What are the differences between student and ChatGPT-generated pseudocode? Detecting AI-generated pseudocode in high school programming using explainable machine learning
The ability of large language models (LLMs) to generate code has raised concerns in computer science education, as students may use tools like ChatGPT for programming assignments. While much research has focused on higher education, especially for languages like Java and Python, little attention has...
Saved in:
| Published in | Education and information technologies Vol. 30; no. 11; pp. 14853 - 14892 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.07.2025
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1360-2357 1573-7608 |
| DOI | 10.1007/s10639-025-13385-z |
Cover
| Abstract | The ability of large language models (LLMs) to generate code has raised concerns in computer science education, as students may use tools like ChatGPT for programming assignments. While much research has focused on higher education, especially for languages like Java and Python, little attention has been given to K-12 settings, particularly for pseudocode. This study seeks to bridge this gap by developing explainable machine learning models for detecting pseudocode plagiarism in online programming education. A comprehensive pseudocode dataset was constructed, comprising 7,838 pseudocode submissions from 2,578 high school students enrolled in an online programming foundations course from 2020 to 2023, along with 6,300 pseudocode samples generated by three versions of ChatGPT. An ensemble model (EM) was then proposed to detect AI-generated pseudocode and was compared with six other baseline models. SHapley Additive exPlanations were used to explain how these models differentiate AI-generated pseudocode from student submissions. The results show that students’ submissions have higher similarity with GPT-3 than with the other two GPT models. The proposed model can achieve a high accuracy score of 98.97%. The differences between AI-generated pseudocode and student submissions lies in several aspects: AI-generated pseudocode often begins with more complex verbs and features shorter sentence lengths. It frequently includes clear numerical or word-based indicators of sequence and tends to incorporate more comments throughout the code. This research provides practical insights for online programming and contributes to developing educational technologies and methods that strengthen academic integrity in such courses. |
|---|---|
| AbstractList | The ability of large language models (LLMs) to generate code has raised concerns in computer science education, as students may use tools like ChatGPT for programming assignments. While much research has focused on higher education, especially for languages like Java and Python, little attention has been given to K-12 settings, particularly for pseudocode. This study seeks to bridge this gap by developing explainable machine learning models for detecting pseudocode plagiarism in online programming education. A comprehensive pseudocode dataset was constructed, comprising 7,838 pseudocode submissions from 2,578 high school students enrolled in an online programming foundations course from 2020 to 2023, along with 6,300 pseudocode samples generated by three versions of ChatGPT. An ensemble model (EM) was then proposed to detect AI-generated pseudocode and was compared with six other baseline models. SHapley Additive exPlanations were used to explain how these models differentiate AI-generated pseudocode from student submissions. The results show that students’ submissions have higher similarity with GPT-3 than with the other two GPT models. The proposed model can achieve a high accuracy score of 98.97%. The differences between AI-generated pseudocode and student submissions lies in several aspects: AI-generated pseudocode often begins with more complex verbs and features shorter sentence lengths. It frequently includes clear numerical or word-based indicators of sequence and tends to incorporate more comments throughout the code. This research provides practical insights for online programming and contributes to developing educational technologies and methods that strengthen academic integrity in such courses. |
| Author | Li, Chenglu Liu, Zifeng Xing, Wanli Jiao, Xinyue Zhu, Wangda |
| Author_xml | – sequence: 1 givenname: Zifeng surname: Liu fullname: Liu, Zifeng organization: School of Teaching & Learning, College of Education, University of Florida – sequence: 2 givenname: Wanli surname: Xing fullname: Xing, Wanli email: wanli.xing@coe.ufl.edu organization: School of Teaching & Learning, College of Education, University of Florida – sequence: 3 givenname: Xinyue surname: Jiao fullname: Jiao, Xinyue organization: Steinhardt School of Culture, Education, and Human Development, New York University – sequence: 4 givenname: Chenglu surname: Li fullname: Li, Chenglu organization: Department of Educational Psychology, College of Education, University of Utah – sequence: 5 givenname: Wangda surname: Zhu fullname: Zhu, Wangda organization: School of Teaching & Learning, College of Education, University of Florida |
| BookMark | eNp9kclqHDEQhkWwIV7yAjkJcpZTWro1cwpmvMRgiA9jfBRqqXoZetQTSY2XR8pTRpMJ5BJ8UQnq-6uK_z8lR2EKSMhnDhccQH9NHGq5ZCAqxqVcVOztAznhlZZM17A4Kn9ZAxOy0h_JaUobAFhqJU7Ir6feZmoj0twj9UPbYsTgMNEG8zNioCnPHkNhgqerAt8-rFmHAaPN6Oku4ewnN3n8Rq8wo8tD6Ojl3X8ROgTaD11Pk-unaaS7OHXRbrd7yZz2L77sRjsE24xIt9b1Q0A6oo2hNM_JcWvHhJ_-1jPyeHO9Xn1n9z9u71aX98wJDZkJvvQtcOGKIU7XdfGk4dA4sFI1FqEWigulbd1oVTnlYFFJpYXm6BsuvZJn5Mthbjnv54wpm800x1BWGlkc5EpVi7pQ4kC5OKUUsTW7OGxtfDUczD4Tc8jElP3mTybmrYjkQZQKHDqM_0a_o_oNw1GUKA |
| Cites_doi | 10.18608/jla.2023.8333 10.1145/3583780.3615047 10.2991/cnci-19.2019.40 10.1111/bjet.13370 10.3390/educsci14070744 10.1186/s41239-020-00192-4 10.1016/j.caeai.2023.100147 10.1080/10447318.2023.2221605 10.1145/3502717.3532113 10.1016/j.knosys.2023.110273 10.1016/j.chb.2015.05.047 10.1186/s41239-024-00471-4 10.1111/jcal.12662 10.1080/10580530.2020.1849465 10.48550/arXiv.2301.11305 10.1007/s10639-023-11954-8 10.1145/3636555.3636856 10.1007/s10639-022-11120-6 10.1080/08993400500224286 10.1145/3626252.3630951 10.1177/0735633120960422 10.1145/3641554.370190 10.1145/3585088.3589383 10.33003/fjs-2021-0503-700 10.1007/s10639-024-13173-1 10.1109/ACCESS.2021.3073703 10.56471/slujst.v4i.266 10.48550/arXiv.1903.04209 10.1109/FIE.1999.840376 10.1080/14703297.2023.2190148 10.1080/10494820.2022.2115076 10.1186/s40561-022-00192-z 10.48550/arXiv.2304.11214 10.1007/s10639-022-11416-7 10.1145/3657604.3662029 10.1007/s10639-022-11555-x 10.5281/zenodo.8115693 10.1007/s40593-020-00235-x 10.1109/ACCESS.2021.3069367 10.1007/978-3-031-34411-4_32 10.1007/s10639-021-10661-6 10.3390/ai5030053 10.1109/ICSTCC59206.2023.10308433 10.1007/s10639-024-13218-5 10.1108/eb026526 10.1109/BRACIS.2019.00030 10.1145/3059009.3059065 10.1145/3639474.3640076 10.53761/1.20.3.02 10.1016/j.inffus.2019.12.012 10.1145/3643991.3644926 10.1145/2939672.2939778 10.1109/TLT.2023.3239110 10.1145/3626253.3635600 10.1109/ICCSNT.2012.6526164 10.1016/j.ijcci.2021.100396 10.1007/s10639-024-12765-1 10.1007/s11528-024-00939-0 10.56297/fsyb3031/mxnb7567 10.48550/arXiv.1801.06323 10.1109/FIE.2008.4720362 10.1145/3506717 10.1007/s10664-021-09990-4 10.1145/3617367 10.1145/3639474.3640084 10.1145/3587103.3594166 10.48550/arXiv.2306.08122 10.36548/jaicn.2020.3.005 10.3390/su142315620 10.1186/s41239-024-00446-5 10.1145/2939672.2939785 10.7763/IJCTE.2012.V4.555 10.1145/3568812.3603474 10.1007/978-3-030-77980-1_49 10.1080/08993408.2020.1789411 10.1080/10494820.2021.1993932 10.4236/ojn.2013.38075 10.1111/j.1742-1241.2010.02408.x |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
| DBID | AAYXX CITATION AHOVV |
| DOI | 10.1007/s10639-025-13385-z |
| DatabaseName | CrossRef Education Research Index |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Education Computer Science |
| EISSN | 1573-7608 |
| EndPage | 14892 |
| ExternalDocumentID | 10_1007_s10639_025_13385_z |
| GroupedDBID | -W8 -Y2 -~C .86 .GO .VR 0-V 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29G 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 8G5 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAHSB AAIAL AAJBT AAJKR AANZL AAOBN AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABOPQ ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACSTC ACYUM ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALSLI ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARALO ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGNMA BPHCQ BSONS CAG CCPQU CJNVE COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDJ EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GUQSH GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO ICD IEA IER IHE IJ- IKXTQ ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M0P M2O M4Y MA- MK~ ML~ N2Q NB0 NDZJH NPVJJ NQJWS NU0 O-J O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PHGZM PHGZT PQEDU PQQKQ PROAC PT4 PT5 Q2X QOK QOS R-Y R4E R89 R9I RHV RNI ROL RPX RSV RZC RZD RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 YLTOR Z45 ZMTXR ~A9 ~EX AAYXX CITATION PUEGO AHOVV |
| ID | FETCH-LOGICAL-c270t-219df012c639c766025b10bc0a34bae06241247a6b745c4c085347271edb13d43 |
| IEDL.DBID | U2A |
| ISSN | 1360-2357 |
| IngestDate | Sat Aug 02 04:40:45 EDT 2025 Wed Oct 01 05:23:48 EDT 2025 Fri Aug 01 03:41:31 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | Online programming education Generative AI Pseudocode Explainable ChatGPT Plagiarism detection |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c270t-219df012c639c766025b10bc0a34bae06241247a6b745c4c085347271edb13d43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3235144586 |
| PQPubID | 55384 |
| PageCount | 40 |
| ParticipantIDs | proquest_journals_3235144586 crossref_primary_10_1007_s10639_025_13385_z springer_journals_10_1007_s10639_025_13385_z |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20250700 2025-07-00 20250701 |
| PublicationDateYYYYMMDD | 2025-07-01 |
| PublicationDate_xml | – month: 7 year: 2025 text: 20250700 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationSubtitle | The Official Journal of the IFIP Technical Committee on Education |
| PublicationTitle | Education and information technologies |
| PublicationTitleAbbrev | Educ Inf Technol |
| PublicationYear | 2025 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | 13385_CR9 AB Arrieta (13385_CR3) 2020; 58 H Cheers (13385_CR8) 2021; 26 AL Olsen (13385_CR60) 2005; 21 J Crawford (13385_CR14) 2023; 20 I Gambo (13385_CR21) 2024 P Nayak (13385_CR57) 2021 D Sun (13385_CR77) 2024; 21 13385_CR40 13385_CR84 D Hernandez-Leo (13385_CR24) 2023 O Karnalim (13385_CR37) 2021; 9 13385_CR85 O Karnalim (13385_CR38) 2022; 22 13385_CR87 F Pedregosa (13385_CR61) 2011; 12 13385_CR80 A Nwohiri (13385_CR58) 2021; 5 13385_CR81 H Wang (13385_CR82) 2023; 28 13385_CR6 13385_CR39 13385_CR33 13385_CR78 13385_CR35 HC Lane (13385_CR43) 2005; 15 13385_CR79 W Saeed (13385_CR69) 2021; 263 U Bandara (13385_CR5) 2012; 4 M Yue (13385_CR90) 2022 13385_CR30 13385_CR74 13385_CR32 K Sparck Jones (13385_CR75) 1972; 28 13385_CR76 H Du (13385_CR18) 2023; 31 13385_CR70 T Foltýnek (13385_CR20) 2020; 17 HD Abubakar (13385_CR1) 2022; 4 13385_CR72 13385_CR26 13385_CR29 13385_CR66 DR Cotton (13385_CR13) 2024; 61 13385_CR23 13385_CR68 13385_CR25 H Crompton (13385_CR15) 2024; 68 C Li (13385_CR45) 2021; 31 Y Jang (13385_CR31) 2022; 27 H Cheers (13385_CR7) 2021; 9 MA Quidwai (13385_CR64) 2023; 727 S Aravantinos (13385_CR2) 2024 R Yilmaz (13385_CR89) 2023; 4 13385_CR59 13385_CR16 13385_CR17 13385_CR11 E Macrides (13385_CR50) 2022; 32 13385_CR55 13385_CR12 13385_CR56 M Hoq (13385_CR27) 2024; 1 B Qureshi (13385_CR65) 2023 C Meske (13385_CR54) 2020; 39 L Prechelt (13385_CR63) 2002; 8 BI Smith (13385_CR73) 2022; 27 X Gong (13385_CR22) 2024 H Khosravi (13385_CR42) 2023; 10 IT Sanusi (13385_CR71) 2023; 28 13385_CR52 JR Rico-Juan (13385_CR67) 2023; 16 13385_CR53 13385_CR10 J Prather (13385_CR62) 2023; 31 R Maertens (13385_CR51) 2022; 38 13385_CR48 M Yağcı (13385_CR86) 2022; 9 13385_CR49 W Huang (13385_CR28) 2020; 31 F Kalelioglu (13385_CR34) 2015; 52 13385_CR44 13385_CR88 13385_CR46 H Khosravi (13385_CR41) 2022; 3 13385_CR47 O Karnalim (13385_CR36) 2020; 21 X Duan (13385_CR19) 2024; 29 JML Williamson (13385_CR83) 2010; 64 N Awale (13385_CR4) 2020; 2 |
| References_xml | – volume: 10 start-page: 1 issue: 3 year: 2023 ident: 13385_CR42 publication-title: Journal of Learning Analytics doi: 10.18608/jla.2023.8333 – ident: 13385_CR26 doi: 10.1145/3583780.3615047 – ident: 13385_CR29 doi: 10.2991/cnci-19.2019.40 – volume: 21 start-page: 231 year: 2005 ident: 13385_CR60 publication-title: Journal of Computing Sciences in Colleges – ident: 13385_CR88 doi: 10.1111/bjet.13370 – year: 2024 ident: 13385_CR2 publication-title: Education Sciences doi: 10.3390/educsci14070744 – volume: 17 start-page: 1 year: 2020 ident: 13385_CR20 publication-title: International Journal of Educational Technology in Higher Education doi: 10.1186/s41239-020-00192-4 – volume: 4 start-page: 100147 year: 2023 ident: 13385_CR89 publication-title: Computers and Education: Artificial Intelligence doi: 10.1016/j.caeai.2023.100147 – ident: 13385_CR44 doi: 10.1080/10447318.2023.2221605 – ident: 13385_CR79 – ident: 13385_CR55 doi: 10.1145/3502717.3532113 – volume: 263 start-page: 110273 year: 2021 ident: 13385_CR69 publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2023.110273 – volume: 52 start-page: 200 year: 2015 ident: 13385_CR34 publication-title: Computers in Human Behavior doi: 10.1016/j.chb.2015.05.047 – ident: 13385_CR32 doi: 10.1186/s41239-024-00471-4 – volume: 38 start-page: 1046 issue: 4 year: 2022 ident: 13385_CR51 publication-title: Journal of Computer Assisted Learning doi: 10.1111/jcal.12662 – volume: 39 start-page: 53 year: 2020 ident: 13385_CR54 publication-title: Information Systems Management doi: 10.1080/10580530.2020.1849465 – ident: 13385_CR56 doi: 10.48550/arXiv.2301.11305 – volume: 29 start-page: 3075 issue: 3 year: 2024 ident: 13385_CR19 publication-title: Education and Information Technologies doi: 10.1007/s10639-023-11954-8 – ident: 13385_CR87 doi: 10.1145/3636555.3636856 – volume: 27 start-page: 12855 issue: 9 year: 2022 ident: 13385_CR31 publication-title: Education and Information Technologies doi: 10.1007/s10639-022-11120-6 – volume: 15 start-page: 183 issue: 3 year: 2005 ident: 13385_CR43 publication-title: Computer Science Education doi: 10.1080/08993400500224286 – ident: 13385_CR80 doi: 10.1145/3626252.3630951 – ident: 13385_CR84 doi: 10.1177/0735633120960422 – ident: 13385_CR48 doi: 10.1145/3641554.370190 – ident: 13385_CR74 doi: 10.1145/3585088.3589383 – volume: 5 start-page: 207 issue: 3 year: 2021 ident: 13385_CR58 publication-title: FUDMA Journal of Sciences doi: 10.33003/fjs-2021-0503-700 – year: 2024 ident: 13385_CR22 publication-title: Education and Information Technologies doi: 10.1007/s10639-024-13173-1 – volume: 9 start-page: 59935 year: 2021 ident: 13385_CR37 publication-title: Ieee Access : Practical Innovations, Open Solutions doi: 10.1109/ACCESS.2021.3073703 – volume: 4 start-page: 27 issue: 1 year: 2022 ident: 13385_CR1 publication-title: SLU Journal of Science and Technology doi: 10.56471/slujst.v4i.266 – ident: 13385_CR33 doi: 10.48550/arXiv.1903.04209 – ident: 13385_CR6 doi: 10.1109/FIE.1999.840376 – ident: 13385_CR53 – volume: 61 start-page: 228 issue: 2 year: 2024 ident: 13385_CR13 publication-title: Innovations in Education and Teaching International doi: 10.1080/14703297.2023.2190148 – ident: 13385_CR46 doi: 10.1080/10494820.2022.2115076 – volume: 9 start-page: 1 issue: 1 year: 2022 ident: 13385_CR86 publication-title: Smart Learning Environments doi: 10.1186/s40561-022-00192-z – year: 2023 ident: 13385_CR65 publication-title: arXiv doi: 10.48550/arXiv.2304.11214 – volume: 28 start-page: 5967 issue: 5 year: 2023 ident: 13385_CR71 publication-title: Education and Information Technologies doi: 10.1007/s10639-022-11416-7 – ident: 13385_CR47 doi: 10.1145/3657604.3662029 – volume: 28 start-page: 9113 issue: 7 year: 2023 ident: 13385_CR82 publication-title: Education and Information Technologies doi: 10.1007/s10639-022-11555-x – ident: 13385_CR25 doi: 10.5281/zenodo.8115693 – volume: 31 start-page: 186 year: 2021 ident: 13385_CR45 publication-title: International Journal of Artificial Intelligence in Education doi: 10.1007/s40593-020-00235-x – volume: 9 start-page: 50391 year: 2021 ident: 13385_CR7 publication-title: Ieee Access : Practical Innovations, Open Solutions doi: 10.1109/ACCESS.2021.3069367 – ident: 13385_CR40 doi: 10.1007/978-3-031-34411-4_32 – volume: 27 start-page: 1539 year: 2022 ident: 13385_CR73 publication-title: Education and Information Technologies doi: 10.1007/s10639-021-10661-6 – volume: 8 start-page: 1016 issue: 11 year: 2002 ident: 13385_CR63 publication-title: Journal of Universal Computer Science – ident: 13385_CR59 doi: 10.3390/ai5030053 – ident: 13385_CR81 doi: 10.1109/ICSTCC59206.2023.10308433 – year: 2024 ident: 13385_CR21 publication-title: Education and Information Technologies doi: 10.1007/s10639-024-13218-5 – volume: 28 start-page: 11 issue: 1 year: 1972 ident: 13385_CR75 publication-title: Journal of Documentation doi: 10.1108/eb026526 – ident: 13385_CR16 doi: 10.1109/BRACIS.2019.00030 – ident: 13385_CR23 doi: 10.1145/3059009.3059065 – ident: 13385_CR85 doi: 10.1145/3639474.3640076 – volume: 20 start-page: 02 issue: 3 year: 2023 ident: 13385_CR14 publication-title: Journal of University Teaching & Learning Practice doi: 10.53761/1.20.3.02 – ident: 13385_CR35 – volume: 58 start-page: 82 year: 2020 ident: 13385_CR3 publication-title: Information Fusion doi: 10.1016/j.inffus.2019.12.012 – ident: 13385_CR30 doi: 10.1145/3643991.3644926 – ident: 13385_CR66 doi: 10.1145/2939672.2939778 – volume: 12 start-page: 2825 issue: 85 year: 2011 ident: 13385_CR61 publication-title: Journal of Machine Learning Research – volume: 16 start-page: 955 year: 2023 ident: 13385_CR67 publication-title: IEEE Transactions on Learning Technologies doi: 10.1109/TLT.2023.3239110 – ident: 13385_CR10 doi: 10.1145/3626253.3635600 – ident: 13385_CR39 doi: 10.1109/ICCSNT.2012.6526164 – volume-title: Chatgpt and generative ai in higher education year: 2023 ident: 13385_CR24 – volume: 32 start-page: 100396 year: 2022 ident: 13385_CR50 publication-title: International Journal of Child-Computer Interaction doi: 10.1016/j.ijcci.2021.100396 – ident: 13385_CR76 doi: 10.1007/s10639-024-12765-1 – volume: 21 start-page: 97 issue: 1) year: 2020 ident: 13385_CR36 publication-title: Computer Science – ident: 13385_CR68 – volume: 68 start-page: 380 issue: 2 year: 2024 ident: 13385_CR15 publication-title: TechTrends doi: 10.1007/s11528-024-00939-0 – ident: 13385_CR12 doi: 10.56297/fsyb3031/mxnb7567 – ident: 13385_CR11 doi: 10.48550/arXiv.1801.06323 – ident: 13385_CR17 doi: 10.1109/FIE.2008.4720362 – ident: 13385_CR49 – volume: 22 start-page: 1 issue: 3 year: 2022 ident: 13385_CR38 publication-title: Transactions on Computing Education (TOCE) doi: 10.1145/3506717 – volume: 26 start-page: 83 issue: 5 year: 2021 ident: 13385_CR8 publication-title: Empirical Software Engineering doi: 10.1007/s10664-021-09990-4 – volume: 31 start-page: 1 issue: 1 year: 2023 ident: 13385_CR62 publication-title: ACM Transactions on Computer-Human Interaction doi: 10.1145/3617367 – ident: 13385_CR70 doi: 10.1145/3639474.3640084 – ident: 13385_CR52 doi: 10.1145/3587103.3594166 – volume: 727 start-page: 735 year: 2023 ident: 13385_CR64 publication-title: arXiv doi: 10.48550/arXiv.2306.08122 – volume: 1 start-page: 526 year: 2024 ident: 13385_CR27 publication-title: Proceedings of the 55th ACM Technical Symposium on Computer Science Education – volume: 2 start-page: 177 issue: 3 year: 2020 ident: 13385_CR4 publication-title: Journal of Artificial Intelligence and Capsule Networks doi: 10.36548/jaicn.2020.3.005 – volume: 3 start-page: 100074 year: 2022 ident: 13385_CR41 publication-title: Computers and Education: Artificial Intelligence – year: 2022 ident: 13385_CR90 publication-title: Sustainability doi: 10.3390/su142315620 – volume: 21 start-page: 14 issue: 1 year: 2024 ident: 13385_CR77 publication-title: International Journal of Educational Technology in Higher Education doi: 10.1186/s41239-024-00446-5 – ident: 13385_CR9 doi: 10.1145/2939672.2939785 – volume: 4 start-page: 674 issue: 5 year: 2012 ident: 13385_CR5 publication-title: International Journal of Computer Theory and Engineering doi: 10.7763/IJCTE.2012.V4.555 – ident: 13385_CR72 doi: 10.1145/3568812.3603474 – volume-title: Computational Science – ICCS 2021 year: 2021 ident: 13385_CR57 doi: 10.1007/978-3-030-77980-1_49 – volume: 31 start-page: 83 issue: 1 year: 2020 ident: 13385_CR28 publication-title: Computer Science Education doi: 10.1080/08993408.2020.1789411 – volume: 31 start-page: 5021 issue: 8 year: 2023 ident: 13385_CR18 publication-title: Interactive Learning Environments doi: 10.1080/10494820.2021.1993932 – ident: 13385_CR78 doi: 10.4236/ojn.2013.38075 – volume: 64 start-page: 1824 issue: 13 year: 2010 ident: 13385_CR83 publication-title: International Journal of Clinical Practice doi: 10.1111/j.1742-1241.2010.02408.x |
| SSID | ssj0009742 |
| Score | 2.3600752 |
| Snippet | The ability of large language models (LLMs) to generate code has raised concerns in computer science education, as students may use tools like ChatGPT for... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 14853 |
| SubjectTerms | Accountability Accuracy Algorithms Artificial Intelligence Automation C plus plus Chatbots Cheating Computer Appl. in Social and Behavioral Sciences Computer Science Computers and Education Critical thinking Datasets Decision making Education Educational Technology Elementary Secondary Education Exhibits Generative artificial intelligence Higher education Information Systems Applications (incl.Internet) Integrity Java Language Processing Large language models Literature Reviews Machine learning Natural language processing Plagiarism Problem solving Program Evaluation Programming Languages Python Self Efficacy Students Teachers Thinking Skills Transparency User Interfaces and Human Computer Interaction |
| Title | What are the differences between student and ChatGPT-generated pseudocode? Detecting AI-generated pseudocode in high school programming using explainable machine learning |
| URI | https://link.springer.com/article/10.1007/s10639-025-13385-z https://www.proquest.com/docview/3235144586 |
| Volume | 30 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-7608 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009742 issn: 1360-2357 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-7608 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009742 issn: 1360-2357 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-7608 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009742 issn: 1360-2357 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0VuJRDabegbvnQHLi1lhzHsdMTWvHdiqoHVqKnyI6dFVI3rMgiVfwkfiVjr6OliB44x7Elj-15lt-8B7DfmEbxb0YzZzhnsskFsyW3TBijRdmYQkad7ouf6mwsv18VV6korOvZ7v2TZDypnxS7UTZlwX413KsKdr8Ca0WQ86JVPBajpdSujpY5Wa44C2IuqVTm5T7-TUdLjPnsWTRmm5P38C7BRBwt4voB3vh2ABu9BQOmHTkIpsuJoDGA9Sfagh_hIYhyo7n1SBAPex8UOhUwUbOwW8haomkdHlLj01-XbBJVqAmF4qzzd-4mVLwf4JEPTw3ULY7OX2yC1y0G4WPsoqgnJtbXNPwSmPUT9H9nf1KhFk4jgdNjcqyYbML45Pjy8IwlYwZWC83njE4511Bmq2kya60UzafNuK25yaU1nisRPK21UVbLopY1wbpcElDKvLNZ7mS-BavtTes_AepSlSpzrs4aLr2VVgptfOFyulpRgrVD-NLHp5ot9DeqpdJyiGZFo1cxmtX9EHb6EFZpL3ZVLkK1gixKNYSvfViXn__f2-fXNd-GtyKsrMjl3YHV-e2d3yXEMrd7sDY6_f3jeC8u1EczlOaY |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LTuMwFL3isWBYANMZRHnexexmLDmOY4cVqngVBtAsWoldZMdOhQShIkVCfBJfie06KoNgwTqOLfnavsfyuecA_KpUJei-ksQoSgmvUkZ0TjVhSkmWVyrjQaf78kr0h_z8OruORWFNy3ZvnyTDSf2m2M1lU-LtV_29KiPP87DoBay8Yv6Q9WZSuzJY5iSpoMSLucRSmY_7-D8dzTDmu2fRkG1O1mAlwkTsTeP6HeZs3YHV1oIB447seNPlSNDowPIbbcEf8OJFuVE9WHQQD1sfFHcqYKRmYTOVtURVGzx0jU__DcgoqFA7FIrjxj6ae1_xfoBH1j81uG6xd_ZhE7yp0QsfYxNEPTGyvu78L55ZP0L7NL6NhVp4FwicFqNjxegnDE-OB4d9Eo0ZSMkknRB3ypnKZbbSTWYphXDzqROqS6pSrpWlgnlPa6mEljwreelgXcodUEqs0UlqeLoOC_V9bTcAZS5ykRhTJhXlVnPNmVQ2M6m7WrkEq7vwu41PMZ7qbxQzpWUfzcKNXoRoFs9d2G5DWMS92BQp89UKPMtFF_60YZ19_ry3za8134Ol_uDyorg4u_q7Bd-YX2WB17sNC5OHR7vj0MtE74bF-grnYefw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1PTxQxFH9RTIweEFeJi4Dv4E0bOp1OO57MBlhAgXBgE26TdtrZkMCwYZeE8JH4lL52O9nV4IHzdNqkr-17TX9_AL42plH8h9HMGc6ZbHLBbMktE8ZoUTamkFGn--RUHY7kr4viYonFH9Hu3ZPknNMQVJra2c7ENTtLxDfKrCxYsYY7VsEeXsIrGYQSaEWPxGAhu6ujfU6WK86CsEuizTzdx9-paVFv_vNEGjPPcA1WU8mIg3mM38ML3_bgXWfHgGl39oIBcwJr9ODtks7gB3gMAt1obj1SuYedJwqdEJhgWjidS1yiaR3uUuODs3M2jorUVJHiZOrv3E1gv__EPR-eHahbHBw92QQvWwwiyDiNAp-YEGDX4ZeAsh-jv59cJdIWXkcwp8fkXjH-CKPh_vnuIUsmDawWms8YnXiuoSxX02TWWimaT5txW3OTS2s8VyL4W2ujrJZFLWsq8XJJRVPmnc1yJ_N1WGlvWv8JUJeqVJlzddZw6a20UmjjC5fTNYuSre3Dty4-1WSuxVEtVJdDNCsavYrRrB76sNmFsEr7clrlIjAXZFGqPnzvwrr4_P_eNp7X_Au8PtsbVsdHp78_wxsRFlmE-G7Cyuz2zm9RITOz23Gt_gEoe-ws |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=What+are+the+differences+between+student+and+ChatGPT-generated+pseudocode%3F+Detecting+AI-generated+pseudocode+in+high+school+programming+using+explainable+machine+learning&rft.jtitle=Education+and+information+technologies&rft.au=Liu%2C+Zifeng&rft.au=Xing%2C+Wanli&rft.au=Jiao%2C+Xinyue&rft.au=Li%2C+Chenglu&rft.date=2025-07-01&rft.issn=1360-2357&rft.eissn=1573-7608&rft.volume=30&rft.issue=11&rft.spage=14853&rft.epage=14892&rft_id=info:doi/10.1007%2Fs10639-025-13385-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10639_025_13385_z |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1360-2357&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1360-2357&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1360-2357&client=summon |