanguageEnglish
Published New York Springer US 01.07.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1360-2357
1573-7608
DOI10.1007/s10639-025-13385-z

Cover

Abstract The ability of large language models (LLMs) to generate code has raised concerns in computer science education, as students may use tools like ChatGPT for programming assignments. While much research has focused on higher education, especially for languages like Java and Python, little attention has been given to K-12 settings, particularly for pseudocode. This study seeks to bridge this gap by developing explainable machine learning models for detecting pseudocode plagiarism in online programming education. A comprehensive pseudocode dataset was constructed, comprising 7,838 pseudocode submissions from 2,578 high school students enrolled in an online programming foundations course from 2020 to 2023, along with 6,300 pseudocode samples generated by three versions of ChatGPT. An ensemble model (EM) was then proposed to detect AI-generated pseudocode and was compared with six other baseline models. SHapley Additive exPlanations were used to explain how these models differentiate AI-generated pseudocode from student submissions. The results show that students’ submissions have higher similarity with GPT-3 than with the other two GPT models. The proposed model can achieve a high accuracy score of 98.97%. The differences between AI-generated pseudocode and student submissions lies in several aspects: AI-generated pseudocode often begins with more complex verbs and features shorter sentence lengths. It frequently includes clear numerical or word-based indicators of sequence and tends to incorporate more comments throughout the code. This research provides practical insights for online programming and contributes to developing educational technologies and methods that strengthen academic integrity in such courses.
AbstractList The ability of large language models (LLMs) to generate code has raised concerns in computer science education, as students may use tools like ChatGPT for programming assignments. While much research has focused on higher education, especially for languages like Java and Python, little attention has been given to K-12 settings, particularly for pseudocode. This study seeks to bridge this gap by developing explainable machine learning models for detecting pseudocode plagiarism in online programming education. A comprehensive pseudocode dataset was constructed, comprising 7,838 pseudocode submissions from 2,578 high school students enrolled in an online programming foundations course from 2020 to 2023, along with 6,300 pseudocode samples generated by three versions of ChatGPT. An ensemble model (EM) was then proposed to detect AI-generated pseudocode and was compared with six other baseline models. SHapley Additive exPlanations were used to explain how these models differentiate AI-generated pseudocode from student submissions. The results show that students’ submissions have higher similarity with GPT-3 than with the other two GPT models. The proposed model can achieve a high accuracy score of 98.97%. The differences between AI-generated pseudocode and student submissions lies in several aspects: AI-generated pseudocode often begins with more complex verbs and features shorter sentence lengths. It frequently includes clear numerical or word-based indicators of sequence and tends to incorporate more comments throughout the code. This research provides practical insights for online programming and contributes to developing educational technologies and methods that strengthen academic integrity in such courses.
Author Li, Chenglu
Liu, Zifeng
Xing, Wanli
Jiao, Xinyue
Zhu, Wangda
Author_xml – sequence: 1
  givenname: Zifeng
  surname: Liu
  fullname: Liu, Zifeng
  organization: School of Teaching & Learning, College of Education, University of Florida
– sequence: 2
  givenname: Wanli
  surname: Xing
  fullname: Xing, Wanli
  email: wanli.xing@coe.ufl.edu
  organization: School of Teaching & Learning, College of Education, University of Florida
– sequence: 3
  givenname: Xinyue
  surname: Jiao
  fullname: Jiao, Xinyue
  organization: Steinhardt School of Culture, Education, and Human Development, New York University
– sequence: 4
  givenname: Chenglu
  surname: Li
  fullname: Li, Chenglu
  organization: Department of Educational Psychology, College of Education, University of Utah
– sequence: 5
  givenname: Wangda
  surname: Zhu
  fullname: Zhu, Wangda
  organization: School of Teaching & Learning, College of Education, University of Florida
BookMark eNp9kclqHDEQhkWwIV7yAjkJcpZTWro1cwpmvMRgiA9jfBRqqXoZetQTSY2XR8pTRpMJ5BJ8UQnq-6uK_z8lR2EKSMhnDhccQH9NHGq5ZCAqxqVcVOztAznhlZZM17A4Kn9ZAxOy0h_JaUobAFhqJU7Ir6feZmoj0twj9UPbYsTgMNEG8zNioCnPHkNhgqerAt8-rFmHAaPN6Oku4ewnN3n8Rq8wo8tD6Ojl3X8ROgTaD11Pk-unaaS7OHXRbrd7yZz2L77sRjsE24xIt9b1Q0A6oo2hNM_JcWvHhJ_-1jPyeHO9Xn1n9z9u71aX98wJDZkJvvQtcOGKIU7XdfGk4dA4sFI1FqEWigulbd1oVTnlYFFJpYXm6BsuvZJn5Mthbjnv54wpm800x1BWGlkc5EpVi7pQ4kC5OKUUsTW7OGxtfDUczD4Tc8jElP3mTybmrYjkQZQKHDqM_0a_o_oNw1GUKA
Cites_doi 10.18608/jla.2023.8333
10.1145/3583780.3615047
10.2991/cnci-19.2019.40
10.1111/bjet.13370
10.3390/educsci14070744
10.1186/s41239-020-00192-4
10.1016/j.caeai.2023.100147
10.1080/10447318.2023.2221605
10.1145/3502717.3532113
10.1016/j.knosys.2023.110273
10.1016/j.chb.2015.05.047
10.1186/s41239-024-00471-4
10.1111/jcal.12662
10.1080/10580530.2020.1849465
10.48550/arXiv.2301.11305
10.1007/s10639-023-11954-8
10.1145/3636555.3636856
10.1007/s10639-022-11120-6
10.1080/08993400500224286
10.1145/3626252.3630951
10.1177/0735633120960422
10.1145/3641554.370190
10.1145/3585088.3589383
10.33003/fjs-2021-0503-700
10.1007/s10639-024-13173-1
10.1109/ACCESS.2021.3073703
10.56471/slujst.v4i.266
10.48550/arXiv.1903.04209
10.1109/FIE.1999.840376
10.1080/14703297.2023.2190148
10.1080/10494820.2022.2115076
10.1186/s40561-022-00192-z
10.48550/arXiv.2304.11214
10.1007/s10639-022-11416-7
10.1145/3657604.3662029
10.1007/s10639-022-11555-x
10.5281/zenodo.8115693
10.1007/s40593-020-00235-x
10.1109/ACCESS.2021.3069367
10.1007/978-3-031-34411-4_32
10.1007/s10639-021-10661-6
10.3390/ai5030053
10.1109/ICSTCC59206.2023.10308433
10.1007/s10639-024-13218-5
10.1108/eb026526
10.1109/BRACIS.2019.00030
10.1145/3059009.3059065
10.1145/3639474.3640076
10.53761/1.20.3.02
10.1016/j.inffus.2019.12.012
10.1145/3643991.3644926
10.1145/2939672.2939778
10.1109/TLT.2023.3239110
10.1145/3626253.3635600
10.1109/ICCSNT.2012.6526164
10.1016/j.ijcci.2021.100396
10.1007/s10639-024-12765-1
10.1007/s11528-024-00939-0
10.56297/fsyb3031/mxnb7567
10.48550/arXiv.1801.06323
10.1109/FIE.2008.4720362
10.1145/3506717
10.1007/s10664-021-09990-4
10.1145/3617367
10.1145/3639474.3640084
10.1145/3587103.3594166
10.48550/arXiv.2306.08122
10.36548/jaicn.2020.3.005
10.3390/su142315620
10.1186/s41239-024-00446-5
10.1145/2939672.2939785
10.7763/IJCTE.2012.V4.555
10.1145/3568812.3603474
10.1007/978-3-030-77980-1_49
10.1080/08993408.2020.1789411
10.1080/10494820.2021.1993932
10.4236/ojn.2013.38075
10.1111/j.1742-1241.2010.02408.x
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
DBID AAYXX
CITATION
AHOVV
DOI 10.1007/s10639-025-13385-z
DatabaseName CrossRef
Education Research Index
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Education
Computer Science
EISSN 1573-7608
EndPage 14892
ExternalDocumentID 10_1007_s10639_025_13385_z
GroupedDBID -W8
-Y2
-~C
.86
.GO
.VR
0-V
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29G
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8G5
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAHSB
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABOPQ
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACSTC
ACYUM
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARALO
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGNMA
BPHCQ
BSONS
CAG
CCPQU
CJNVE
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDJ
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GUQSH
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
ICD
IEA
IER
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M0P
M2O
M4Y
MA-
MK~
ML~
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O-J
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PHGZM
PHGZT
PQEDU
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R-Y
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
YLTOR
Z45
ZMTXR
~A9
~EX
AAYXX
CITATION
PUEGO
AHOVV
ID FETCH-LOGICAL-c270t-219df012c639c766025b10bc0a34bae06241247a6b745c4c085347271edb13d43
IEDL.DBID U2A
ISSN 1360-2357
IngestDate Sat Aug 02 04:40:45 EDT 2025
Wed Oct 01 05:23:48 EDT 2025
Fri Aug 01 03:41:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Online programming education
Generative AI
Pseudocode
Explainable
ChatGPT
Plagiarism detection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-219df012c639c766025b10bc0a34bae06241247a6b745c4c085347271edb13d43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3235144586
PQPubID 55384
PageCount 40
ParticipantIDs proquest_journals_3235144586
crossref_primary_10_1007_s10639_025_13385_z
springer_journals_10_1007_s10639_025_13385_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250700
2025-07-00
20250701
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 7
  year: 2025
  text: 20250700
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle The Official Journal of the IFIP Technical Committee on Education
PublicationTitle Education and information technologies
PublicationTitleAbbrev Educ Inf Technol
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References 13385_CR9
AB Arrieta (13385_CR3) 2020; 58
H Cheers (13385_CR8) 2021; 26
AL Olsen (13385_CR60) 2005; 21
J Crawford (13385_CR14) 2023; 20
I Gambo (13385_CR21) 2024
P Nayak (13385_CR57) 2021
D Sun (13385_CR77) 2024; 21
13385_CR40
13385_CR84
D Hernandez-Leo (13385_CR24) 2023
O Karnalim (13385_CR37) 2021; 9
13385_CR85
O Karnalim (13385_CR38) 2022; 22
13385_CR87
F Pedregosa (13385_CR61) 2011; 12
13385_CR80
A Nwohiri (13385_CR58) 2021; 5
13385_CR81
H Wang (13385_CR82) 2023; 28
13385_CR6
13385_CR39
13385_CR33
13385_CR78
13385_CR35
HC Lane (13385_CR43) 2005; 15
13385_CR79
W Saeed (13385_CR69) 2021; 263
U Bandara (13385_CR5) 2012; 4
M Yue (13385_CR90) 2022
13385_CR30
13385_CR74
13385_CR32
K Sparck Jones (13385_CR75) 1972; 28
13385_CR76
H Du (13385_CR18) 2023; 31
13385_CR70
T Foltýnek (13385_CR20) 2020; 17
HD Abubakar (13385_CR1) 2022; 4
13385_CR72
13385_CR26
13385_CR29
13385_CR66
DR Cotton (13385_CR13) 2024; 61
13385_CR23
13385_CR68
13385_CR25
H Crompton (13385_CR15) 2024; 68
C Li (13385_CR45) 2021; 31
Y Jang (13385_CR31) 2022; 27
H Cheers (13385_CR7) 2021; 9
MA Quidwai (13385_CR64) 2023; 727
S Aravantinos (13385_CR2) 2024
R Yilmaz (13385_CR89) 2023; 4
13385_CR59
13385_CR16
13385_CR17
13385_CR11
E Macrides (13385_CR50) 2022; 32
13385_CR55
13385_CR12
13385_CR56
M Hoq (13385_CR27) 2024; 1
B Qureshi (13385_CR65) 2023
C Meske (13385_CR54) 2020; 39
L Prechelt (13385_CR63) 2002; 8
BI Smith (13385_CR73) 2022; 27
X Gong (13385_CR22) 2024
H Khosravi (13385_CR42) 2023; 10
IT Sanusi (13385_CR71) 2023; 28
13385_CR52
JR Rico-Juan (13385_CR67) 2023; 16
13385_CR53
13385_CR10
J Prather (13385_CR62) 2023; 31
R Maertens (13385_CR51) 2022; 38
13385_CR48
M Yağcı (13385_CR86) 2022; 9
13385_CR49
W Huang (13385_CR28) 2020; 31
F Kalelioglu (13385_CR34) 2015; 52
13385_CR44
13385_CR88
13385_CR46
H Khosravi (13385_CR41) 2022; 3
13385_CR47
O Karnalim (13385_CR36) 2020; 21
X Duan (13385_CR19) 2024; 29
JML Williamson (13385_CR83) 2010; 64
N Awale (13385_CR4) 2020; 2
References_xml – volume: 10
  start-page: 1
  issue: 3
  year: 2023
  ident: 13385_CR42
  publication-title: Journal of Learning Analytics
  doi: 10.18608/jla.2023.8333
– ident: 13385_CR26
  doi: 10.1145/3583780.3615047
– ident: 13385_CR29
  doi: 10.2991/cnci-19.2019.40
– volume: 21
  start-page: 231
  year: 2005
  ident: 13385_CR60
  publication-title: Journal of Computing Sciences in Colleges
– ident: 13385_CR88
  doi: 10.1111/bjet.13370
– year: 2024
  ident: 13385_CR2
  publication-title: Education Sciences
  doi: 10.3390/educsci14070744
– volume: 17
  start-page: 1
  year: 2020
  ident: 13385_CR20
  publication-title: International Journal of Educational Technology in Higher Education
  doi: 10.1186/s41239-020-00192-4
– volume: 4
  start-page: 100147
  year: 2023
  ident: 13385_CR89
  publication-title: Computers and Education: Artificial Intelligence
  doi: 10.1016/j.caeai.2023.100147
– ident: 13385_CR44
  doi: 10.1080/10447318.2023.2221605
– ident: 13385_CR79
– ident: 13385_CR55
  doi: 10.1145/3502717.3532113
– volume: 263
  start-page: 110273
  year: 2021
  ident: 13385_CR69
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2023.110273
– volume: 52
  start-page: 200
  year: 2015
  ident: 13385_CR34
  publication-title: Computers in Human Behavior
  doi: 10.1016/j.chb.2015.05.047
– ident: 13385_CR32
  doi: 10.1186/s41239-024-00471-4
– volume: 38
  start-page: 1046
  issue: 4
  year: 2022
  ident: 13385_CR51
  publication-title: Journal of Computer Assisted Learning
  doi: 10.1111/jcal.12662
– volume: 39
  start-page: 53
  year: 2020
  ident: 13385_CR54
  publication-title: Information Systems Management
  doi: 10.1080/10580530.2020.1849465
– ident: 13385_CR56
  doi: 10.48550/arXiv.2301.11305
– volume: 29
  start-page: 3075
  issue: 3
  year: 2024
  ident: 13385_CR19
  publication-title: Education and Information Technologies
  doi: 10.1007/s10639-023-11954-8
– ident: 13385_CR87
  doi: 10.1145/3636555.3636856
– volume: 27
  start-page: 12855
  issue: 9
  year: 2022
  ident: 13385_CR31
  publication-title: Education and Information Technologies
  doi: 10.1007/s10639-022-11120-6
– volume: 15
  start-page: 183
  issue: 3
  year: 2005
  ident: 13385_CR43
  publication-title: Computer Science Education
  doi: 10.1080/08993400500224286
– ident: 13385_CR80
  doi: 10.1145/3626252.3630951
– ident: 13385_CR84
  doi: 10.1177/0735633120960422
– ident: 13385_CR48
  doi: 10.1145/3641554.370190
– ident: 13385_CR74
  doi: 10.1145/3585088.3589383
– volume: 5
  start-page: 207
  issue: 3
  year: 2021
  ident: 13385_CR58
  publication-title: FUDMA Journal of Sciences
  doi: 10.33003/fjs-2021-0503-700
– year: 2024
  ident: 13385_CR22
  publication-title: Education and Information Technologies
  doi: 10.1007/s10639-024-13173-1
– volume: 9
  start-page: 59935
  year: 2021
  ident: 13385_CR37
  publication-title: Ieee Access : Practical Innovations, Open Solutions
  doi: 10.1109/ACCESS.2021.3073703
– volume: 4
  start-page: 27
  issue: 1
  year: 2022
  ident: 13385_CR1
  publication-title: SLU Journal of Science and Technology
  doi: 10.56471/slujst.v4i.266
– ident: 13385_CR33
  doi: 10.48550/arXiv.1903.04209
– ident: 13385_CR6
  doi: 10.1109/FIE.1999.840376
– ident: 13385_CR53
– volume: 61
  start-page: 228
  issue: 2
  year: 2024
  ident: 13385_CR13
  publication-title: Innovations in Education and Teaching International
  doi: 10.1080/14703297.2023.2190148
– ident: 13385_CR46
  doi: 10.1080/10494820.2022.2115076
– volume: 9
  start-page: 1
  issue: 1
  year: 2022
  ident: 13385_CR86
  publication-title: Smart Learning Environments
  doi: 10.1186/s40561-022-00192-z
– year: 2023
  ident: 13385_CR65
  publication-title: arXiv
  doi: 10.48550/arXiv.2304.11214
– volume: 28
  start-page: 5967
  issue: 5
  year: 2023
  ident: 13385_CR71
  publication-title: Education and Information Technologies
  doi: 10.1007/s10639-022-11416-7
– ident: 13385_CR47
  doi: 10.1145/3657604.3662029
– volume: 28
  start-page: 9113
  issue: 7
  year: 2023
  ident: 13385_CR82
  publication-title: Education and Information Technologies
  doi: 10.1007/s10639-022-11555-x
– ident: 13385_CR25
  doi: 10.5281/zenodo.8115693
– volume: 31
  start-page: 186
  year: 2021
  ident: 13385_CR45
  publication-title: International Journal of Artificial Intelligence in Education
  doi: 10.1007/s40593-020-00235-x
– volume: 9
  start-page: 50391
  year: 2021
  ident: 13385_CR7
  publication-title: Ieee Access : Practical Innovations, Open Solutions
  doi: 10.1109/ACCESS.2021.3069367
– ident: 13385_CR40
  doi: 10.1007/978-3-031-34411-4_32
– volume: 27
  start-page: 1539
  year: 2022
  ident: 13385_CR73
  publication-title: Education and Information Technologies
  doi: 10.1007/s10639-021-10661-6
– volume: 8
  start-page: 1016
  issue: 11
  year: 2002
  ident: 13385_CR63
  publication-title: Journal of Universal Computer Science
– ident: 13385_CR59
  doi: 10.3390/ai5030053
– ident: 13385_CR81
  doi: 10.1109/ICSTCC59206.2023.10308433
– year: 2024
  ident: 13385_CR21
  publication-title: Education and Information Technologies
  doi: 10.1007/s10639-024-13218-5
– volume: 28
  start-page: 11
  issue: 1
  year: 1972
  ident: 13385_CR75
  publication-title: Journal of Documentation
  doi: 10.1108/eb026526
– ident: 13385_CR16
  doi: 10.1109/BRACIS.2019.00030
– ident: 13385_CR23
  doi: 10.1145/3059009.3059065
– ident: 13385_CR85
  doi: 10.1145/3639474.3640076
– volume: 20
  start-page: 02
  issue: 3
  year: 2023
  ident: 13385_CR14
  publication-title: Journal of University Teaching & Learning Practice
  doi: 10.53761/1.20.3.02
– ident: 13385_CR35
– volume: 58
  start-page: 82
  year: 2020
  ident: 13385_CR3
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2019.12.012
– ident: 13385_CR30
  doi: 10.1145/3643991.3644926
– ident: 13385_CR66
  doi: 10.1145/2939672.2939778
– volume: 12
  start-page: 2825
  issue: 85
  year: 2011
  ident: 13385_CR61
  publication-title: Journal of Machine Learning Research
– volume: 16
  start-page: 955
  year: 2023
  ident: 13385_CR67
  publication-title: IEEE Transactions on Learning Technologies
  doi: 10.1109/TLT.2023.3239110
– ident: 13385_CR10
  doi: 10.1145/3626253.3635600
– ident: 13385_CR39
  doi: 10.1109/ICCSNT.2012.6526164
– volume-title: Chatgpt and generative ai in higher education
  year: 2023
  ident: 13385_CR24
– volume: 32
  start-page: 100396
  year: 2022
  ident: 13385_CR50
  publication-title: International Journal of Child-Computer Interaction
  doi: 10.1016/j.ijcci.2021.100396
– ident: 13385_CR76
  doi: 10.1007/s10639-024-12765-1
– volume: 21
  start-page: 97
  issue: 1)
  year: 2020
  ident: 13385_CR36
  publication-title: Computer Science
– ident: 13385_CR68
– volume: 68
  start-page: 380
  issue: 2
  year: 2024
  ident: 13385_CR15
  publication-title: TechTrends
  doi: 10.1007/s11528-024-00939-0
– ident: 13385_CR12
  doi: 10.56297/fsyb3031/mxnb7567
– ident: 13385_CR11
  doi: 10.48550/arXiv.1801.06323
– ident: 13385_CR17
  doi: 10.1109/FIE.2008.4720362
– ident: 13385_CR49
– volume: 22
  start-page: 1
  issue: 3
  year: 2022
  ident: 13385_CR38
  publication-title: Transactions on Computing Education (TOCE)
  doi: 10.1145/3506717
– volume: 26
  start-page: 83
  issue: 5
  year: 2021
  ident: 13385_CR8
  publication-title: Empirical Software Engineering
  doi: 10.1007/s10664-021-09990-4
– volume: 31
  start-page: 1
  issue: 1
  year: 2023
  ident: 13385_CR62
  publication-title: ACM Transactions on Computer-Human Interaction
  doi: 10.1145/3617367
– ident: 13385_CR70
  doi: 10.1145/3639474.3640084
– ident: 13385_CR52
  doi: 10.1145/3587103.3594166
– volume: 727
  start-page: 735
  year: 2023
  ident: 13385_CR64
  publication-title: arXiv
  doi: 10.48550/arXiv.2306.08122
– volume: 1
  start-page: 526
  year: 2024
  ident: 13385_CR27
  publication-title: Proceedings of the 55th ACM Technical Symposium on Computer Science Education
– volume: 2
  start-page: 177
  issue: 3
  year: 2020
  ident: 13385_CR4
  publication-title: Journal of Artificial Intelligence and Capsule Networks
  doi: 10.36548/jaicn.2020.3.005
– volume: 3
  start-page: 100074
  year: 2022
  ident: 13385_CR41
  publication-title: Computers and Education: Artificial Intelligence
– year: 2022
  ident: 13385_CR90
  publication-title: Sustainability
  doi: 10.3390/su142315620
– volume: 21
  start-page: 14
  issue: 1
  year: 2024
  ident: 13385_CR77
  publication-title: International Journal of Educational Technology in Higher Education
  doi: 10.1186/s41239-024-00446-5
– ident: 13385_CR9
  doi: 10.1145/2939672.2939785
– volume: 4
  start-page: 674
  issue: 5
  year: 2012
  ident: 13385_CR5
  publication-title: International Journal of Computer Theory and Engineering
  doi: 10.7763/IJCTE.2012.V4.555
– ident: 13385_CR72
  doi: 10.1145/3568812.3603474
– volume-title: Computational Science – ICCS 2021
  year: 2021
  ident: 13385_CR57
  doi: 10.1007/978-3-030-77980-1_49
– volume: 31
  start-page: 83
  issue: 1
  year: 2020
  ident: 13385_CR28
  publication-title: Computer Science Education
  doi: 10.1080/08993408.2020.1789411
– volume: 31
  start-page: 5021
  issue: 8
  year: 2023
  ident: 13385_CR18
  publication-title: Interactive Learning Environments
  doi: 10.1080/10494820.2021.1993932
– ident: 13385_CR78
  doi: 10.4236/ojn.2013.38075
– volume: 64
  start-page: 1824
  issue: 13
  year: 2010
  ident: 13385_CR83
  publication-title: International Journal of Clinical Practice
  doi: 10.1111/j.1742-1241.2010.02408.x
SSID ssj0009742
Score 2.3600752
Snippet The ability of large language models (LLMs) to generate code has raised concerns in computer science education, as students may use tools like ChatGPT for...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 14853
SubjectTerms Accountability
Accuracy
Algorithms
Artificial Intelligence
Automation
C plus plus
Chatbots
Cheating
Computer Appl. in Social and Behavioral Sciences
Computer Science
Computers and Education
Critical thinking
Datasets
Decision making
Education
Educational Technology
Elementary Secondary Education
Exhibits
Generative artificial intelligence
Higher education
Information Systems Applications (incl.Internet)
Integrity
Java
Language Processing
Large language models
Literature Reviews
Machine learning
Natural language processing
Plagiarism
Problem solving
Program Evaluation
Programming Languages
Python
Self Efficacy
Students
Teachers
Thinking Skills
Transparency
User Interfaces and Human Computer Interaction
Title What are the differences between student and ChatGPT-generated pseudocode? Detecting AI-generated pseudocode in high school programming using explainable machine learning
URI https://link.springer.com/article/10.1007/s10639-025-13385-z
https://www.proquest.com/docview/3235144586
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-7608
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009742
  issn: 1360-2357
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-7608
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009742
  issn: 1360-2357
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-7608
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009742
  issn: 1360-2357
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0VuJRDabegbvnQHLi1lhzHsdMTWvHdiqoHVqKnyI6dFVI3rMgiVfwkfiVjr6OliB44x7Elj-15lt-8B7DfmEbxb0YzZzhnsskFsyW3TBijRdmYQkad7ouf6mwsv18VV6korOvZ7v2TZDypnxS7UTZlwX413KsKdr8Ca0WQ86JVPBajpdSujpY5Wa44C2IuqVTm5T7-TUdLjPnsWTRmm5P38C7BRBwt4voB3vh2ABu9BQOmHTkIpsuJoDGA9Sfagh_hIYhyo7n1SBAPex8UOhUwUbOwW8haomkdHlLj01-XbBJVqAmF4qzzd-4mVLwf4JEPTw3ULY7OX2yC1y0G4WPsoqgnJtbXNPwSmPUT9H9nf1KhFk4jgdNjcqyYbML45Pjy8IwlYwZWC83njE4511Bmq2kya60UzafNuK25yaU1nisRPK21UVbLopY1wbpcElDKvLNZ7mS-BavtTes_AepSlSpzrs4aLr2VVgptfOFyulpRgrVD-NLHp5ot9DeqpdJyiGZFo1cxmtX9EHb6EFZpL3ZVLkK1gixKNYSvfViXn__f2-fXNd-GtyKsrMjl3YHV-e2d3yXEMrd7sDY6_f3jeC8u1EczlOaY
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LTuMwFL3isWBYANMZRHnexexmLDmOY4cVqngVBtAsWoldZMdOhQShIkVCfBJfie06KoNgwTqOLfnavsfyuecA_KpUJei-ksQoSgmvUkZ0TjVhSkmWVyrjQaf78kr0h_z8OruORWFNy3ZvnyTDSf2m2M1lU-LtV_29KiPP87DoBay8Yv6Q9WZSuzJY5iSpoMSLucRSmY_7-D8dzTDmu2fRkG1O1mAlwkTsTeP6HeZs3YHV1oIB447seNPlSNDowPIbbcEf8OJFuVE9WHQQD1sfFHcqYKRmYTOVtURVGzx0jU__DcgoqFA7FIrjxj6ae1_xfoBH1j81uG6xd_ZhE7yp0QsfYxNEPTGyvu78L55ZP0L7NL6NhVp4FwicFqNjxegnDE-OB4d9Eo0ZSMkknRB3ypnKZbbSTWYphXDzqROqS6pSrpWlgnlPa6mEljwreelgXcodUEqs0UlqeLoOC_V9bTcAZS5ykRhTJhXlVnPNmVQ2M6m7WrkEq7vwu41PMZ7qbxQzpWUfzcKNXoRoFs9d2G5DWMS92BQp89UKPMtFF_60YZ19_ry3za8134Ol_uDyorg4u_q7Bd-YX2WB17sNC5OHR7vj0MtE74bF-grnYefw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1PTxQxFH9RTIweEFeJi4Dv4E0bOp1OO57MBlhAgXBgE26TdtrZkMCwYZeE8JH4lL52O9nV4IHzdNqkr-17TX9_AL42plH8h9HMGc6ZbHLBbMktE8ZoUTamkFGn--RUHY7kr4viYonFH9Hu3ZPknNMQVJra2c7ENTtLxDfKrCxYsYY7VsEeXsIrGYQSaEWPxGAhu6ujfU6WK86CsEuizTzdx9-paVFv_vNEGjPPcA1WU8mIg3mM38ML3_bgXWfHgGl39oIBcwJr9ODtks7gB3gMAt1obj1SuYedJwqdEJhgWjidS1yiaR3uUuODs3M2jorUVJHiZOrv3E1gv__EPR-eHahbHBw92QQvWwwiyDiNAp-YEGDX4ZeAsh-jv59cJdIWXkcwp8fkXjH-CKPh_vnuIUsmDawWms8YnXiuoSxX02TWWimaT5txW3OTS2s8VyL4W2ujrJZFLWsq8XJJRVPmnc1yJ_N1WGlvWv8JUJeqVJlzddZw6a20UmjjC5fTNYuSre3Dty4-1WSuxVEtVJdDNCsavYrRrB76sNmFsEr7clrlIjAXZFGqPnzvwrr4_P_eNp7X_Au8PtsbVsdHp78_wxsRFlmE-G7Cyuz2zm9RITOz23Gt_gEoe-ws
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=What+are+the+differences+between+student+and+ChatGPT-generated+pseudocode%3F+Detecting+AI-generated+pseudocode+in+high+school+programming+using+explainable+machine+learning&rft.jtitle=Education+and+information+technologies&rft.au=Liu%2C+Zifeng&rft.au=Xing%2C+Wanli&rft.au=Jiao%2C+Xinyue&rft.au=Li%2C+Chenglu&rft.date=2025-07-01&rft.issn=1360-2357&rft.eissn=1573-7608&rft.volume=30&rft.issue=11&rft.spage=14853&rft.epage=14892&rft_id=info:doi/10.1007%2Fs10639-025-13385-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10639_025_13385_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1360-2357&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1360-2357&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1360-2357&client=summon