Data mining techniques for LULC analysis using sparse labels and multisource data integration for the hilly terrain of Nilgiris district, Tamil Nadu, India
Accurate and quantitative assessment of Land Use and Land Cover (LULC) changes is crucial for understanding the spatial dynamics and environmental impacts within specific regions. In hilly terrains like the Nilgiris district in Tamil Nadu, India, these assessments are particularly challenging due to...
Saved in:
| Published in | Earth science informatics Vol. 18; no. 1; p. 13 |
|---|---|
| Main Authors | , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.01.2025
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1865-0473 1865-0481 |
| DOI | 10.1007/s12145-024-01586-y |
Cover
| Abstract | Accurate and quantitative assessment of Land Use and Land Cover (LULC) changes is crucial for understanding the spatial dynamics and environmental impacts within specific regions. In hilly terrains like the Nilgiris district in Tamil Nadu, India, these assessments are particularly challenging due to the complex topography and when classified using sparse ground truth labels. With numerous data mining algorithms being validated for several earth observation applications, demands are also increasing in selecting the best classifier algorithm for LULC mapping. Popularly implemented pixel-based data mining classifiers such as Random Forest (RF), Support Vector Machine (SVM), C5.0 Decision trees (C50), Naive Bayes (NB), Multinomial Logistic Regression (MLR), AdaBoost, Bagged CART, Nearest Shrunken Centroids (NSC), Genetic Algorithm based CART (Evetree), Neural Networks with PCA (NNPCA), k-Nearest Neighbours (k-NN), Multi-Layer Perceptron (MLP), and 1 Dimensional – Convoluted Neural Networks (1DCNN) were studied by integrating different auxiliary variables with sparse ground truth labels (391 Nos.). The accuracy of the predictions was then validated using Overall Accuracy (OA), Kappa, and disagreement measures based on the validation datasets. The most influential auxiliary variables contributing to the classification determined through PFI (Permutation Feature Importance) analysis, resulted with Digital Elevation Model (DEM) being the most influential auxiliary variable, among others. From the validation measures and the visual assessment facilitated for each algorithm, the effective performance in classification was depicted by Support Vector Machine - Linear Kernel (SVM - L) and followed by Random Forest (RF) algorithms with OA of 88%; 85% and Kappa of 0.84; 0.82, respectively. The algorithms also yielded the least disagreement measures for both algorithms. The findings of the research described the effective performance of the SVM and RF algorithms for classifying LULC at 10 m resolution through multisource data integration and under limited sampling and parameterization conditions. The statistical insights derived indicated a 4.3% decrease in the forest area with 7.2% increase in agricultural area in the last 2 years and 6.6% increase in the tea plantation area in the last 5 years. |
|---|---|
| AbstractList | Accurate and quantitative assessment of Land Use and Land Cover (LULC) changes is crucial for understanding the spatial dynamics and environmental impacts within specific regions. In hilly terrains like the Nilgiris district in Tamil Nadu, India, these assessments are particularly challenging due to the complex topography and when classified using sparse ground truth labels. With numerous data mining algorithms being validated for several earth observation applications, demands are also increasing in selecting the best classifier algorithm for LULC mapping. Popularly implemented pixel-based data mining classifiers such as Random Forest (RF), Support Vector Machine (SVM), C5.0 Decision trees (C50), Naive Bayes (NB), Multinomial Logistic Regression (MLR), AdaBoost, Bagged CART, Nearest Shrunken Centroids (NSC), Genetic Algorithm based CART (Evetree), Neural Networks with PCA (NNPCA), k-Nearest Neighbours (k-NN), Multi-Layer Perceptron (MLP), and 1 Dimensional – Convoluted Neural Networks (1DCNN) were studied by integrating different auxiliary variables with sparse ground truth labels (391 Nos.). The accuracy of the predictions was then validated using Overall Accuracy (OA), Kappa, and disagreement measures based on the validation datasets. The most influential auxiliary variables contributing to the classification determined through PFI (Permutation Feature Importance) analysis, resulted with Digital Elevation Model (DEM) being the most influential auxiliary variable, among others. From the validation measures and the visual assessment facilitated for each algorithm, the effective performance in classification was depicted by Support Vector Machine - Linear Kernel (SVM - L) and followed by Random Forest (RF) algorithms with OA of 88%; 85% and Kappa of 0.84; 0.82, respectively. The algorithms also yielded the least disagreement measures for both algorithms. The findings of the research described the effective performance of the SVM and RF algorithms for classifying LULC at 10 m resolution through multisource data integration and under limited sampling and parameterization conditions. The statistical insights derived indicated a 4.3% decrease in the forest area with 7.2% increase in agricultural area in the last 2 years and 6.6% increase in the tea plantation area in the last 5 years. Accurate and quantitative assessment of Land Use and Land Cover (LULC) changes is crucial for understanding the spatial dynamics and environmental impacts within specific regions. In hilly terrains like the Nilgiris district in Tamil Nadu, India, these assessments are particularly challenging due to the complex topography and when classified using sparse ground truth labels. With numerous data mining algorithms being validated for several earth observation applications, demands are also increasing in selecting the best classifier algorithm for LULC mapping. Popularly implemented pixel-based data mining classifiers such as Random Forest (RF), Support Vector Machine (SVM), C5.0 Decision trees (C50), Naive Bayes (NB), Multinomial Logistic Regression (MLR), AdaBoost, Bagged CART, Nearest Shrunken Centroids (NSC), Genetic Algorithm based CART (Evetree), Neural Networks with PCA (NNPCA), k-Nearest Neighbours (k-NN), Multi-Layer Perceptron (MLP), and 1 Dimensional – Convoluted Neural Networks (1DCNN) were studied by integrating different auxiliary variables with sparse ground truth labels (391 Nos.). The accuracy of the predictions was then validated using Overall Accuracy (OA), Kappa, and disagreement measures based on the validation datasets. The most influential auxiliary variables contributing to the classification determined through PFI (Permutation Feature Importance) analysis, resulted with Digital Elevation Model (DEM) being the most influential auxiliary variable, among others. From the validation measures and the visual assessment facilitated for each algorithm, the effective performance in classification was depicted by Support Vector Machine - Linear Kernel (SVM - L) and followed by Random Forest (RF) algorithms with OA of 88%; 85% and Kappa of 0.84; 0.82, respectively. The algorithms also yielded the least disagreement measures for both algorithms. The findings of the research described the effective performance of the SVM and RF algorithms for classifying LULC at 10 m resolution through multisource data integration and under limited sampling and parameterization conditions. The statistical insights derived indicated a 4.3% decrease in the forest area with 7.2% increase in agricultural area in the last 2 years and 6.6% increase in the tea plantation area in the last 5 years. |
| ArticleNumber | 13 |
| Author | Raj, Moorthi Nivas Jagadeeswaran, Ramasamy Muthumanickam, Dhanaraju Kanna, S. Kamalesh Karthikkumar, A. Kumaraperumal, Ramalingam Pazhanivelan, Sellaperumal Jagadesh, M. Selvi, Duraisamy |
| Author_xml | – sequence: 1 givenname: Ramalingam orcidid: 0000-0001-6659-9587 surname: Kumaraperumal fullname: Kumaraperumal, Ramalingam email: kumaraperumal.r@tnau.ac.in organization: Department of Remote Sensing and GIS, Tamil Nadu Agricultural University – sequence: 2 givenname: Moorthi Nivas surname: Raj fullname: Raj, Moorthi Nivas organization: Department of Remote Sensing and GIS, Tamil Nadu Agricultural University – sequence: 3 givenname: Sellaperumal orcidid: 0000-0002-3596-3232 surname: Pazhanivelan fullname: Pazhanivelan, Sellaperumal organization: Centre for Water and Geospatial Studies, Tamil Nadu Agricultural University – sequence: 4 givenname: M. surname: Jagadesh fullname: Jagadesh, M. organization: Department of Soil Science and Agricultural Chemistry, Tamil Nadu Agricultural University – sequence: 5 givenname: Duraisamy surname: Selvi fullname: Selvi, Duraisamy organization: Department of Soil Science and Agricultural Chemistry, Tamil Nadu Agricultural University – sequence: 6 givenname: Dhanaraju orcidid: 0000-0002-9852-1095 surname: Muthumanickam fullname: Muthumanickam, Dhanaraju organization: Department of Remote Sensing and GIS, Tamil Nadu Agricultural University – sequence: 7 givenname: Ramasamy orcidid: 0000-0002-8658-9260 surname: Jagadeeswaran fullname: Jagadeeswaran, Ramasamy organization: Department of Remote Sensing and GIS, Tamil Nadu Agricultural University – sequence: 8 givenname: A. surname: Karthikkumar fullname: Karthikkumar, A. organization: Department of Remote Sensing and GIS, Tamil Nadu Agricultural University – sequence: 9 givenname: S. Kamalesh surname: Kanna fullname: Kanna, S. Kamalesh organization: Department of Remote Sensing and GIS, Tamil Nadu Agricultural University |
| BookMark | eNp9kctOHDEQRa2ISBDCD7CylC0NfvTLy2gID2lENrC23LZ7piKPe-JyL_pb-Fk8TAS7rKpUde-Rru43chKn6Am55OyaM9bdIBe8biom6orxpm-r5Qs5431bTnXPTz72Tp6SC0QYmOSilUL0Z-T11mRDdxAhbmj2dhvh7-yRjlOi65f1ippowoKAdMaDBPcmoafBDD5geTq6m0MGnOZkPXUHGMTsN8lkmOI7Jm893UIIS-GnZCDSaaRPEDaQCtYB5gQ2X9Fns4NAn4ybr-hjdGC-k6-jCegv_s1z8nL363n1UK1_3z-ufq4rKzqWK86U48MgpBzKYG7omt7XznnbtgNTQqnWKtlwNSpfm7aRDWvaRqnBWtlZJuQ5-XHk7tN0CJ_1nxKn5EYteS1k34taFZU4qmyaEJMf9T7BzqRFc6YPPehjD7r0oN970EsxyaMJizhufPpE_8f1Bh-8jy4 |
| Cites_doi | 10.3390/rs70708489 10.1007/s40808-024-01999-0 10.30536/j.ijreses.2022.v19.a3803 10.1109/IGARSS47720.2021.9553499 10.48550/arXiv.1801.01489 10.1016/j.asr.2024.07.066 10.1016/j.rama.2023.10.007 10.1109/ACCESS.2023.3336733 10.1007/s10661-016-5494-x 10.3390/rs13122299 10.3390/rs1030330 10.3390/rs14091977 10.1007/s10668-023-04149-1 10.1186/s12302-024-00901-0 10.1371/journal.pone.0208823 10.1023/A:1010933404324 10.1088/1755-1315/1051/1/012023 10.1007/s40808-023-01860-w 10.1007/s11356-024-33389-5 10.15666/aeer/1403_773792 10.3390/rs5073212 10.26833/ijeg.987605 10.1016/j.landusepol.2017.11.036 10.1016/j.heliyon.2022.e09267 10.3390/su11205835 10.1007/s12517-022-10246-8 10.1016/j.isprsjprs.2016.11.004 10.1007/s12145-022-00874-9 10.1016/j.apgeog.2008.12.005 10.1002/fes3.99 10.1007/s12145-023-01117-1 10.1016/j.spacepol.2015.01.001 10.1016/j.isprsjprs.2022.11.012 10.1080/19475683.2024.2343399 10.46610/JOIPAI.2022.v08i02.003 10.1016/j.rse.2019.111354 10.3390/rs14163992 10.3390/rs9020173 10.1007/s40328-022-00400-9 10.1016/j.procs.2018.10.434 10.1186/s40068-023-00324-5 10.3390/land11122279 10.3390/rs11131600 10.1016/j.jclepro.2024.141147 10.1038/sdata.2017.1 10.1007/s40808-020-00740-x 10.1016/j.ecolind.2020.106121 10.1186/s40068-024-00366-3 10.1016/j.ecoinf.2024.102498 10.1016/j.jclepro.2020.120311 10.1016/j.apgeog.2016.07.008 10.3390/rs12223776 10.1007/s00477-022-02267-2 10.1080/01431161.2011.552923 10.1080/15481603.2019.1650447 10.3390/land12071415 10.1080/09640568.2021.2001317 10.3390/su8090921 10.1007/s10661-024-12633-y 10.3390/rs70202046 10.5721/EuJRS20154823 10.1016/j.isprsjprs.2024.05.020 10.1007/s10668-020-00864-1 10.1016/j.ejrs.2024.03.003 10.1080/22797254.2021.2018667 10.1016/j.isprsjprs.2010.11.001 10.5194/isprs-archives-XLIII-B3-2022-681-2022 10.1016/j.isprsjprs.2014.03.009 10.1007/s12145-023-01113-5 10.1007/s10661-023-12131-7 10.1016/j.scitotenv.2018.08.141 10.3390/rs11030274 10.3390/rs13071349 10.3390/rs13030368 10.1007/s40808-021-01296-0 10.1007/s42398-022-00259-0 10.1016/j.asr.2021.10.020 10.1016/j.asr.2012.06.032 10.1007/s41651-024-00195-z |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Jan 2025 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Jan 2025 |
| DBID | AAYXX CITATION 7SC 7TG 8FD JQ2 KL. L7M L~C L~D |
| DOI | 10.1007/s12145-024-01586-y |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Meteorological & Geoastrophysical Abstracts Technology Research Database ProQuest Computer Science Collection Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Meteorological & Geoastrophysical Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Meteorological & Geoastrophysical Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| EISSN | 1865-0481 |
| ExternalDocumentID | 10_1007_s12145_024_01586_y |
| GeographicLocations | Tamil Nadu India India |
| GeographicLocations_xml | – name: India – name: Tamil Nadu India |
| GroupedDBID | -Y2 06D 0R~ 0VY 1N0 203 2JN 2KG 2VQ 2~H 30V 4.4 406 408 40D 67M 67Z 6NX 88I 8FE 8FG 8FH 8TC 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBRH ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACCUX ACDTI ACGFS ACGOD ACHSB ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSTC ACZOJ ADHHG ADHIR ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AEZWR AFBBN AFDZB AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ARAPS ATHPR AUKKA AXYYD AYFIA AYJHY AZQEC B-. BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 H13 HCIFZ HF~ HG6 HMJXF HRMNR HZ~ I0C IJ- IKXTQ IWAJR IXD IZQ J-C J0Z JBSCW JZLTJ K6V K7- KOV L8X LK5 LLZTM M2P M4Y M7R MK~ NPVJJ NQJWS NU0 O9- O93 O9J P62 PCBAR PHGZM PHGZT PQGLB PQQKQ PROAC PT4 Q2X QOS R89 RLLFE ROL RSV S16 S1Z S27 S3B SAP SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG TSK U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 ZMTXR ~02 ~A9 ~KM AAYXX CITATION PUEGO 7SC 7TG 8FD JQ2 KL. L7M L~C L~D |
| ID | FETCH-LOGICAL-c270t-109d1bb233b1bb0db758e4ddec66b092996c93519f9e4a6535056599bcc37c023 |
| IEDL.DBID | U2A |
| ISSN | 1865-0473 |
| IngestDate | Fri Jul 25 09:40:19 EDT 2025 Wed Oct 01 08:30:37 EDT 2025 Mon Jul 21 06:06:38 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Random forest Model comparison SVM Land use and land cover 1D CNN |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c270t-109d1bb233b1bb0db758e4ddec66b092996c93519f9e4a6535056599bcc37c023 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9852-1095 0000-0002-8658-9260 0000-0002-3596-3232 0000-0001-6659-9587 |
| PQID | 3142388249 |
| PQPubID | 54345 |
| ParticipantIDs | proquest_journals_3142388249 crossref_primary_10_1007_s12145_024_01586_y springer_journals_10_1007_s12145_024_01586_y |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20250100 2025-01-00 20250101 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 1 year: 2025 text: 20250100 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Dordrecht |
| PublicationTitle | Earth science informatics |
| PublicationTitleAbbrev | Earth Sci Inform |
| PublicationYear | 2025 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | A Sitthi (1586_CR71) 2016; 8 1586_CR38 G De Luca (1586_CR23) 2022 CB Pande (1586_CR53) 2024; 36 C Pelletier (1586_CR56) 2017; 9 A Fisher (1586_CR28) 2019; 20 Q Bie (1586_CR8) 2023; 11 CT Lloyd (1586_CR44) 2017; 4 RK Singh (1586_CR70) 2021; 23 K Millard (1586_CR48) 2015; 7 CPC Senan (1586_CR67) 2023; 37 M Carranza-García (1586_CR13) 2019; 11 G Mountrakis (1586_CR49) 2011; 66 1586_CR34 1586_CR36 S Talukdar (1586_CR73) 2020; 112 1586_CR30 1586_CR74 B Shivakumar (1586_CR69) 2018; 143 D Coq-Huelva (1586_CR20) 2019; 11 PK Srivastava (1586_CR72) 2012; 50 A Chakraborty (1586_CR16) 2016; 74 T Chafiq (1586_CR15) 2023; 10 S Pal (1586_CR52) 2020; 257 Z Zhu (1586_CR86) 2016; 122 R Lal (1586_CR43) 2016; 5 FF Camargo (1586_CR12) 2019; 11 1586_CR80 D Parashar (1586_CR55) 2024; 196 J Wijesingha (1586_CR81) 2024; 213 S Aldiansyah (1586_CR2) 2023; 19 A Boggia (1586_CR9) 2018; 71 R Harris (1586_CR31) 2015; 32 1586_CR45 P Verma (1586_CR78) 2020; 6 1586_CR47 RG Pontius Jr (1586_CR58) 2011; 32 NS Salma (1586_CR63) 2023; 6 1586_CR84 P De Toro (1586_CR24) 2023; 12 1586_CR41 J Sarwar (1586_CR66) 2024 V Nasiri (1586_CR50) 2022; 14 1586_CR19 SK Karan (1586_CR37) 2016; 188 VS Sahithi (1586_CR62) 2022; 8 GW Woldemariam (1586_CR82) 2022; 8 AM Abdi (1586_CR1) 2020; 57 P Burai (1586_CR11) 2015; 7 JM Corcoran (1586_CR21) 2013; 5 AM Dewan (1586_CR25) 2009; 29 Z Zhao (1586_CR85) 2024; 92 G Amin (1586_CR3) 2024; 8 C Higgs (1586_CR32) 2022; 14 A Tassi (1586_CR75) 2020; 12 K Phinzi (1586_CR57) 2023; 16 S Bansal (1586_CR6) 2016; 14 AS Belward (1586_CR7) 2015; 103 M Arpitha (1586_CR5) 2023; 16 Z Zafar (1586_CR83) 2024; 27 A Vijay (1586_CR79) 2024; 196 TK Saha (1586_CR61) 2024 W Tesfaye (1586_CR76) 2024; 13 SJ Anchima (1586_CR4) 2023 A Cengiz (1586_CR14) 2023; 8 I Papoutsis (1586_CR54) 2023; 195 Z Chen (1586_CR17) 2019; 648 P Hurskainen (1586_CR33) 2019; 233 S Koley (1586_CR40) 2022; 69 M Ganjirad (1586_CR29) 2024; 80 M Islam (1586_CR35) 2023; 2023 M Ustuner (1586_CR77) 2015; 48 SS Dagne (1586_CR22) 2023; 12 M Digra (1586_CR26) 2022; 15 C Lakshumanan (1586_CR42) 2012; 2 CA Ramezan (1586_CR60) 2021; 13 B Feizizadeh (1586_CR27) 2023; 66 Y Ouma (1586_CR51) 2022; 43 E Saralioglu (1586_CR65) 2022; 57 L Breiman (1586_CR10) 2001; 45 1586_CR68 C Cianfrani (1586_CR18) 2018; 13 T Kavzoglu (1586_CR39) 2023; 16 1586_CR64 R Manandhar (1586_CR46) 2009; 1 |
| References_xml | – volume: 7 start-page: 8489 issue: 7 year: 2015 ident: 1586_CR48 publication-title: Remote Sens doi: 10.3390/rs70708489 – year: 2024 ident: 1586_CR61 publication-title: Model Earth Syst Environ doi: 10.1007/s40808-024-01999-0 – volume: 19 start-page: 197 issue: 2 year: 2023 ident: 1586_CR2 publication-title: Int J Remote Sens Earth Sci doi: 10.30536/j.ijreses.2022.v19.a3803 – ident: 1586_CR36 – ident: 1586_CR38 doi: 10.1109/IGARSS47720.2021.9553499 – ident: 1586_CR84 – volume: 20 start-page: 1 issue: 177 year: 2019 ident: 1586_CR28 publication-title: J Mach Learn Res doi: 10.48550/arXiv.1801.01489 – ident: 1586_CR45 doi: 10.1016/j.asr.2024.07.066 – volume: 92 start-page: 129 year: 2024 ident: 1586_CR85 publication-title: Rangel Ecol Manage doi: 10.1016/j.rama.2023.10.007 – volume: 11 start-page: 133215 year: 2023 ident: 1586_CR8 publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3336733 – volume: 188 start-page: 1 year: 2016 ident: 1586_CR37 publication-title: Environ Monit Assess doi: 10.1007/s10661-016-5494-x – ident: 1586_CR74 doi: 10.3390/rs13122299 – volume: 1 start-page: 330 issue: 3 year: 2009 ident: 1586_CR46 publication-title: Remote Sens doi: 10.3390/rs1030330 – volume: 14 start-page: 1977 issue: 9 year: 2022 ident: 1586_CR50 publication-title: Remote Sens doi: 10.3390/rs14091977 – year: 2023 ident: 1586_CR4 publication-title: Environ Dev Sustain doi: 10.1007/s10668-023-04149-1 – volume: 36 start-page: 1 issue: 1 year: 2024 ident: 1586_CR53 publication-title: Environ Sci Europe doi: 10.1186/s12302-024-00901-0 – volume: 13 start-page: e0208823 issue: 12 year: 2018 ident: 1586_CR18 publication-title: PLoS ONE doi: 10.1371/journal.pone.0208823 – volume: 45 start-page: 5 year: 2001 ident: 1586_CR10 publication-title: Mach Learn doi: 10.1023/A:1010933404324 – ident: 1586_CR64 doi: 10.1088/1755-1315/1051/1/012023 – volume: 10 start-page: 1 year: 2023 ident: 1586_CR15 publication-title: Model Earth Syst Environ doi: 10.1007/s40808-023-01860-w – volume: 2023 start-page: 1814906 issue: 1 year: 2023 ident: 1586_CR35 publication-title: Mob Inform Syst – year: 2024 ident: 1586_CR66 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-024-33389-5 – volume: 14 start-page: 773 issue: 3 year: 2016 ident: 1586_CR6 publication-title: Appl Ecol Environ Res doi: 10.15666/aeer/1403_773792 – volume: 5 start-page: 3212 issue: 7 year: 2013 ident: 1586_CR21 publication-title: Remote Sens doi: 10.3390/rs5073212 – volume: 8 start-page: 1 issue: 1 year: 2023 ident: 1586_CR14 publication-title: Int J Eng Geosci doi: 10.26833/ijeg.987605 – volume: 71 start-page: 281 year: 2018 ident: 1586_CR9 publication-title: Land Use Policy doi: 10.1016/j.landusepol.2017.11.036 – ident: 1586_CR47 doi: 10.1016/j.heliyon.2022.e09267 – volume: 11 start-page: 5835 issue: 20 year: 2019 ident: 1586_CR20 publication-title: Sustainability doi: 10.3390/su11205835 – volume: 15 start-page: 1003 issue: 10 year: 2022 ident: 1586_CR26 publication-title: Arab J Geosci doi: 10.1007/s12517-022-10246-8 – volume: 2 start-page: 911 issue: 3 year: 2012 ident: 1586_CR42 publication-title: Int J Geomatics Geosci – volume: 122 start-page: 206 year: 2016 ident: 1586_CR86 publication-title: ISPRS J Photogrammetry Remote Sens doi: 10.1016/j.isprsjprs.2016.11.004 – volume: 16 start-page: 415 issue: 1 year: 2023 ident: 1586_CR39 publication-title: Earth Sci Inf doi: 10.1007/s12145-022-00874-9 – volume: 29 start-page: 390 issue: 3 year: 2009 ident: 1586_CR25 publication-title: Appl Geogr doi: 10.1016/j.apgeog.2008.12.005 – volume: 5 start-page: 239 issue: 4 year: 2016 ident: 1586_CR43 publication-title: Food Energy Secur doi: 10.1002/fes3.99 – volume: 16 start-page: 3667 issue: 4 year: 2023 ident: 1586_CR57 publication-title: Earth Sci Inf doi: 10.1007/s12145-023-01117-1 – volume: 32 start-page: 44 year: 2015 ident: 1586_CR31 publication-title: Space Policy doi: 10.1016/j.spacepol.2015.01.001 – volume: 195 start-page: 250 year: 2023 ident: 1586_CR54 publication-title: ISPRS J Photogrammetry Remote Sens doi: 10.1016/j.isprsjprs.2022.11.012 – ident: 1586_CR34 doi: 10.1080/19475683.2024.2343399 – volume: 8 start-page: 15 issue: 2 year: 2022 ident: 1586_CR62 publication-title: J Image Process Artif Intell doi: 10.46610/JOIPAI.2022.v08i02.003 – volume: 233 start-page: 111354 year: 2019 ident: 1586_CR33 publication-title: Remote Sens Environ doi: 10.1016/j.rse.2019.111354 – volume: 14 start-page: 3992 issue: 16 year: 2022 ident: 1586_CR32 publication-title: Remote Sens doi: 10.3390/rs14163992 – volume: 9 start-page: 173 issue: 2 year: 2017 ident: 1586_CR56 publication-title: Remote Sens doi: 10.3390/rs9020173 – volume: 57 start-page: 695 issue: 4 year: 2022 ident: 1586_CR65 publication-title: Acta Geod Geoph doi: 10.1007/s40328-022-00400-9 – volume: 143 start-page: 579 year: 2018 ident: 1586_CR69 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2018.10.434 – volume: 12 start-page: 40 issue: 1 year: 2023 ident: 1586_CR22 publication-title: Environ Syst Res doi: 10.1186/s40068-023-00324-5 – ident: 1586_CR41 doi: 10.3390/land11122279 – volume: 11 start-page: 1600 issue: 13 year: 2019 ident: 1586_CR12 publication-title: Remote Sens doi: 10.3390/rs11131600 – ident: 1586_CR80 doi: 10.1016/j.jclepro.2024.141147 – volume: 4 start-page: 1 issue: 1 year: 2017 ident: 1586_CR44 publication-title: Sci data doi: 10.1038/sdata.2017.1 – volume: 6 start-page: 1045 year: 2020 ident: 1586_CR78 publication-title: Model Earth Syst Environ doi: 10.1007/s40808-020-00740-x – volume: 112 start-page: 106121 year: 2020 ident: 1586_CR73 publication-title: Ecol Ind doi: 10.1016/j.ecolind.2020.106121 – ident: 1586_CR19 – volume: 13 start-page: 1 issue: 1 year: 2024 ident: 1586_CR76 publication-title: Environ Syst Res doi: 10.1186/s40068-024-00366-3 – volume: 80 start-page: 102498 year: 2024 ident: 1586_CR29 publication-title: Ecol Inf doi: 10.1016/j.ecoinf.2024.102498 – volume: 257 start-page: 120311 year: 2020 ident: 1586_CR52 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2020.120311 – volume: 74 start-page: 136 year: 2016 ident: 1586_CR16 publication-title: Appl Geogr doi: 10.1016/j.apgeog.2016.07.008 – volume: 12 start-page: 3776 issue: 22 year: 2020 ident: 1586_CR75 publication-title: Remote Sens doi: 10.3390/rs12223776 – volume: 37 start-page: 527 issue: 2 year: 2023 ident: 1586_CR67 publication-title: Stoch Env Res Risk Assess doi: 10.1007/s00477-022-02267-2 – volume: 32 start-page: 4407 issue: 15 year: 2011 ident: 1586_CR58 publication-title: Int J Remote Sens doi: 10.1080/01431161.2011.552923 – volume: 57 start-page: 1 issue: 1 year: 2020 ident: 1586_CR1 publication-title: GIScience Remote Sens doi: 10.1080/15481603.2019.1650447 – volume: 12 start-page: 1415 issue: 7 year: 2023 ident: 1586_CR24 publication-title: Land doi: 10.3390/land12071415 – volume: 66 start-page: 665 issue: 3 year: 2023 ident: 1586_CR27 publication-title: J Environ Planning Manage doi: 10.1080/09640568.2021.2001317 – volume: 8 start-page: 921 issue: 9 year: 2016 ident: 1586_CR71 publication-title: Sustainability doi: 10.3390/su8090921 – volume: 196 start-page: 1 issue: 5 year: 2024 ident: 1586_CR79 publication-title: Environ Monit Assess doi: 10.1007/s10661-024-12633-y – volume: 7 start-page: 2046 issue: 2 year: 2015 ident: 1586_CR11 publication-title: Remote Sens doi: 10.3390/rs70202046 – volume: 48 start-page: 403 issue: 1 year: 2015 ident: 1586_CR77 publication-title: Eur J Remote Sens doi: 10.5721/EuJRS20154823 – volume: 213 start-page: 72 year: 2024 ident: 1586_CR81 publication-title: ISPRS J Photogrammetry Remote Sens doi: 10.1016/j.isprsjprs.2024.05.020 – volume: 23 start-page: 6106 issue: 4 year: 2021 ident: 1586_CR70 publication-title: Environ Dev Sustain doi: 10.1007/s10668-020-00864-1 – volume: 27 start-page: 216 issue: 2 year: 2024 ident: 1586_CR83 publication-title: Egypt J Remote Sens Space Sci doi: 10.1016/j.ejrs.2024.03.003 – year: 2022 ident: 1586_CR23 doi: 10.1080/22797254.2021.2018667 – volume: 66 start-page: 247 issue: 3 year: 2011 ident: 1586_CR49 publication-title: ISPRS J Photogrammetry Remote Sens doi: 10.1016/j.isprsjprs.2010.11.001 – volume: 43 start-page: 681 year: 2022 ident: 1586_CR51 publication-title: Int Archives Photogrammetry Remote Sens Spat Inform Sci doi: 10.5194/isprs-archives-XLIII-B3-2022-681-2022 – volume: 103 start-page: 115 year: 2015 ident: 1586_CR7 publication-title: ISPRS J Photogrammetry Remote Sens doi: 10.1016/j.isprsjprs.2014.03.009 – volume: 16 start-page: 3075 issue: 4 year: 2023 ident: 1586_CR5 publication-title: Earth Sci Inf doi: 10.1007/s12145-023-01113-5 – volume: 196 start-page: 8 issue: 1 year: 2024 ident: 1586_CR55 publication-title: Environ Monit Assess doi: 10.1007/s10661-023-12131-7 – volume: 648 start-page: 1097 year: 2019 ident: 1586_CR17 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.08.141 – volume: 11 start-page: 274 issue: 3 year: 2019 ident: 1586_CR13 publication-title: Remote Sens doi: 10.3390/rs11030274 – ident: 1586_CR30 doi: 10.3390/rs13071349 – volume: 13 start-page: 368 issue: 3 year: 2021 ident: 1586_CR60 publication-title: Remote Sens doi: 10.3390/rs13030368 – volume: 8 start-page: 3719 issue: 3 year: 2022 ident: 1586_CR82 publication-title: Model Earth Syst Environ doi: 10.1007/s40808-021-01296-0 – ident: 1586_CR68 – volume: 6 start-page: 59 issue: 1 year: 2023 ident: 1586_CR63 publication-title: Environ Sustain doi: 10.1007/s42398-022-00259-0 – volume: 69 start-page: 1768 issue: 4 year: 2022 ident: 1586_CR40 publication-title: Adv Space Res doi: 10.1016/j.asr.2021.10.020 – volume: 50 start-page: 1250 issue: 9 year: 2012 ident: 1586_CR72 publication-title: Adv Space Res doi: 10.1016/j.asr.2012.06.032 – volume: 8 start-page: 34 issue: 2 year: 2024 ident: 1586_CR3 publication-title: J Geovisualization Spat Anal doi: 10.1007/s41651-024-00195-z |
| SSID | ssib031263228 ssj0062140 |
| Score | 2.3219702 |
| Snippet | Accurate and quantitative assessment of Land Use and Land Cover (LULC) changes is crucial for understanding the spatial dynamics and environmental impacts... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 13 |
| SubjectTerms | Algorithms Centroids Classification Data analysis Data integration Data mining Decision trees Digital Elevation Models Earth and Environmental Science Earth Sciences Earth System Sciences Environmental impact Genetic algorithms Information Systems Applications (incl.Internet) Labels Land cover Land use Multilayer perceptrons Multilayers Neural networks Ontology Parameterization Permutations Simulation and Modeling Space Exploration and Astronautics Space Sciences (including Extraterrestrial Physics Statistical analysis Support vector machines |
| Title | Data mining techniques for LULC analysis using sparse labels and multisource data integration for the hilly terrain of Nilgiris district, Tamil Nadu, India |
| URI | https://link.springer.com/article/10.1007/s12145-024-01586-y https://www.proquest.com/docview/3142388249 |
| Volume | 18 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1865-0481 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062140 issn: 1865-0473 databaseCode: AFBBN dateStart: 20080401 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1865-0481 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062140 issn: 1865-0473 databaseCode: AGYKE dateStart: 20080101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1865-0481 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062140 issn: 1865-0473 databaseCode: U2A dateStart: 20080401 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4oxMSL8RlRJHPwJk1Kt689AvJQkRMkeGq628WQaDFQDvwW_6wzSwvR6MFTD9udQ2c6883uzDeM3TqBtvmUCyuRQluuDGyLOKAtDE1J6OGuwExreB76_bH7OPEmeVPYsqh2L64kjafeNbsRqbaFMQXTXy_0rfU-K3tE54VWPHaahRXxBlGQO9u7BN_J2yJDH3e7Ac9bZ36X-T087TDnj2tSE326x-woh43Q3Oj5hO3p9JQd9MxY3vUZ-7yPsxjezbAH2NKyLgERKQzGgzbEOfcIUJ37K6AbWSw1oAVgaMTFBExh4eYkH6hqFAoeCdSbEYNAEejmYI3yFzRXAuZTGM7eXmfoJiAh_t2ZyuowohMTGMbJqg4PKVrfORt3O6N238rHLljKCewMHbNIGlI6nEt82InElEK76AaV70sb4ZTwlaC5flOh3dj3OIEoTwipFA8UYoALVkrnqb5k0IjjUE0d5SliJrR56FLXgaZ-WRFiblZhd8XXjj427BrRjkeZdBPhxsjoJlpXWLVQSJT_acuINxAQYppAwuqFknbLf0u7-t_r1-zQodG_5vSlykrZYqVvEI9kssbKzW6rNaRn7-WpUzPm-AXawNmB |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8NADLagCMHCG1GeHthoUJrL68aKV4HSqZVginKXK6qAgtp0KH-FP4t9TahAMDBlSM5Kco79ObY_Axx7kXFFT0gnU9I4vopchzmgHXJNWRzQqshOa7hrh82uf3Mf3BdNYaOy2r1MSVpLPWt2Y1Jth3wKhb9BHDqTeVjwKUDxKrDQuHq4vSj1SNSZhNz7yiaEXtEYGYe03o9E0Tzzu9TvDmqGOn8kSq3_uVyFbnnn07KTp9Nxrk71-w9Sx_8-2hqsFIAUG1MNWoc5M9iAxSs78HeyCR_naZ7iix0jgV-EryMkrIutbusM04LVBLmC_hHJQA1HBkm3yOnSyQxtyeI0R4Bcj4olQwVphBVDEBQ5JzEh-UOeWIGvPWz3nx_7ZIAwY2bfvs5r2OF_MdhOs3ENrwek11vQvbzonDWdYqCDo73Izcnky6yulCeEooObKQpWjE8GVoehcgmoyVBLnhjYk8ZPw0AwPAukVFqLSBO62IbK4HVgdgDraRrrnqcDzZyHroh97mcw3IkrY4r6qnBS7mLyNuXtSGYMzfy6E1qY2NedTKqwX250UnzDo0TUCWpSAMLCauW-zU7_LW33f5cfwVKzc9dKWtft2z1Y9njAsP3Hsw-VfDg2B4R6cnVYKPknP3H2lQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gCMQF8RRvfODGKrqmrxwnYLxGxWGTdquaNJ0mQTdt5bDfwp_FzloKCA6cekjjQ-3anxP7M2PnTqBtnnFhpVJoy5WBbREHtIWhKQ093BWYaQ1PkX_Xdx8G3uBLF7-pdq-uJBc9DcTSlBeXkzS7rBvfiGDbwviCqbAX-tZ8ma24RJSAFt132pVF8RbRkTuf9wq-U7ZIhj7udgNettH8LvN7qKrx548rUxOJOptso4SQ0F7ofIst6Xybrd6aEb3zHfZ-nRQJvJrBD_BJ0ToDRKfQ7XevICl5SIBq3oeALmU604DWgGESF1MwRYaLU32gClKoOCVQh0YMgkagW4Q5yp_SjAkYZxCNXoYjdBmQEhfvSBVN6NHpCURJ-taE-xwtcZf1Oze9qzurHMFgKSewC3TSIm1J6XAu8WGnEtML7aJLVL4vbYRWwleCZvxlQruJ73ECVJ4QUikeKMQDe6yRj3O9z6CVJKHKHOUpYim0eehSB4Km3lkRYp52wC6qrx1PFkwbcc2pTLqJcWNsdBPPD9hxpZC4_OtmMW8hOMSUgYQ1KyXVy39LO_zf62ds7fm6E3fvo8cjtu7QRGBzKHPMGsX0TZ8gTCnkqbHED0KM3Zk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data+mining+techniques+for+LULC+analysis+using+sparse+labels+and+multisource+data+integration+for+the+hilly+terrain+of+Nilgiris+district%2C+Tamil+Nadu%2C+India&rft.jtitle=Earth+science+informatics&rft.au=Kumaraperumal%2C+Ramalingam&rft.au=Raj%2C+Moorthi+Nivas&rft.au=Pazhanivelan%2C+Sellaperumal&rft.au=Jagadesh%2C+M.&rft.date=2025-01-01&rft.issn=1865-0473&rft.eissn=1865-0481&rft.volume=18&rft.issue=1&rft_id=info:doi/10.1007%2Fs12145-024-01586-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12145_024_01586_y |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1865-0473&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1865-0473&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1865-0473&client=summon |