Irredundant bases for soluble groups

Let Δ$\Delta$ be a finite set and G$G$ be a subgroup of Sym(Δ)$\operatorname{Sym}(\Delta)$. An irredundant base for G$G$ is a sequence of points of Δ$\Delta$ yielding a strictly descending chain of pointwise stabilisers, terminating with the trivial group. Suppose that G$G$ is primitive and soluble....

Full description

Saved in:
Bibliographic Details
Published inThe Bulletin of the London Mathematical Society Vol. 57; no. 10; pp. 3013 - 3023
Main Authors Brenner, Sofia, del Valle, Coen, Roney‐Dougal, Colva M.
Format Journal Article
LanguageEnglish
Published 01.10.2025
Online AccessGet full text
ISSN0024-6093
1469-2120
1469-2120
DOI10.1112/blms.70137

Cover

Abstract Let Δ$\Delta$ be a finite set and G$G$ be a subgroup of Sym(Δ)$\operatorname{Sym}(\Delta)$. An irredundant base for G$G$ is a sequence of points of Δ$\Delta$ yielding a strictly descending chain of pointwise stabilisers, terminating with the trivial group. Suppose that G$G$ is primitive and soluble. We determine asymptotically tight bounds for the maximum length of an irredundant base for G$G$. Moreover, we disprove a conjecture of Seress on the maximum length of an irredundant base constructed by the natural greedy algorithm, and prove Cameron's Greedy Conjecture for |G|$|G|$ odd.
AbstractList Let Δ$\Delta$ be a finite set and G$G$ be a subgroup of Sym(Δ)$\operatorname{Sym}(\Delta)$. An irredundant base for G$G$ is a sequence of points of Δ$\Delta$ yielding a strictly descending chain of pointwise stabilisers, terminating with the trivial group. Suppose that G$G$ is primitive and soluble. We determine asymptotically tight bounds for the maximum length of an irredundant base for G$G$. Moreover, we disprove a conjecture of Seress on the maximum length of an irredundant base constructed by the natural greedy algorithm, and prove Cameron's Greedy Conjecture for |G|$|G|$ odd.
Author Roney‐Dougal, Colva M.
Brenner, Sofia
del Valle, Coen
Author_xml – sequence: 1
  givenname: Sofia
  orcidid: 0009-0006-8512-2569
  surname: Brenner
  fullname: Brenner, Sofia
  organization: TU Darmstadt
– sequence: 2
  givenname: Coen
  orcidid: 0000-0001-7571-4508
  surname: del Valle
  fullname: del Valle, Coen
  organization: The Open University
– sequence: 3
  givenname: Colva M.
  orcidid: 0000-0002-0532-3349
  surname: Roney‐Dougal
  fullname: Roney‐Dougal, Colva M.
  email: Colva.Roney-Dougal@st-andrews.ac.uk
  organization: University of St Andrews
BookMark eNp9j0FLwzAYhoNMsJte_AU9eJPOfF-6pj3qcDqoeFDPIWm-yCRrS2IZ_fd2zrOnF16e94VnzmZt1xJj18CXAIB3xu_jUnIQ8owlkBdVhoB8xhLOMc8KXokLNo_xi08Il5Cwm20IZIfW6vY7NTpSTF0X0tj5wXhKP0M39PGSnTvtI1395YJ9bB7f189Z_fq0Xd_XWYOSy8xUaBDz0lG-Mo2tBMmGsCh56RyKCkpr5co2GgiIhHHYSOmKqcIScw6VWLDb0-_Q9no8aO9VH3Z7HUYFXB0F1VFQ_QpONJzow87T-A-pHuqXt9PmB8QGVGQ
ContentType Journal Article
Copyright 2025 The Author(s). is copyright © London Mathematical Society.
Copyright_xml – notice: 2025 The Author(s). is copyright © London Mathematical Society.
DBID 24P
ADTOC
UNPAY
DOI 10.1112/blms.70137
DatabaseName Wiley Online Library Open Access
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitleList
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1469-2120
EndPage 3023
ExternalDocumentID 10.1112/blms.70137
BLMS70137
Genre researchArticle
GrantInformation_xml – fundername: Natural Sciences and Engineering Research Council of Canada
  funderid: PGSD‐577816‐2023
– fundername: University of St Andrews School of Mathematics and Statistics Scholarship
– fundername: European Research Council
  funderid: 820148
– fundername: SFB‐TRR 195 ‘Symbolic Tools in Mathematics and their Application’
  funderid: 522790373
GroupedDBID --Z
-~X
.2P
.I3
0R~
1OC
1TH
23N
24P
33P
4.4
5GY
5VS
6TJ
70D
AAGQS
AAHQN
AAIJN
AAJKP
AAMMB
AAMNL
AAMVS
AANLZ
AAOGV
AAPXW
AASGY
AASVR
AAUQX
AAVAP
AAXRX
AAYCA
AAZKR
ABCQX
ABCUV
ABEFU
ABEJV
ABEUO
ABFSI
ABGDZ
ABGNP
ABITZ
ABIXL
ABJNI
ABLJU
ABNGD
ABNKS
ABPTD
ABQLI
ABSMQ
ABVKB
ABXVV
ABZBJ
ACAHQ
ACCZN
ACFRR
ACGFS
ACIPB
ACNCT
ACPOU
ACQPF
ACUKT
ACUTJ
ACVCV
ACXBN
ACXQS
ADBBV
ADEOM
ADEYI
ADHKW
ADHZD
ADKYN
ADMGS
ADOCK
ADOZA
ADXAS
ADZMN
ADZXQ
AECKG
AEFGJ
AEGPL
AEIGN
AEJOX
AENEX
AEPUE
AETEA
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFIYH
AFKSM
AFWVQ
AFZJQ
AGHNM
AGKEF
AGMDO
AGQPQ
AGSYK
AGXDD
AGYGG
AHBTC
AHXPO
AI.
AIDQK
AIDYY
AIJHB
AIQQE
AITYG
AIURR
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALUQN
ALVPJ
AMVHM
AMYDB
APJGH
ASAOO
ASPBG
ATDFG
AUFTA
AVWKF
AXUDD
AZFZN
BFHJK
BMNLL
BMXJE
BQUQU
CAG
CHEAL
COF
CS3
CXTWN
CZ4
DCZOG
DFGAJ
DILTD
DRFUL
DRSTM
DU5
D~K
E.L
EBS
EE~
EJD
F9B
FEDTE
H13
H5~
HAR
HGLYW
HVGLF
HW0
H~9
IOX
KOP
KSI
L7B
L98
LATKE
LEEKS
LOXES
LUTES
LYRES
M-Z
MBTAY
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N9A
NGC
O9-
OHT
P2P
P2W
PALCI
PB-
Q1.
Q5Y
RCA
RD5
RJQFR
ROL
ROZ
RW1
RXO
SUPJJ
TJP
TN5
UPT
VH1
WIH
WIK
WOHZO
WXSBR
X7H
XKC
YYP
ZY4
ZZTAW
~91
ADTOC
UNPAY
ID FETCH-LOGICAL-c2707-b92b2248fe45bcd93e7ce26808ff23918dd75dca1e1ee3bf2c77f675d28240193
IEDL.DBID 24P
ISSN 0024-6093
1469-2120
IngestDate Wed Oct 01 15:40:34 EDT 2025
Tue Oct 14 09:20:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License Attribution
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2707-b92b2248fe45bcd93e7ce26808ff23918dd75dca1e1ee3bf2c77f675d28240193
ORCID 0000-0002-0532-3349
0000-0001-7571-4508
0009-0006-8512-2569
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1112%2Fblms.70137
PageCount 11
ParticipantIDs unpaywall_primary_10_1112_blms_70137
wiley_primary_10_1112_blms_70137_BLMS70137
PublicationCentury 2000
PublicationDate October 2025
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: October 2025
PublicationDecade 2020
PublicationTitle The Bulletin of the London Mathematical Society
PublicationYear 2025
References 2001; 243
1982; 34
2021; 15
2023; 322
2005; 8
2023; 121
1982; 77
1999; 45
1992; 13
2025
2024; 56
2022; 318
1983; 35
2024; 2346
1996; 53
2022; 246
1992; 1519
References_xml – volume: 322
  start-page: 281
  issue: 2
  year: 2023
  end-page: 300
  article-title: Irredundant bases for finite groups of Lie type
  publication-title: Pacific J. Math.
– volume: 45
  year: 1999
– volume: 77
  start-page: 127
  issue: 1
  year: 1982
  end-page: 137
  article-title: A polynomial bound for the orders of primitive solvable groups
  publication-title: J. Algebra
– volume: 8
  start-page: 46
  year: 2005
  end-page: 79
  article-title: Constructing maximal subgroups of classical groups
  publication-title: LMS J. Comput. Math.
– volume: 243
  start-page: 427
  issue: 2
  year: 2001
  end-page: 447
  article-title: On the number of generators and composition length of finite linear groups
  publication-title: J. Algebra
– volume: 121
  start-page: 485
  issue: 5‐6
  year: 2023
  end-page: 493
  article-title: Minimal degree, base size, order: selected topics on primitive permutation groups
  publication-title: Arch. Math.
– volume: 53
  start-page: 243
  issue: 2
  year: 1996
  end-page: 255
  article-title: The minimal base size of primitive solvable permutation groups
  publication-title: J. Lond. Math. Soc. (2)
– year: 2025
– volume: 2346
  year: 2024
– volume: 35
  start-page: 59
  issue: 1
  year: 1983
  end-page: 67
  article-title: Trivial set‐stabilizers in finite permutation groups
  publication-title: Canad. J. Math.
– volume: 56
  start-page: 1788
  issue: 5
  year: 2024
  end-page: 1802
  article-title: Irredundant bases for the symmetric group
  publication-title: Bull. Lond. Math. Soc.
– volume: 318
  start-page: 89
  issue: 1
  year: 2022
  end-page: 108
  article-title: On relational complexity and base size of finite primitive groups
  publication-title: Pacific J. Math.
– volume: 34
  start-page: 1097
  issue: 5
  year: 1982
  end-page: 1111
  article-title: Solvable and nilpotent subgroups of
  publication-title: Canad. J. Math.
– volume: 246
  start-page: 372
  year: 2022
  end-page: 411
  article-title: On the height and relational complexity of a finite permutation group
  publication-title: Nagoya Math. J.
– volume: 15
  start-page: 1755
  issue: 7
  year: 2021
  end-page: 1807
  article-title: Base sizes for primitive groups with soluble stabilisers
  publication-title: Algebra Number Theory
– volume: 1519
  year: 1992
– volume: 13
  start-page: 297
  issue: 2
  year: 1992
  end-page: 306
  article-title: Minimum bases for permutation groups: the greedy approximation
  publication-title: J. Algorithms
SSID ssj0013071
Score 2.3806937
Snippet Let Δ$\Delta$ be a finite set and G$G$ be a subgroup of Sym(Δ)$\operatorname{Sym}(\Delta)$. An irredundant base for G$G$ is a sequence of points of Δ$\Delta$...
SourceID unpaywall
wiley
SourceType Open Access Repository
Publisher
StartPage 3013
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60PUgPvsWKSg49CVvz2GSbYxWLii2CFuop7OzjYoylaRH99e5uYrEeRPCWwyZkhnl837LzLUBHKip0QDVBnyeEisQnHA1ZkUqjSKlhFE4yfzhKrsf0dhJPvk3xV_oQyw03mxmuXtsEn0pd1fk61cNzzF_KLrOqeevQTGKDxhvQHI_u-0_VyQ5KEt_p7pp6kBJTpf1aoXT15RZsLIopf3_jeb4KUl2XGWwB__q_6nDJc3cxx674-CHd-B8DtmGzhqBev4qZHVhTxS60hkv91nIPOjezmbLzZcbvnm10pWfArWfjFHPluVGQch_Gg6vHy2tS36dARMh8RjAN0XTsnlY0RiHTSDGhQnv3htZhlAY9KVksBQ9UoFSEOhSMaUMopKFlhoal0QE0itdCHYKnRBJrmvRkJAXlmmHAIo2RiBGpAYm8DZ2lR7NppZuRVXwjzKzRmTO6DWfOQ78syS7uhg_u6ehv3zyGxny2UCcGK8zxtA6HT4I3wCw
  priority: 102
  providerName: Unpaywall
Title Irredundant bases for soluble groups
URI https://onlinelibrary.wiley.com/doi/abs/10.1112%2Fblms.70137
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1112/blms.70137
UnpaywallVersion publishedVersion
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED2VdoAOiE9RPqoMnZACiePEjcRSEFVBtKoElcoU-fwxhVA1rRD_HtsJRSxIbB7sIWc7957tew-gJxUVOqTax4AnPhVJ4HM0ZEUqjSKlhlE4yfzxJBnN6OM8njfg5rsWptKH2By42Z3h_td2g3OsXUhCKxqK-Vt5xaxi3ha0QgNk7PomdPpzhxCwyi-PUD8xxL0WJzWjr3_GtmF7XSz45wfP89_41CWY4R7s1sjQG1RTuQ8NVRxAe7yRVS0PofewXCpb9mXC4dn8U3oGc3p2-WCuPFehUR7BbHj_cjfya5sDXxAWMB9TgiaR9rWiMQqZRooJRawlhtYkSsO-lCyWgocqVCpCTQRj2uB8adiSYUdpdAzN4r1QJ-ApkcSaJn0ZSUG5ZhiySGMkYkRqsBvvQG_ztdmikrPIKhpAMhuUzAWlA5cuEH90yW6fxs-udfqfzmewQ6yBrnsNdw7N1XKtLkxWX2HXTV4XWrPJdPD6BUHGn0Y
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BGUoHxFOUZ4ZOSIbEcexmBETVQlMh0UrdIj-nEKqmFeLfYztREQsSmwd78Nnn-z7b9x1AT2kiTUQMEiGniEgaIi4sWVHaCJkSyyi8ZH42ocMZeZ4n8-ZvjsuFqfUhNhduzjP8ee0c3F1IN17uVENF8V7dMieZtw07hEbUcS9MXn8eEUJWF8zDBFHL3Bt1Ujv67mdsB9rrcsG_PnlR_AaoPsIM9mGvgYbBfb2WB7Cly0PoZBtd1eoIeqPlUru8L2uPwAWgKrCgM3D7RxQ68Cka1THMBk_TxyFq6hwgiVnIkEixsJG0bzRJhFRprJnU2NXEMAbHadRXiiVK8khHWsfCYMmYsUBfWbpk6VEan0Cr_Cj1KQRa0sQQ2lexkoQbJiIWGxHLRAhiwRvvQm8z23xR61nkNQ_AuTNK7o3ShRtviD-65A_j7M23zv7T-Rraw2k2zsejycs57GJXTdd_jbuA1mq51pc2xK_ElV_Ib-vWoQI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BkYAOiE9RPjN0QgokthM3I19VC21VCSp1i2L7PIVQNa0Q_x7biVqxILFlsIecc3nv2b53AG2FTOqQaV8EWewzGQd-JoxYUaiFTJhRFM4yfziKexP2Mo2m9d0cWwtT-UOsNtxsZrj_tU1wnCldZ7l1DRX5R3nLrWXeJmyxyEChNXZm4_UhQsCrhnmE-bFR7rU7qZl9t57bhJ1lMcu-v7I8_01QHcJ092GvpobefbWWB7CBxSE0hytf1fII2v35HG3dl4mHZwGo9Azp9Oz3I3L0XIlGeQyT7vP7Y8-v-xz4kvCA-yIhwiBpRyOLhFQJRS6R2J4YWhOahB2leKRkFmKISIUmknNtiL4ycsnIo4SeQKP4LPAUPJRxpFncUVRJlmkuQk61oDISghnylrWgvXrbdFb5WaSVDiCpDUrqgtKCGxeIP4akD4Phm3s6-8_ga9geP3XTQX_0eg67xDbTdTfjLqCxmC_x0iD8Qly5dfwBHOGgkQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60PUgPvsWKSg49CVvz2GSbYxWLii2CFuop7OzjYoylaRH99e5uYrEeRPCWwyZkhnl837LzLUBHKip0QDVBnyeEisQnHA1ZkUqjSKlhFE4yfzhKrsf0dhJPvk3xV_oQyw03mxmuXtsEn0pd1fk61cNzzF_KLrOqeevQTGKDxhvQHI_u-0_VyQ5KEt_p7pp6kBJTpf1aoXT15RZsLIopf3_jeb4KUl2XGWwB__q_6nDJc3cxx674-CHd-B8DtmGzhqBev4qZHVhTxS60hkv91nIPOjezmbLzZcbvnm10pWfArWfjFHPluVGQch_Gg6vHy2tS36dARMh8RjAN0XTsnlY0RiHTSDGhQnv3htZhlAY9KVksBQ9UoFSEOhSMaUMopKFlhoal0QE0itdCHYKnRBJrmvRkJAXlmmHAIo2RiBGpAYm8DZ2lR7NppZuRVXwjzKzRmTO6DWfOQ78syS7uhg_u6ehv3zyGxny2UCcGK8zxtA6HT4I3wCw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Irredundant+bases+for+soluble+groups&rft.jtitle=The+Bulletin+of+the+London+Mathematical+Society&rft.au=Brenner%2C+Sofia&rft.au=del+Valle%2C+Coen&rft.au=Roney%E2%80%90Dougal%2C+Colva+M.&rft.date=2025-10-01&rft.issn=0024-6093&rft.eissn=1469-2120&rft.volume=57&rft.issue=10&rft.spage=3013&rft.epage=3023&rft_id=info:doi/10.1112%2Fblms.70137&rft.externalDBID=10.1112%252Fblms.70137&rft.externalDocID=BLMS70137
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-6093&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-6093&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-6093&client=summon