A three-tier BERT based transformer framework for detecting and classifying skin cancer with HSCGS algorithm
Skin cancer is the process of identifying and diagnosing, a disease in which abnormal skin cells grow and spread uncontrollably. An innovative deep learning-based skin cancer detection model is introduced in this research work. The proposed model is divided into five main phases: (a) Pre-Processing...
Saved in:
| Published in | Multimedia tools and applications Vol. 83; no. 17; pp. 51441 - 51467 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.05.2024
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1573-7721 1380-7501 1573-7721 |
| DOI | 10.1007/s11042-023-17590-1 |
Cover
| Abstract | Skin cancer is the process of identifying and diagnosing, a disease in which abnormal skin cells grow and spread uncontrollably. An innovative deep learning-based skin cancer detection model is introduced in this research work. The proposed model is divided into five main phases: (a) Pre-Processing (b) Segmentation (c) Feature Extraction (d) 3-Tier Classification (e) post-processing. Initially, the collected raw image is pre-processed via contrast enhancement, decimal scaling, and augmentation methods. From the pre-processed image, the important feature is extracted by using the statistical features like mean, variance, and information gain. Then, from the extracted image, the region of interest ROI is identified via fuzzy assisted Kapur’s multi-level thresholding. The optimal features are selected using the hybrid Self-Improved Chimp Optimization algorithm with Glow Swarm Optimization algorithm (HSCGS). The three-tier classification using the BERT based Transformer with HSCGS based Gated Recurred Unit (GRU), BiLSTM, and Graph Neural Network is projected for classification. The proposed model is implemented using the PYTHON platform. The findings are evaluated in terms of accuracy, sensitivity, precision, FPR, FNR, etc. using the present models. The proposed model has recorded the highest detection accuracy as 97% and highest MCC and NPV values. Proposed model has shown the best performance and has outperformed other models. |
|---|---|
| AbstractList | Skin cancer is the process of identifying and diagnosing, a disease in which abnormal skin cells grow and spread uncontrollably. An innovative deep learning-based skin cancer detection model is introduced in this research work. The proposed model is divided into five main phases: (a) Pre-Processing (b) Segmentation (c) Feature Extraction (d) 3-Tier Classification (e) post-processing. Initially, the collected raw image is pre-processed via contrast enhancement, decimal scaling, and augmentation methods. From the pre-processed image, the important feature is extracted by using the statistical features like mean, variance, and information gain. Then, from the extracted image, the region of interest ROI is identified via fuzzy assisted Kapur’s multi-level thresholding. The optimal features are selected using the hybrid Self-Improved Chimp Optimization algorithm with Glow Swarm Optimization algorithm (HSCGS). The three-tier classification using the BERT based Transformer with HSCGS based Gated Recurred Unit (GRU), BiLSTM, and Graph Neural Network is projected for classification. The proposed model is implemented using the PYTHON platform. The findings are evaluated in terms of accuracy, sensitivity, precision, FPR, FNR, etc. using the present models. The proposed model has recorded the highest detection accuracy as 97% and highest MCC and NPV values. Proposed model has shown the best performance and has outperformed other models. |
| Author | George, Joseph Rao, Anne Koteswara |
| Author_xml | – sequence: 1 givenname: Joseph surname: George fullname: George, Joseph email: josephgeorge1634@gmail.com organization: Department of Computer Science and Engineering, Kalasalingam Academy of Research and Education – sequence: 2 givenname: Anne Koteswara surname: Rao fullname: Rao, Anne Koteswara organization: Department of Computer Science and Engineering, Kalasalingam Academy of Research and Education |
| BookMark | eNp9kE1PAjEQQBujiYj-AU9NPK9Ou93tckSiYEJiInhuut0WCktX2xLCv7eIicYDp_nIvJnJu0LnrnMaoVsC9wSAPwRCgNEMaJ4RXgwgI2eoRwqeZ5xTcv4nv0RXIawASFlQ1kPtEMel1zqLVnv8-PQ2x7UMusHRSxdM5zepbbzc6F3n1zg1cKOjVtG6BZauwaqVIVizP9RhbR1W0qnE7Gxc4slsNJ5h2S46n8rNNbowsg365if20fvz03w0yaav45fRcJopyiG9SSXkTaUUq4E3Mic5ryUf1KSSFSvlwBAzKEpSMm4447RuCoCSARSmMk3J6ryP7o57P3z3udUhilW39S6dFDkUBS0pZSRN0eOU8l0IXhvx4e1G-r0gIA5WxdGqSFbFt1VxgKp_kLJRRtu5JMy2p9H8iIZ0xy20__3qBPUFgtiNQw |
| CitedBy_id | crossref_primary_10_1007_s00521_023_09293_3 |
| Cites_doi | 10.1109/ACCESS.2022.3181225 10.1109/ACCESS.2020.2964424 10.1109/ACCESS.2019.2960504 10.1109/ACCESS.2020.3001507 10.1109/ACCESS.2022.3220329 10.1109/ACCESS.2020.2997710 10.1109/ACCESS.2020.3028248 10.1109/ACCESS.2020.3016653 10.1109/TMI.2021.3136682 10.1109/JBHI.2020.2973614 10.1109/JBHI.2021.3113609 10.1007/s10619-021-07360-z 10.1109/ACCESS.2019.2962812 10.3390/bioengineering9030097 10.1109/ACCESS.2020.3016651 10.1109/ACCESS.2021.3103410 10.1109/JBHI.2022.3187215 10.3390/electronics11091294 10.1109/ACCESS.2022.3192444 10.1109/JBHI.2021.3062002 10.1109/JBHI.2019.2942429 10.1109/TMI.2020.3037761 10.1109/ACCESS.2020.3014701 10.1007/s00530-021-00787-5 10.1007/s11063-023-11204-5 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
| DOI | 10.1007/s11042-023-17590-1 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest ABI/INFORM Global Computing Database Research Library (ProQuest) Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1573-7721 |
| EndPage | 51467 |
| ExternalDocumentID | 10_1007_s11042_023_17590_1 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PUEGO 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D MBDVC PHGZM PHGZT PKEHL PQEST PQGLB PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c2703-72a03d8cc4b07da3137ba79b18a846a9f1f9561647f7472bd50064005f8fd64b3 |
| IEDL.DBID | BENPR |
| ISSN | 1573-7721 1380-7501 |
| IngestDate | Fri Jul 25 19:56:35 EDT 2025 Wed Oct 01 04:51:40 EDT 2025 Thu Apr 24 23:10:56 EDT 2025 Fri Feb 21 02:40:30 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 17 |
| Keywords | Gated recurrent unit Skin cancer detection Chimp optimization algorithm BiLSTM Glow swarm optimization |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2703-72a03d8cc4b07da3137ba79b18a846a9f1f9561647f7472bd50064005f8fd64b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3055262241 |
| PQPubID | 54626 |
| PageCount | 27 |
| ParticipantIDs | proquest_journals_3055262241 crossref_primary_10_1007_s11042_023_17590_1 crossref_citationtrail_10_1007_s11042_023_17590_1 springer_journals_10_1007_s11042_023_17590_1 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20240500 |
| PublicationDateYYYYMMDD | 2024-05-01 |
| PublicationDate_xml | – month: 5 year: 2024 text: 20240500 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | An International Journal |
| PublicationTitle | Multimedia tools and applications |
| PublicationTitleAbbrev | Multimed Tools Appl |
| PublicationYear | 2024 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Adla, Reddy, Nayak, Karuna (CR22) 2022; 40 Imran, Nasir, Bilal, Sun, Alzahrani, Almuhaimeed (CR1) 2022; 10 Kousis, Perikos, Hatzilygeroudis, Virvou (CR23) 2022; 11 Goyal, Oakley, Bansal, Dancey, Yap (CR8) 2020; 8 Adegun, Viriri (CR15) 2020; 8 Pacheco, Krohling (CR2) 2021; 25 Li, Li, Yan, Li, Jiang, Luo, Yin (CR27) 2023; 2 Thurnhofer-Hemsi, López-Rubio, Domínguez, Elizondo (CR10) 2021; 9 Biasi, Citarella, Risi, Tortora (CR12) 2022; 26 Song, Lin, Wang, Wang (CR9) 2020; 24 Pereira (CR17) 2022; 10 Bechelli, Delhommelle (CR24) 2022; 9 Wei, Ding, Hu (CR3) 2020; 8 Pham, Doucet, Luong, Tran, Hoang (CR16) 2020; 8 Öztürk, Çukur (CR11) 2022; 26 Naeem, Farooq, Khelifi, Abid (CR13) 2020; 8 Ichim, Popescu (CR20) 2020; 8 CR28 CR26 Gu, Ge, Bonnington, Zhou (CR4) 2020; 24 CR25 Yao (CR7) 2022; 41 Lan, Cai, He, Wen (CR14) 2022; 10 Kwasigroch, Grochowski, Mikołajczyk (CR19) 2020; 8 Shorfuzzaman (CR21) 2022; 28 Ashraf (CR5) 2020; 8 Adegun, Viriri (CR6) 2020; 8 Zhang (CR18) 2021; 40 A Kwasigroch (17590_CR19) 2020; 8 B Zhang (17590_CR18) 2021; 40 17590_CR28 PMM Pereira (17590_CR17) 2022; 10 A Naeem (17590_CR13) 2020; 8 17590_CR26 17590_CR25 M Goyal (17590_CR8) 2020; 8 R Ashraf (17590_CR5) 2020; 8 AA Adegun (17590_CR6) 2020; 8 X Li (17590_CR27) 2023; 2 T-C Pham (17590_CR16) 2020; 8 I Kousis (17590_CR23) 2022; 11 Ş Öztürk (17590_CR11) 2022; 26 L Ichim (17590_CR20) 2020; 8 M Shorfuzzaman (17590_CR21) 2022; 28 K Thurnhofer-Hemsi (17590_CR10) 2021; 9 AGC Pacheco (17590_CR2) 2021; 25 LD Biasi (17590_CR12) 2022; 26 AA Adegun (17590_CR15) 2020; 8 L Song (17590_CR9) 2020; 24 P Yao (17590_CR7) 2022; 41 D Adla (17590_CR22) 2022; 40 Y Gu (17590_CR4) 2020; 24 L Wei (17590_CR3) 2020; 8 Z Lan (17590_CR14) 2022; 10 S Bechelli (17590_CR24) 2022; 9 A Imran (17590_CR1) 2022; 10 |
| References_xml | – volume: 10 start-page: 76261 year: 2022 end-page: 76267 ident: CR14 article-title: FixCaps: An improved capsules network for diagnosis of skin cancer publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3181225 – volume: 8 start-page: 9061 year: 2020 end-page: 9071 ident: CR19 article-title: Neural architecture search for skin lesion classification publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2964424 – volume: 8 start-page: 4171 year: 2020 end-page: 4181 ident: CR8 article-title: Skin lesion segmentation in dermoscopic images with ensemble deep learning methods publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2960504 – volume: 8 start-page: 110575 year: 2020 end-page: 110597 ident: CR13 article-title: Malignant melanoma classification using deep learning: Datasets, performance measurements, challenges and opportunities publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3001507 – volume: 10 start-page: 118198 year: 2022 end-page: 118212 ident: CR1 article-title: Skin cancer detection using combined decision of deep learners publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3220329 – volume: 8 start-page: 99633 year: 2020 end-page: 99647 ident: CR3 article-title: Automatic skin cancer detection in dermoscopy images based on ensemble lightweight deep learning network publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2997710 – volume: 8 start-page: 179189 year: 2020 end-page: 179202 ident: CR20 article-title: Melanoma detection using an objective system based on multiple connected neural networks publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3028248 – volume: 8 start-page: 150725 year: 2020 end-page: 150737 ident: CR16 article-title: Improving skin-disease classification based on customized loss function combined with balanced mini-batch logic and real-time image augmentation publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3016653 – volume: 41 start-page: 1242 issue: 5 year: 2022 end-page: 1254 ident: CR7 article-title: Single model deep learning on imbalanced small datasets for skin lesion classification publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2021.3136682 – volume: 24 start-page: 2912 issue: 10 year: 2020 end-page: 2921 ident: CR9 article-title: An end-to-end multi-task deep learning framework for skin lesion analysis publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2020.2973614 – volume: 26 start-page: 962 issue: 3 year: 2022 end-page: 972 ident: CR12 article-title: A cloud approach for melanoma detection based on deep learning networks publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2021.3113609 – volume: 40 start-page: 717 issue: 4 year: 2022 end-page: 736 ident: CR22 article-title: Deep learning-based computer aided diagnosis model for skin cancer detection and classification publication-title: Distrib Parallel Databases doi: 10.1007/s10619-021-07360-z – volume: 8 start-page: 7160 year: 2020 end-page: 7172 ident: CR15 article-title: Deep learning-based system for automatic melanoma detection publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2962812 – volume: 9 start-page: 97 issue: 3 year: 2022 ident: CR24 article-title: Machine learning and deep learning algorithms for skin cancer classification from dermoscopic images publication-title: Bioengineering doi: 10.3390/bioengineering9030097 – volume: 8 start-page: 150377 year: 2020 end-page: 150396 ident: CR6 article-title: FCN-based densenet framework for automated detection and classification of skin lesions in dermoscopy images publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3016651 – volume: 9 start-page: 112193 year: 2021 end-page: 112205 ident: CR10 article-title: Skin lesion classification by ensembles of deep convolutional networks and regularly spaced shifting publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3103410 – volume: 26 start-page: 4679 issue: 9 year: 2022 end-page: 4690 ident: CR11 article-title: Deep clustering via center-oriented margin free-triplet loss for skin lesion detection in highly imbalanced datasets publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2022.3187215 – volume: 11 start-page: 1294 issue: 9 year: 2022 ident: CR23 article-title: Deep learning methods for accurate skin cancer recognition and mobile application publication-title: Electronics doi: 10.3390/electronics11091294 – ident: CR25 – volume: 10 start-page: 76296 year: 2022 end-page: 76309 ident: CR17 article-title: Multiple instance learning using 3D features for melanoma detection publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3192444 – volume: 25 start-page: 3554 issue: 9 year: 2021 end-page: 3563 ident: CR2 article-title: An attention-based mechanism to combine images and metadata in deep learning models applied to skin cancer classification publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2021.3062002 – volume: 24 start-page: 1379 issue: 5 year: 2020 end-page: 1393 ident: CR4 article-title: Progressive transfer learning and adversarial domain adaptation for cross-domain skin disease classification publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2019.2942429 – volume: 40 start-page: 840 issue: 3 year: 2021 end-page: 851 ident: CR18 article-title: Short-term lesion change detection for melanoma screening with novel Siamese neural network publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2020.3037761 – volume: 8 start-page: 147858 year: 2020 end-page: 147871 ident: CR5 article-title: Region-of-interest based transfer learning assisted framework for skin cancer detection publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3014701 – volume: 28 start-page: 1309 issue: 4 year: 2022 end-page: 1323 ident: CR21 article-title: An explainable stacked ensemble of deep learning models for improved melanoma skin cancer detection publication-title: Multimedia Syst doi: 10.1007/s00530-021-00787-5 – volume: 2 start-page: 93 issue: 1 year: 2023 end-page: 116 ident: CR27 article-title: Deep learning attention mechanism in medical image analysis: basics and beyonds publication-title: Int J Netw Dyn Intell – ident: CR28 – ident: CR26 – volume: 10 start-page: 76296 year: 2022 ident: 17590_CR17 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3192444 – volume: 8 start-page: 9061 year: 2020 ident: 17590_CR19 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2964424 – volume: 40 start-page: 717 issue: 4 year: 2022 ident: 17590_CR22 publication-title: Distrib Parallel Databases doi: 10.1007/s10619-021-07360-z – volume: 2 start-page: 93 issue: 1 year: 2023 ident: 17590_CR27 publication-title: Int J Netw Dyn Intell – volume: 26 start-page: 4679 issue: 9 year: 2022 ident: 17590_CR11 publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2022.3187215 – volume: 11 start-page: 1294 issue: 9 year: 2022 ident: 17590_CR23 publication-title: Electronics doi: 10.3390/electronics11091294 – volume: 40 start-page: 840 issue: 3 year: 2021 ident: 17590_CR18 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2020.3037761 – volume: 28 start-page: 1309 issue: 4 year: 2022 ident: 17590_CR21 publication-title: Multimedia Syst doi: 10.1007/s00530-021-00787-5 – volume: 8 start-page: 147858 year: 2020 ident: 17590_CR5 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3014701 – volume: 10 start-page: 76261 year: 2022 ident: 17590_CR14 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3181225 – volume: 24 start-page: 1379 issue: 5 year: 2020 ident: 17590_CR4 publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2019.2942429 – volume: 9 start-page: 112193 year: 2021 ident: 17590_CR10 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3103410 – volume: 41 start-page: 1242 issue: 5 year: 2022 ident: 17590_CR7 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2021.3136682 – ident: 17590_CR25 – volume: 25 start-page: 3554 issue: 9 year: 2021 ident: 17590_CR2 publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2021.3062002 – ident: 17590_CR28 doi: 10.1007/s11063-023-11204-5 – volume: 9 start-page: 97 issue: 3 year: 2022 ident: 17590_CR24 publication-title: Bioengineering doi: 10.3390/bioengineering9030097 – volume: 8 start-page: 150377 year: 2020 ident: 17590_CR6 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3016651 – volume: 8 start-page: 99633 year: 2020 ident: 17590_CR3 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2997710 – volume: 26 start-page: 962 issue: 3 year: 2022 ident: 17590_CR12 publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2021.3113609 – volume: 8 start-page: 7160 year: 2020 ident: 17590_CR15 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2962812 – volume: 24 start-page: 2912 issue: 10 year: 2020 ident: 17590_CR9 publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2020.2973614 – volume: 8 start-page: 110575 year: 2020 ident: 17590_CR13 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3001507 – volume: 8 start-page: 4171 year: 2020 ident: 17590_CR8 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2960504 – volume: 8 start-page: 179189 year: 2020 ident: 17590_CR20 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3028248 – volume: 10 start-page: 118198 year: 2022 ident: 17590_CR1 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3220329 – volume: 8 start-page: 150725 year: 2020 ident: 17590_CR16 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3016653 – ident: 17590_CR26 |
| SSID | ssj0016524 |
| Score | 2.375583 |
| Snippet | Skin cancer is the process of identifying and diagnosing, a disease in which abnormal skin cells grow and spread uncontrollably. An innovative deep... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 51441 |
| SubjectTerms | Accuracy Algorithms Cancer Classification Computer Communication Networks Computer Science Data Structures and Information Theory Feature extraction Graph neural networks Image contrast Image enhancement Machine learning Medical imaging Multimedia Information Systems Optimization Optimization algorithms Skin cancer Special Purpose and Application-Based Systems Transformers |
| SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6hssBAeYrykgc2MMo79lhQoQLBAFSCKfITIUpAbbrw6zmnMQUESIxxfJFln32fc3ffAeyHIsoUx40UpxmjiTaKMhtpaqQVnLkaI9wlJ19eZf1Bcn6X3jVJYWMf7e5dkvVJPUt2C10qCdoYiiaPBxTvPPM131YL5rtn9xe9D-9BlkZJkyDzs-RXIzRDlt-cobWNOW3DwI9uGlrydDSp5JF6-0bc-N_hL8NSAzpJd6olKzBnylVo-4IOpNnfq7D4iZ1wDYZdUuFKG1qh6STHvetb4myeJpUHu9hsfXAXwQaijfNJoDQRpSbKIfPHOpGKjJ8eS6Kcio2I-_dL-jcnZzdEDB9eRvj4vA6D097tSZ82xRmoivCUoHkkglgzpRIZ5FrEYZxLkXMZMoGQRnAbWpczmyW5xRtLJHVaOw2D1DKrs0TGG9AqX0qzCUSHxubcmNwqlkjOOIrg0ZAjdmOZCYIOhH61CtUwl7sCGsNixrnsJrfAyS3qyS3CDhx8yLxOeTv-7L3jlaBo9vC4cFxoUeYgTgcO_ZrOXv_-ta3_dd-GhQiR0jSKcgda1WhidhHpVHKvUex32Y_zCw priority: 102 providerName: Springer Nature |
| Title | A three-tier BERT based transformer framework for detecting and classifying skin cancer with HSCGS algorithm |
| URI | https://link.springer.com/article/10.1007/s11042-023-17590-1 https://www.proquest.com/docview/3055262241 |
| Volume | 83 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1573-7721 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: ADMLS dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-7721 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: BENPR dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-7721 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB61uxc48CggFsrKB25gETsv-4DQbrUPgVihtiuVU-T4USqWtLTh_zOTjbuARE-RnNgHj8ffF49nPoDXwsjCanSkNC8Uz5y3XAXpuK-D0Yo0RjQlJ39eFct19vEsP9uDVcyFoWuVcU_sNmp3aemM_B1VppIFAc6Hq5-cVKMouholNEwvreDedyXG9mEoqTLWAIbT2erL8W1coch7mVuVcMRK0afRbJPpBKWqIIZxhFSdcPE3VO345z8h0w6J5o_gQU8h2WRr88ew55sDeBjlGVjvrQdw_49ag09gM2Et2s3zFoGQTWfHp4wQzLE2UldsDvGqFsMG5jxFGLA3M41jlnj2RZcWxW6-XzTM0oK5ZnSSy5YnR4sTZjbnOGXttx9PYT2fnR4teS-1wK1En-elNEnqlLVZnZTOpCIta1PqWiiDBMXoIAJlwBZZGfD_Q9Yu70KASR5UcEVWp89g0Fw2_jkwJ3wotfdlsCqrtdLYBR29RCamCp8kIxBxVivb1yEnOYxNtaugTJao0BJVZ4lKjODNbZ-rbRWOO78-jMaqeo-8qXbrZwRvowF3r_8_2ou7R3sJ9yTynO0dyEMYtNe__CvkKW09hn01X4xhOJlPpyt6Lr5-mo37JYlv13LyG6Kc5lw |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LUxQxEO5COCgHRdRiBTUHPWnKSeaVHCgKcHER2LJgqeI2ZvJQynV47FgWf87fZmc2YcUquXGdmeSQ7unvSzrdH8BrpnihJf5IaV4ImhmrqXDcUFs7JYXXGJG-OPlgWAyOs08n-ckc_I61MP5aZYyJXaA2Z9qfkb_3nal44QFn4_yCetUon12NEhoqSCuY9a7FWCjs2LNXv3ALN1nf_YD2fsP5Tn-0PaBBZYBqju5OS66S1AitszopjUpZWtaqlDUTCrFZScecL_4sstIh9ea1ybvsV5I74UyR1SnOew8WsjSTuPlb2OoPPx9e5zGKPMjqioQiNrNQtjMt3mO-NAYxkyKEy4Sym9A447v_pGg75NtZgoeBspLNqY89hjnbLMOjKAdBQnRYhsW_ehs-gfEmadFPLG0ReMlW_3BEPGIa0kaqjI9dvBpG8AEx1mc0cDRRjSHa8_rTrgyLTL6fNkR7B70k_uSYDI62Px4RNf6KJmq__XgKx3ey6M9gvjlr7AoQw6wrpbWl0yKrpZA4BANLicxPFDZJesDiqlY69D338hvjatax2VuiQktUnSUq1oO312POp10_bv16LRqrChFgUs38tQfvogFnr_8_2_PbZ3sF9wejg_1qf3e4twoPOHKs6f3LNZhvL3_aF8iR2vplcEQCX-7a9_8AwyEcog |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE48CggFgr4ACewGjsPOweEStvtlkKFaCv1ljp-0KpLWrpBiL_Gr2MmibuARG-9OrEPns_-Jpn5ZgBeCCMLW-JBSvNC88x5y3WQjvs6mFJTj5GSxMkfd4rJfvb-ID9YgF9RC0NplfFO7C5qd2rpH_kKVaaSBRHOShjSIj6tj9-efePUQYoirbGdRg-Rbf_zB36-zd5sraOtX0o53thbm_ChwwC3EqHOlTRJ6rS1WZ0oZ1KRqtqoshbaIC-bMohAws8iUwHdblm7vIt8JXnQwRVZneK61-C6oirupFIfb15EMIp8aKirE46sLAbBTi_bEySKQbbkSN5lwsXfpDj3dP8JznacN74Ltwdnla326LoHC75ZgjuxEQQb7oUluPVHVcP7MF1lLSLE8xYpl73b-LzHiCsda6OTjMMhJoUxHGDOUywDZzPTOGbJoz_uBFhsdnLcMEvQPGf0z5hNdtc2d5mZfkGDtEdfH8D-lWz5Q1hsThv_CJgTPqjSexWszupSlzgFrxSFPp8ufJKMQMRdrexQ8Zwab0yrea1mskSFlqg6S1RiBK8u5pz19T4ufXs5Gqsazv6smiN1BK-jAeeP_7_a48tXew43EPHVh62d7SdwU6Jz1SdeLsNie_7dP0XnqK2fdShkcHjVsP8N3JkaPA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+three-tier+BERT+based+transformer+framework+for+detecting+and+classifying+skin+cancer+with+HSCGS+algorithm&rft.jtitle=Multimedia+tools+and+applications&rft.au=George%2C+Joseph&rft.au=Rao%2C+Anne+Koteswara&rft.date=2024-05-01&rft.issn=1573-7721&rft.eissn=1573-7721&rft.volume=83&rft.issue=17&rft.spage=51441&rft.epage=51467&rft_id=info:doi/10.1007%2Fs11042-023-17590-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_023_17590_1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon |