Data mining techniques for LULC analysis using sparse labels and multisource data integration for the hilly terrain of Nilgiris district, Tamil Nadu, India

Accurate and quantitative assessment of Land Use and Land Cover (LULC) changes is crucial for understanding the spatial dynamics and environmental impacts within specific regions. In hilly terrains like the Nilgiris district in Tamil Nadu, India, these assessments are particularly challenging due to...

Full description

Saved in:
Bibliographic Details
Published inEarth science informatics Vol. 18; no. 1; p. 13
Main Authors Kumaraperumal, Ramalingam, Raj, Moorthi Nivas, Pazhanivelan, Sellaperumal, Jagadesh, M., Selvi, Duraisamy, Muthumanickam, Dhanaraju, Jagadeeswaran, Ramasamy, Karthikkumar, A., Kanna, S. Kamalesh
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.01.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1865-0473
1865-0481
DOI10.1007/s12145-024-01586-y

Cover

Abstract Accurate and quantitative assessment of Land Use and Land Cover (LULC) changes is crucial for understanding the spatial dynamics and environmental impacts within specific regions. In hilly terrains like the Nilgiris district in Tamil Nadu, India, these assessments are particularly challenging due to the complex topography and when classified using sparse ground truth labels. With numerous data mining algorithms being validated for several earth observation applications, demands are also increasing in selecting the best classifier algorithm for LULC mapping. Popularly implemented pixel-based data mining classifiers such as Random Forest (RF), Support Vector Machine (SVM), C5.0 Decision trees (C50), Naive Bayes (NB), Multinomial Logistic Regression (MLR), AdaBoost, Bagged CART, Nearest Shrunken Centroids (NSC), Genetic Algorithm based CART (Evetree), Neural Networks with PCA (NNPCA), k-Nearest Neighbours (k-NN), Multi-Layer Perceptron (MLP), and 1 Dimensional – Convoluted Neural Networks (1DCNN) were studied by integrating different auxiliary variables with sparse ground truth labels (391 Nos.). The accuracy of the predictions was then validated using Overall Accuracy (OA), Kappa, and disagreement measures based on the validation datasets. The most influential auxiliary variables contributing to the classification determined through PFI (Permutation Feature Importance) analysis, resulted with Digital Elevation Model (DEM) being the most influential auxiliary variable, among others. From the validation measures and the visual assessment facilitated for each algorithm, the effective performance in classification was depicted by Support Vector Machine - Linear Kernel (SVM - L) and followed by Random Forest (RF) algorithms with OA of 88%; 85% and Kappa of 0.84; 0.82, respectively. The algorithms also yielded the least disagreement measures for both algorithms. The findings of the research described the effective performance of the SVM and RF algorithms for classifying LULC at 10 m resolution through multisource data integration and under limited sampling and parameterization conditions. The statistical insights derived indicated a 4.3% decrease in the forest area with 7.2% increase in agricultural area in the last 2 years and 6.6% increase in the tea plantation area in the last 5 years.
AbstractList Accurate and quantitative assessment of Land Use and Land Cover (LULC) changes is crucial for understanding the spatial dynamics and environmental impacts within specific regions. In hilly terrains like the Nilgiris district in Tamil Nadu, India, these assessments are particularly challenging due to the complex topography and when classified using sparse ground truth labels. With numerous data mining algorithms being validated for several earth observation applications, demands are also increasing in selecting the best classifier algorithm for LULC mapping. Popularly implemented pixel-based data mining classifiers such as Random Forest (RF), Support Vector Machine (SVM), C5.0 Decision trees (C50), Naive Bayes (NB), Multinomial Logistic Regression (MLR), AdaBoost, Bagged CART, Nearest Shrunken Centroids (NSC), Genetic Algorithm based CART (Evetree), Neural Networks with PCA (NNPCA), k-Nearest Neighbours (k-NN), Multi-Layer Perceptron (MLP), and 1 Dimensional – Convoluted Neural Networks (1DCNN) were studied by integrating different auxiliary variables with sparse ground truth labels (391 Nos.). The accuracy of the predictions was then validated using Overall Accuracy (OA), Kappa, and disagreement measures based on the validation datasets. The most influential auxiliary variables contributing to the classification determined through PFI (Permutation Feature Importance) analysis, resulted with Digital Elevation Model (DEM) being the most influential auxiliary variable, among others. From the validation measures and the visual assessment facilitated for each algorithm, the effective performance in classification was depicted by Support Vector Machine - Linear Kernel (SVM - L) and followed by Random Forest (RF) algorithms with OA of 88%; 85% and Kappa of 0.84; 0.82, respectively. The algorithms also yielded the least disagreement measures for both algorithms. The findings of the research described the effective performance of the SVM and RF algorithms for classifying LULC at 10 m resolution through multisource data integration and under limited sampling and parameterization conditions. The statistical insights derived indicated a 4.3% decrease in the forest area with 7.2% increase in agricultural area in the last 2 years and 6.6% increase in the tea plantation area in the last 5 years.
Accurate and quantitative assessment of Land Use and Land Cover (LULC) changes is crucial for understanding the spatial dynamics and environmental impacts within specific regions. In hilly terrains like the Nilgiris district in Tamil Nadu, India, these assessments are particularly challenging due to the complex topography and when classified using sparse ground truth labels. With numerous data mining algorithms being validated for several earth observation applications, demands are also increasing in selecting the best classifier algorithm for LULC mapping. Popularly implemented pixel-based data mining classifiers such as Random Forest (RF), Support Vector Machine (SVM), C5.0 Decision trees (C50), Naive Bayes (NB), Multinomial Logistic Regression (MLR), AdaBoost, Bagged CART, Nearest Shrunken Centroids (NSC), Genetic Algorithm based CART (Evetree), Neural Networks with PCA (NNPCA), k-Nearest Neighbours (k-NN), Multi-Layer Perceptron (MLP), and 1 Dimensional – Convoluted Neural Networks (1DCNN) were studied by integrating different auxiliary variables with sparse ground truth labels (391 Nos.). The accuracy of the predictions was then validated using Overall Accuracy (OA), Kappa, and disagreement measures based on the validation datasets. The most influential auxiliary variables contributing to the classification determined through PFI (Permutation Feature Importance) analysis, resulted with Digital Elevation Model (DEM) being the most influential auxiliary variable, among others. From the validation measures and the visual assessment facilitated for each algorithm, the effective performance in classification was depicted by Support Vector Machine - Linear Kernel (SVM - L) and followed by Random Forest (RF) algorithms with OA of 88%; 85% and Kappa of 0.84; 0.82, respectively. The algorithms also yielded the least disagreement measures for both algorithms. The findings of the research described the effective performance of the SVM and RF algorithms for classifying LULC at 10 m resolution through multisource data integration and under limited sampling and parameterization conditions. The statistical insights derived indicated a 4.3% decrease in the forest area with 7.2% increase in agricultural area in the last 2 years and 6.6% increase in the tea plantation area in the last 5 years.
ArticleNumber 13
Author Raj, Moorthi Nivas
Jagadeeswaran, Ramasamy
Muthumanickam, Dhanaraju
Kanna, S. Kamalesh
Karthikkumar, A.
Kumaraperumal, Ramalingam
Pazhanivelan, Sellaperumal
Jagadesh, M.
Selvi, Duraisamy
Author_xml – sequence: 1
  givenname: Ramalingam
  orcidid: 0000-0001-6659-9587
  surname: Kumaraperumal
  fullname: Kumaraperumal, Ramalingam
  email: kumaraperumal.r@tnau.ac.in
  organization: Department of Remote Sensing and GIS, Tamil Nadu Agricultural University
– sequence: 2
  givenname: Moorthi Nivas
  surname: Raj
  fullname: Raj, Moorthi Nivas
  organization: Department of Remote Sensing and GIS, Tamil Nadu Agricultural University
– sequence: 3
  givenname: Sellaperumal
  orcidid: 0000-0002-3596-3232
  surname: Pazhanivelan
  fullname: Pazhanivelan, Sellaperumal
  organization: Centre for Water and Geospatial Studies, Tamil Nadu Agricultural University
– sequence: 4
  givenname: M.
  surname: Jagadesh
  fullname: Jagadesh, M.
  organization: Department of Soil Science and Agricultural Chemistry, Tamil Nadu Agricultural University
– sequence: 5
  givenname: Duraisamy
  surname: Selvi
  fullname: Selvi, Duraisamy
  organization: Department of Soil Science and Agricultural Chemistry, Tamil Nadu Agricultural University
– sequence: 6
  givenname: Dhanaraju
  orcidid: 0000-0002-9852-1095
  surname: Muthumanickam
  fullname: Muthumanickam, Dhanaraju
  organization: Department of Remote Sensing and GIS, Tamil Nadu Agricultural University
– sequence: 7
  givenname: Ramasamy
  orcidid: 0000-0002-8658-9260
  surname: Jagadeeswaran
  fullname: Jagadeeswaran, Ramasamy
  organization: Department of Remote Sensing and GIS, Tamil Nadu Agricultural University
– sequence: 8
  givenname: A.
  surname: Karthikkumar
  fullname: Karthikkumar, A.
  organization: Department of Remote Sensing and GIS, Tamil Nadu Agricultural University
– sequence: 9
  givenname: S. Kamalesh
  surname: Kanna
  fullname: Kanna, S. Kamalesh
  organization: Department of Remote Sensing and GIS, Tamil Nadu Agricultural University
BookMark eNp9kctOHDEQRa2ISBDCD7CylC0NfvTLy2gID2lENrC23LZ7piKPe-JyL_pb-Fk8TAS7rKpUde-Rru43chKn6Am55OyaM9bdIBe8biom6orxpm-r5Qs5431bTnXPTz72Tp6SC0QYmOSilUL0Z-T11mRDdxAhbmj2dhvh7-yRjlOi65f1ippowoKAdMaDBPcmoafBDD5geTq6m0MGnOZkPXUHGMTsN8lkmOI7Jm893UIIS-GnZCDSaaRPEDaQCtYB5gQ2X9Fns4NAn4ybr-hjdGC-k6-jCegv_s1z8nL363n1UK1_3z-ufq4rKzqWK86U48MgpBzKYG7omt7XznnbtgNTQqnWKtlwNSpfm7aRDWvaRqnBWtlZJuQ5-XHk7tN0CJ_1nxKn5EYteS1k34taFZU4qmyaEJMf9T7BzqRFc6YPPehjD7r0oN970EsxyaMJizhufPpE_8f1Bh-8jy4
Cites_doi 10.3390/rs70708489
10.1007/s40808-024-01999-0
10.30536/j.ijreses.2022.v19.a3803
10.1109/IGARSS47720.2021.9553499
10.48550/arXiv.1801.01489
10.1016/j.asr.2024.07.066
10.1016/j.rama.2023.10.007
10.1109/ACCESS.2023.3336733
10.1007/s10661-016-5494-x
10.3390/rs13122299
10.3390/rs1030330
10.3390/rs14091977
10.1007/s10668-023-04149-1
10.1186/s12302-024-00901-0
10.1371/journal.pone.0208823
10.1023/A:1010933404324
10.1088/1755-1315/1051/1/012023
10.1007/s40808-023-01860-w
10.1007/s11356-024-33389-5
10.15666/aeer/1403_773792
10.3390/rs5073212
10.26833/ijeg.987605
10.1016/j.landusepol.2017.11.036
10.1016/j.heliyon.2022.e09267
10.3390/su11205835
10.1007/s12517-022-10246-8
10.1016/j.isprsjprs.2016.11.004
10.1007/s12145-022-00874-9
10.1016/j.apgeog.2008.12.005
10.1002/fes3.99
10.1007/s12145-023-01117-1
10.1016/j.spacepol.2015.01.001
10.1016/j.isprsjprs.2022.11.012
10.1080/19475683.2024.2343399
10.46610/JOIPAI.2022.v08i02.003
10.1016/j.rse.2019.111354
10.3390/rs14163992
10.3390/rs9020173
10.1007/s40328-022-00400-9
10.1016/j.procs.2018.10.434
10.1186/s40068-023-00324-5
10.3390/land11122279
10.3390/rs11131600
10.1016/j.jclepro.2024.141147
10.1038/sdata.2017.1
10.1007/s40808-020-00740-x
10.1016/j.ecolind.2020.106121
10.1186/s40068-024-00366-3
10.1016/j.ecoinf.2024.102498
10.1016/j.jclepro.2020.120311
10.1016/j.apgeog.2016.07.008
10.3390/rs12223776
10.1007/s00477-022-02267-2
10.1080/01431161.2011.552923
10.1080/15481603.2019.1650447
10.3390/land12071415
10.1080/09640568.2021.2001317
10.3390/su8090921
10.1007/s10661-024-12633-y
10.3390/rs70202046
10.5721/EuJRS20154823
10.1016/j.isprsjprs.2024.05.020
10.1007/s10668-020-00864-1
10.1016/j.ejrs.2024.03.003
10.1080/22797254.2021.2018667
10.1016/j.isprsjprs.2010.11.001
10.5194/isprs-archives-XLIII-B3-2022-681-2022
10.1016/j.isprsjprs.2014.03.009
10.1007/s12145-023-01113-5
10.1007/s10661-023-12131-7
10.1016/j.scitotenv.2018.08.141
10.3390/rs11030274
10.3390/rs13071349
10.3390/rs13030368
10.1007/s40808-021-01296-0
10.1007/s42398-022-00259-0
10.1016/j.asr.2021.10.020
10.1016/j.asr.2012.06.032
10.1007/s41651-024-00195-z
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Jan 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Jan 2025
DBID AAYXX
CITATION
7SC
7TG
8FD
JQ2
KL.
L7M
L~C
L~D
DOI 10.1007/s12145-024-01586-y
DatabaseName CrossRef
Computer and Information Systems Abstracts
Meteorological & Geoastrophysical Abstracts
Technology Research Database
ProQuest Computer Science Collection
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
Computer and Information Systems Abstracts Professional
DatabaseTitleList Meteorological & Geoastrophysical Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1865-0481
ExternalDocumentID 10_1007_s12145_024_01586_y
GeographicLocations Tamil Nadu India
India
GeographicLocations_xml – name: India
– name: Tamil Nadu India
GroupedDBID -Y2
06D
0R~
0VY
1N0
203
2JN
2KG
2VQ
2~H
30V
4.4
406
408
40D
67M
67Z
6NX
88I
8FE
8FG
8FH
8TC
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBRH
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACCUX
ACDTI
ACGFS
ACGOD
ACHSB
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ARAPS
ATHPR
AUKKA
AXYYD
AYFIA
AYJHY
AZQEC
B-.
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
H13
HCIFZ
HF~
HG6
HMJXF
HRMNR
HZ~
I0C
IJ-
IKXTQ
IWAJR
IXD
IZQ
J-C
J0Z
JBSCW
JZLTJ
K6V
K7-
KOV
L8X
LK5
LLZTM
M2P
M4Y
M7R
MK~
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P62
PCBAR
PHGZM
PHGZT
PQGLB
PQQKQ
PROAC
PT4
Q2X
QOS
R89
RLLFE
ROL
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
TSK
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
ZMTXR
~02
~A9
~KM
AAYXX
CITATION
PUEGO
7SC
7TG
8FD
JQ2
KL.
L7M
L~C
L~D
ID FETCH-LOGICAL-c270t-109d1bb233b1bb0db758e4ddec66b092996c93519f9e4a6535056599bcc37c023
IEDL.DBID U2A
ISSN 1865-0473
IngestDate Fri Jul 25 09:40:19 EDT 2025
Wed Oct 01 08:30:37 EDT 2025
Mon Jul 21 06:06:38 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 1
Keywords Random forest
Model comparison
SVM
Land use and land cover
1D CNN
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-109d1bb233b1bb0db758e4ddec66b092996c93519f9e4a6535056599bcc37c023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9852-1095
0000-0002-8658-9260
0000-0002-3596-3232
0000-0001-6659-9587
PQID 3142388249
PQPubID 54345
ParticipantIDs proquest_journals_3142388249
crossref_primary_10_1007_s12145_024_01586_y
springer_journals_10_1007_s12145_024_01586_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250100
2025-01-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 1
  year: 2025
  text: 20250100
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Dordrecht
PublicationTitle Earth science informatics
PublicationTitleAbbrev Earth Sci Inform
PublicationYear 2025
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References A Sitthi (1586_CR71) 2016; 8
1586_CR38
G De Luca (1586_CR23) 2022
CB Pande (1586_CR53) 2024; 36
C Pelletier (1586_CR56) 2017; 9
A Fisher (1586_CR28) 2019; 20
Q Bie (1586_CR8) 2023; 11
CT Lloyd (1586_CR44) 2017; 4
RK Singh (1586_CR70) 2021; 23
K Millard (1586_CR48) 2015; 7
CPC Senan (1586_CR67) 2023; 37
M Carranza-García (1586_CR13) 2019; 11
G Mountrakis (1586_CR49) 2011; 66
1586_CR34
1586_CR36
S Talukdar (1586_CR73) 2020; 112
1586_CR30
1586_CR74
B Shivakumar (1586_CR69) 2018; 143
D Coq-Huelva (1586_CR20) 2019; 11
PK Srivastava (1586_CR72) 2012; 50
A Chakraborty (1586_CR16) 2016; 74
T Chafiq (1586_CR15) 2023; 10
S Pal (1586_CR52) 2020; 257
Z Zhu (1586_CR86) 2016; 122
R Lal (1586_CR43) 2016; 5
FF Camargo (1586_CR12) 2019; 11
1586_CR80
D Parashar (1586_CR55) 2024; 196
J Wijesingha (1586_CR81) 2024; 213
S Aldiansyah (1586_CR2) 2023; 19
A Boggia (1586_CR9) 2018; 71
R Harris (1586_CR31) 2015; 32
1586_CR45
P Verma (1586_CR78) 2020; 6
1586_CR47
RG Pontius Jr (1586_CR58) 2011; 32
NS Salma (1586_CR63) 2023; 6
1586_CR84
P De Toro (1586_CR24) 2023; 12
1586_CR41
J Sarwar (1586_CR66) 2024
V Nasiri (1586_CR50) 2022; 14
1586_CR19
SK Karan (1586_CR37) 2016; 188
VS Sahithi (1586_CR62) 2022; 8
GW Woldemariam (1586_CR82) 2022; 8
AM Abdi (1586_CR1) 2020; 57
P Burai (1586_CR11) 2015; 7
JM Corcoran (1586_CR21) 2013; 5
AM Dewan (1586_CR25) 2009; 29
Z Zhao (1586_CR85) 2024; 92
G Amin (1586_CR3) 2024; 8
C Higgs (1586_CR32) 2022; 14
A Tassi (1586_CR75) 2020; 12
K Phinzi (1586_CR57) 2023; 16
S Bansal (1586_CR6) 2016; 14
AS Belward (1586_CR7) 2015; 103
M Arpitha (1586_CR5) 2023; 16
Z Zafar (1586_CR83) 2024; 27
A Vijay (1586_CR79) 2024; 196
TK Saha (1586_CR61) 2024
W Tesfaye (1586_CR76) 2024; 13
SJ Anchima (1586_CR4) 2023
A Cengiz (1586_CR14) 2023; 8
I Papoutsis (1586_CR54) 2023; 195
Z Chen (1586_CR17) 2019; 648
P Hurskainen (1586_CR33) 2019; 233
S Koley (1586_CR40) 2022; 69
M Ganjirad (1586_CR29) 2024; 80
M Islam (1586_CR35) 2023; 2023
M Ustuner (1586_CR77) 2015; 48
SS Dagne (1586_CR22) 2023; 12
M Digra (1586_CR26) 2022; 15
C Lakshumanan (1586_CR42) 2012; 2
CA Ramezan (1586_CR60) 2021; 13
B Feizizadeh (1586_CR27) 2023; 66
Y Ouma (1586_CR51) 2022; 43
E Saralioglu (1586_CR65) 2022; 57
L Breiman (1586_CR10) 2001; 45
1586_CR68
C Cianfrani (1586_CR18) 2018; 13
T Kavzoglu (1586_CR39) 2023; 16
1586_CR64
R Manandhar (1586_CR46) 2009; 1
References_xml – volume: 7
  start-page: 8489
  issue: 7
  year: 2015
  ident: 1586_CR48
  publication-title: Remote Sens
  doi: 10.3390/rs70708489
– year: 2024
  ident: 1586_CR61
  publication-title: Model Earth Syst Environ
  doi: 10.1007/s40808-024-01999-0
– volume: 19
  start-page: 197
  issue: 2
  year: 2023
  ident: 1586_CR2
  publication-title: Int J Remote Sens Earth Sci
  doi: 10.30536/j.ijreses.2022.v19.a3803
– ident: 1586_CR36
– ident: 1586_CR38
  doi: 10.1109/IGARSS47720.2021.9553499
– ident: 1586_CR84
– volume: 20
  start-page: 1
  issue: 177
  year: 2019
  ident: 1586_CR28
  publication-title: J Mach Learn Res
  doi: 10.48550/arXiv.1801.01489
– ident: 1586_CR45
  doi: 10.1016/j.asr.2024.07.066
– volume: 92
  start-page: 129
  year: 2024
  ident: 1586_CR85
  publication-title: Rangel Ecol Manage
  doi: 10.1016/j.rama.2023.10.007
– volume: 11
  start-page: 133215
  year: 2023
  ident: 1586_CR8
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3336733
– volume: 188
  start-page: 1
  year: 2016
  ident: 1586_CR37
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-016-5494-x
– ident: 1586_CR74
  doi: 10.3390/rs13122299
– volume: 1
  start-page: 330
  issue: 3
  year: 2009
  ident: 1586_CR46
  publication-title: Remote Sens
  doi: 10.3390/rs1030330
– volume: 14
  start-page: 1977
  issue: 9
  year: 2022
  ident: 1586_CR50
  publication-title: Remote Sens
  doi: 10.3390/rs14091977
– year: 2023
  ident: 1586_CR4
  publication-title: Environ Dev Sustain
  doi: 10.1007/s10668-023-04149-1
– volume: 36
  start-page: 1
  issue: 1
  year: 2024
  ident: 1586_CR53
  publication-title: Environ Sci Europe
  doi: 10.1186/s12302-024-00901-0
– volume: 13
  start-page: e0208823
  issue: 12
  year: 2018
  ident: 1586_CR18
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0208823
– volume: 45
  start-page: 5
  year: 2001
  ident: 1586_CR10
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– ident: 1586_CR64
  doi: 10.1088/1755-1315/1051/1/012023
– volume: 10
  start-page: 1
  year: 2023
  ident: 1586_CR15
  publication-title: Model Earth Syst Environ
  doi: 10.1007/s40808-023-01860-w
– volume: 2023
  start-page: 1814906
  issue: 1
  year: 2023
  ident: 1586_CR35
  publication-title: Mob Inform Syst
– year: 2024
  ident: 1586_CR66
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-024-33389-5
– volume: 14
  start-page: 773
  issue: 3
  year: 2016
  ident: 1586_CR6
  publication-title: Appl Ecol Environ Res
  doi: 10.15666/aeer/1403_773792
– volume: 5
  start-page: 3212
  issue: 7
  year: 2013
  ident: 1586_CR21
  publication-title: Remote Sens
  doi: 10.3390/rs5073212
– volume: 8
  start-page: 1
  issue: 1
  year: 2023
  ident: 1586_CR14
  publication-title: Int J Eng Geosci
  doi: 10.26833/ijeg.987605
– volume: 71
  start-page: 281
  year: 2018
  ident: 1586_CR9
  publication-title: Land Use Policy
  doi: 10.1016/j.landusepol.2017.11.036
– ident: 1586_CR47
  doi: 10.1016/j.heliyon.2022.e09267
– volume: 11
  start-page: 5835
  issue: 20
  year: 2019
  ident: 1586_CR20
  publication-title: Sustainability
  doi: 10.3390/su11205835
– volume: 15
  start-page: 1003
  issue: 10
  year: 2022
  ident: 1586_CR26
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-022-10246-8
– volume: 2
  start-page: 911
  issue: 3
  year: 2012
  ident: 1586_CR42
  publication-title: Int J Geomatics Geosci
– volume: 122
  start-page: 206
  year: 2016
  ident: 1586_CR86
  publication-title: ISPRS J Photogrammetry Remote Sens
  doi: 10.1016/j.isprsjprs.2016.11.004
– volume: 16
  start-page: 415
  issue: 1
  year: 2023
  ident: 1586_CR39
  publication-title: Earth Sci Inf
  doi: 10.1007/s12145-022-00874-9
– volume: 29
  start-page: 390
  issue: 3
  year: 2009
  ident: 1586_CR25
  publication-title: Appl Geogr
  doi: 10.1016/j.apgeog.2008.12.005
– volume: 5
  start-page: 239
  issue: 4
  year: 2016
  ident: 1586_CR43
  publication-title: Food Energy Secur
  doi: 10.1002/fes3.99
– volume: 16
  start-page: 3667
  issue: 4
  year: 2023
  ident: 1586_CR57
  publication-title: Earth Sci Inf
  doi: 10.1007/s12145-023-01117-1
– volume: 32
  start-page: 44
  year: 2015
  ident: 1586_CR31
  publication-title: Space Policy
  doi: 10.1016/j.spacepol.2015.01.001
– volume: 195
  start-page: 250
  year: 2023
  ident: 1586_CR54
  publication-title: ISPRS J Photogrammetry Remote Sens
  doi: 10.1016/j.isprsjprs.2022.11.012
– ident: 1586_CR34
  doi: 10.1080/19475683.2024.2343399
– volume: 8
  start-page: 15
  issue: 2
  year: 2022
  ident: 1586_CR62
  publication-title: J Image Process Artif Intell
  doi: 10.46610/JOIPAI.2022.v08i02.003
– volume: 233
  start-page: 111354
  year: 2019
  ident: 1586_CR33
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2019.111354
– volume: 14
  start-page: 3992
  issue: 16
  year: 2022
  ident: 1586_CR32
  publication-title: Remote Sens
  doi: 10.3390/rs14163992
– volume: 9
  start-page: 173
  issue: 2
  year: 2017
  ident: 1586_CR56
  publication-title: Remote Sens
  doi: 10.3390/rs9020173
– volume: 57
  start-page: 695
  issue: 4
  year: 2022
  ident: 1586_CR65
  publication-title: Acta Geod Geoph
  doi: 10.1007/s40328-022-00400-9
– volume: 143
  start-page: 579
  year: 2018
  ident: 1586_CR69
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2018.10.434
– volume: 12
  start-page: 40
  issue: 1
  year: 2023
  ident: 1586_CR22
  publication-title: Environ Syst Res
  doi: 10.1186/s40068-023-00324-5
– ident: 1586_CR41
  doi: 10.3390/land11122279
– volume: 11
  start-page: 1600
  issue: 13
  year: 2019
  ident: 1586_CR12
  publication-title: Remote Sens
  doi: 10.3390/rs11131600
– ident: 1586_CR80
  doi: 10.1016/j.jclepro.2024.141147
– volume: 4
  start-page: 1
  issue: 1
  year: 2017
  ident: 1586_CR44
  publication-title: Sci data
  doi: 10.1038/sdata.2017.1
– volume: 6
  start-page: 1045
  year: 2020
  ident: 1586_CR78
  publication-title: Model Earth Syst Environ
  doi: 10.1007/s40808-020-00740-x
– volume: 112
  start-page: 106121
  year: 2020
  ident: 1586_CR73
  publication-title: Ecol Ind
  doi: 10.1016/j.ecolind.2020.106121
– ident: 1586_CR19
– volume: 13
  start-page: 1
  issue: 1
  year: 2024
  ident: 1586_CR76
  publication-title: Environ Syst Res
  doi: 10.1186/s40068-024-00366-3
– volume: 80
  start-page: 102498
  year: 2024
  ident: 1586_CR29
  publication-title: Ecol Inf
  doi: 10.1016/j.ecoinf.2024.102498
– volume: 257
  start-page: 120311
  year: 2020
  ident: 1586_CR52
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2020.120311
– volume: 74
  start-page: 136
  year: 2016
  ident: 1586_CR16
  publication-title: Appl Geogr
  doi: 10.1016/j.apgeog.2016.07.008
– volume: 12
  start-page: 3776
  issue: 22
  year: 2020
  ident: 1586_CR75
  publication-title: Remote Sens
  doi: 10.3390/rs12223776
– volume: 37
  start-page: 527
  issue: 2
  year: 2023
  ident: 1586_CR67
  publication-title: Stoch Env Res Risk Assess
  doi: 10.1007/s00477-022-02267-2
– volume: 32
  start-page: 4407
  issue: 15
  year: 2011
  ident: 1586_CR58
  publication-title: Int J Remote Sens
  doi: 10.1080/01431161.2011.552923
– volume: 57
  start-page: 1
  issue: 1
  year: 2020
  ident: 1586_CR1
  publication-title: GIScience Remote Sens
  doi: 10.1080/15481603.2019.1650447
– volume: 12
  start-page: 1415
  issue: 7
  year: 2023
  ident: 1586_CR24
  publication-title: Land
  doi: 10.3390/land12071415
– volume: 66
  start-page: 665
  issue: 3
  year: 2023
  ident: 1586_CR27
  publication-title: J Environ Planning Manage
  doi: 10.1080/09640568.2021.2001317
– volume: 8
  start-page: 921
  issue: 9
  year: 2016
  ident: 1586_CR71
  publication-title: Sustainability
  doi: 10.3390/su8090921
– volume: 196
  start-page: 1
  issue: 5
  year: 2024
  ident: 1586_CR79
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-024-12633-y
– volume: 7
  start-page: 2046
  issue: 2
  year: 2015
  ident: 1586_CR11
  publication-title: Remote Sens
  doi: 10.3390/rs70202046
– volume: 48
  start-page: 403
  issue: 1
  year: 2015
  ident: 1586_CR77
  publication-title: Eur J Remote Sens
  doi: 10.5721/EuJRS20154823
– volume: 213
  start-page: 72
  year: 2024
  ident: 1586_CR81
  publication-title: ISPRS J Photogrammetry Remote Sens
  doi: 10.1016/j.isprsjprs.2024.05.020
– volume: 23
  start-page: 6106
  issue: 4
  year: 2021
  ident: 1586_CR70
  publication-title: Environ Dev Sustain
  doi: 10.1007/s10668-020-00864-1
– volume: 27
  start-page: 216
  issue: 2
  year: 2024
  ident: 1586_CR83
  publication-title: Egypt J Remote Sens Space Sci
  doi: 10.1016/j.ejrs.2024.03.003
– year: 2022
  ident: 1586_CR23
  doi: 10.1080/22797254.2021.2018667
– volume: 66
  start-page: 247
  issue: 3
  year: 2011
  ident: 1586_CR49
  publication-title: ISPRS J Photogrammetry Remote Sens
  doi: 10.1016/j.isprsjprs.2010.11.001
– volume: 43
  start-page: 681
  year: 2022
  ident: 1586_CR51
  publication-title: Int Archives Photogrammetry Remote Sens Spat Inform Sci
  doi: 10.5194/isprs-archives-XLIII-B3-2022-681-2022
– volume: 103
  start-page: 115
  year: 2015
  ident: 1586_CR7
  publication-title: ISPRS J Photogrammetry Remote Sens
  doi: 10.1016/j.isprsjprs.2014.03.009
– volume: 16
  start-page: 3075
  issue: 4
  year: 2023
  ident: 1586_CR5
  publication-title: Earth Sci Inf
  doi: 10.1007/s12145-023-01113-5
– volume: 196
  start-page: 8
  issue: 1
  year: 2024
  ident: 1586_CR55
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-023-12131-7
– volume: 648
  start-page: 1097
  year: 2019
  ident: 1586_CR17
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.08.141
– volume: 11
  start-page: 274
  issue: 3
  year: 2019
  ident: 1586_CR13
  publication-title: Remote Sens
  doi: 10.3390/rs11030274
– ident: 1586_CR30
  doi: 10.3390/rs13071349
– volume: 13
  start-page: 368
  issue: 3
  year: 2021
  ident: 1586_CR60
  publication-title: Remote Sens
  doi: 10.3390/rs13030368
– volume: 8
  start-page: 3719
  issue: 3
  year: 2022
  ident: 1586_CR82
  publication-title: Model Earth Syst Environ
  doi: 10.1007/s40808-021-01296-0
– ident: 1586_CR68
– volume: 6
  start-page: 59
  issue: 1
  year: 2023
  ident: 1586_CR63
  publication-title: Environ Sustain
  doi: 10.1007/s42398-022-00259-0
– volume: 69
  start-page: 1768
  issue: 4
  year: 2022
  ident: 1586_CR40
  publication-title: Adv Space Res
  doi: 10.1016/j.asr.2021.10.020
– volume: 50
  start-page: 1250
  issue: 9
  year: 2012
  ident: 1586_CR72
  publication-title: Adv Space Res
  doi: 10.1016/j.asr.2012.06.032
– volume: 8
  start-page: 34
  issue: 2
  year: 2024
  ident: 1586_CR3
  publication-title: J Geovisualization Spat Anal
  doi: 10.1007/s41651-024-00195-z
SSID ssib031263228
ssj0062140
Score 2.3219702
Snippet Accurate and quantitative assessment of Land Use and Land Cover (LULC) changes is crucial for understanding the spatial dynamics and environmental impacts...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 13
SubjectTerms Algorithms
Centroids
Classification
Data analysis
Data integration
Data mining
Decision trees
Digital Elevation Models
Earth and Environmental Science
Earth Sciences
Earth System Sciences
Environmental impact
Genetic algorithms
Information Systems Applications (incl.Internet)
Labels
Land cover
Land use
Multilayer perceptrons
Multilayers
Neural networks
Ontology
Parameterization
Permutations
Simulation and Modeling
Space Exploration and Astronautics
Space Sciences (including Extraterrestrial Physics
Statistical analysis
Support vector machines
Title Data mining techniques for LULC analysis using sparse labels and multisource data integration for the hilly terrain of Nilgiris district, Tamil Nadu, India
URI https://link.springer.com/article/10.1007/s12145-024-01586-y
https://www.proquest.com/docview/3142388249
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1865-0481
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062140
  issn: 1865-0473
  databaseCode: AFBBN
  dateStart: 20080401
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1865-0481
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062140
  issn: 1865-0473
  databaseCode: AGYKE
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1865-0481
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062140
  issn: 1865-0473
  databaseCode: U2A
  dateStart: 20080401
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4oxMSL8RlRJHPwJk1Kt689AvJQkRMkeGq628WQaDFQDvwW_6wzSwvR6MFTD9udQ2c6883uzDeM3TqBtvmUCyuRQluuDGyLOKAtDE1J6OGuwExreB76_bH7OPEmeVPYsqh2L64kjafeNbsRqbaFMQXTXy_0rfU-K3tE54VWPHaahRXxBlGQO9u7BN_J2yJDH3e7Ac9bZ36X-T087TDnj2tSE326x-woh43Q3Oj5hO3p9JQd9MxY3vUZ-7yPsxjezbAH2NKyLgERKQzGgzbEOfcIUJ37K6AbWSw1oAVgaMTFBExh4eYkH6hqFAoeCdSbEYNAEejmYI3yFzRXAuZTGM7eXmfoJiAh_t2ZyuowohMTGMbJqg4PKVrfORt3O6N238rHLljKCewMHbNIGlI6nEt82InElEK76AaV70sb4ZTwlaC5flOh3dj3OIEoTwipFA8UYoALVkrnqb5k0IjjUE0d5SliJrR56FLXgaZ-WRFiblZhd8XXjj427BrRjkeZdBPhxsjoJlpXWLVQSJT_acuINxAQYppAwuqFknbLf0u7-t_r1-zQodG_5vSlykrZYqVvEI9kssbKzW6rNaRn7-WpUzPm-AXawNmB
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8NADLagCMHCG1GeHthoUJrL68aKV4HSqZVginKXK6qAgtp0KH-FP4t9TahAMDBlSM5Kco79ObY_Axx7kXFFT0gnU9I4vopchzmgHXJNWRzQqshOa7hrh82uf3Mf3BdNYaOy2r1MSVpLPWt2Y1Jth3wKhb9BHDqTeVjwKUDxKrDQuHq4vSj1SNSZhNz7yiaEXtEYGYe03o9E0Tzzu9TvDmqGOn8kSq3_uVyFbnnn07KTp9Nxrk71-w9Sx_8-2hqsFIAUG1MNWoc5M9iAxSs78HeyCR_naZ7iix0jgV-EryMkrIutbusM04LVBLmC_hHJQA1HBkm3yOnSyQxtyeI0R4Bcj4olQwVphBVDEBQ5JzEh-UOeWIGvPWz3nx_7ZIAwY2bfvs5r2OF_MdhOs3ENrwek11vQvbzonDWdYqCDo73Izcnky6yulCeEooObKQpWjE8GVoehcgmoyVBLnhjYk8ZPw0AwPAukVFqLSBO62IbK4HVgdgDraRrrnqcDzZyHroh97mcw3IkrY4r6qnBS7mLyNuXtSGYMzfy6E1qY2NedTKqwX250UnzDo0TUCWpSAMLCauW-zU7_LW33f5cfwVKzc9dKWtft2z1Y9njAsP3Hsw-VfDg2B4R6cnVYKPknP3H2lQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gCMQF8RRvfODGKrqmrxwnYLxGxWGTdquaNJ0mQTdt5bDfwp_FzloKCA6cekjjQ-3anxP7M2PnTqBtnnFhpVJoy5WBbREHtIWhKQ093BWYaQ1PkX_Xdx8G3uBLF7-pdq-uJBc9DcTSlBeXkzS7rBvfiGDbwviCqbAX-tZ8ma24RJSAFt132pVF8RbRkTuf9wq-U7ZIhj7udgNettH8LvN7qKrx548rUxOJOptso4SQ0F7ofIst6Xybrd6aEb3zHfZ-nRQJvJrBD_BJ0ToDRKfQ7XevICl5SIBq3oeALmU604DWgGESF1MwRYaLU32gClKoOCVQh0YMgkagW4Q5yp_SjAkYZxCNXoYjdBmQEhfvSBVN6NHpCURJ-taE-xwtcZf1Oze9qzurHMFgKSewC3TSIm1J6XAu8WGnEtML7aJLVL4vbYRWwleCZvxlQruJ73ECVJ4QUikeKMQDe6yRj3O9z6CVJKHKHOUpYim0eehSB4Km3lkRYp52wC6qrx1PFkwbcc2pTLqJcWNsdBPPD9hxpZC4_OtmMW8hOMSUgYQ1KyXVy39LO_zf62ds7fm6E3fvo8cjtu7QRGBzKHPMGsX0TZ8gTCnkqbHED0KM3Zk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data+mining+techniques+for+LULC+analysis+using+sparse+labels+and+multisource+data+integration+for+the+hilly+terrain+of+Nilgiris+district%2C+Tamil+Nadu%2C+India&rft.jtitle=Earth+science+informatics&rft.au=Kumaraperumal%2C+Ramalingam&rft.au=Raj%2C+Moorthi+Nivas&rft.au=Pazhanivelan%2C+Sellaperumal&rft.au=Jagadesh%2C+M.&rft.date=2025-01-01&rft.issn=1865-0473&rft.eissn=1865-0481&rft.volume=18&rft.issue=1&rft_id=info:doi/10.1007%2Fs12145-024-01586-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12145_024_01586_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1865-0473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1865-0473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1865-0473&client=summon