MSTMM‐Validated Machining Efficiency and Surface Roughness Improvement Using Evolutionary Optimization Algorithm

ABSTRACT Ultra‐precision machining (UPM) has been extensively employed for the production of high‐end precision components. The process is highly precise, and the associated cost of production is also high. Optimization of machining parameters in UPM can significantly improve machining efficiency an...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of mechanical system dynamics Vol. 5; no. 2; pp. 354 - 371
Main Authors Shehzad, Adeel, Ding, Yuanyuan, Chang, Yu, Chen, Yiheng, Rui, Xiaoting, Lu, Hanjing
Format Journal Article
LanguageEnglish
Published 01.06.2025
Subjects
Online AccessGet full text
ISSN2767-1399
2767-1402
2767-1402
DOI10.1002/msd2.70013

Cover

Abstract ABSTRACT Ultra‐precision machining (UPM) has been extensively employed for the production of high‐end precision components. The process is highly precise, and the associated cost of production is also high. Optimization of machining parameters in UPM can significantly improve machining efficiency and surface roughness. This study proposes an innovative approach that couples transfer matrix methods for multibody systems (MSTMM) and particle swarm optimization (PSO) to optimize the machining parameters, aiming to simultaneously improve the machining efficiency and surface roughness of UPM machined components. Initially, the dynamic model of an ultra‐precision fly‐cutting (UPFC) machine tool was developed using MSTMM and validated by machining tests. Subsequently, the PSO algorithm was employed to optimize the machining parameters. Based on the optimized parameters, a 40% reduction in machining time and an 18.6% improvement in surface roughness peak‐to‐valley (PV) value have been achieved. The proposed method and the optimized parameters were verified through simulations using the MSTMM model, resulting in a minimal error of only 0.9%.
AbstractList Ultra‐precision machining (UPM) has been extensively employed for the production of high‐end precision components. The process is highly precise, and the associated cost of production is also high. Optimization of machining parameters in UPM can significantly improve machining efficiency and surface roughness. This study proposes an innovative approach that couples transfer matrix methods for multibody systems (MSTMM) and particle swarm optimization (PSO) to optimize the machining parameters, aiming to simultaneously improve the machining efficiency and surface roughness of UPM machined components. Initially, the dynamic model of an ultra‐precision fly‐cutting (UPFC) machine tool was developed using MSTMM and validated by machining tests. Subsequently, the PSO algorithm was employed to optimize the machining parameters. Based on the optimized parameters, a 40% reduction in machining time and an 18.6% improvement in surface roughness peak‐to‐valley (PV) value have been achieved. The proposed method and the optimized parameters were verified through simulations using the MSTMM model, resulting in a minimal error of only 0.9%.
ABSTRACT Ultra‐precision machining (UPM) has been extensively employed for the production of high‐end precision components. The process is highly precise, and the associated cost of production is also high. Optimization of machining parameters in UPM can significantly improve machining efficiency and surface roughness. This study proposes an innovative approach that couples transfer matrix methods for multibody systems (MSTMM) and particle swarm optimization (PSO) to optimize the machining parameters, aiming to simultaneously improve the machining efficiency and surface roughness of UPM machined components. Initially, the dynamic model of an ultra‐precision fly‐cutting (UPFC) machine tool was developed using MSTMM and validated by machining tests. Subsequently, the PSO algorithm was employed to optimize the machining parameters. Based on the optimized parameters, a 40% reduction in machining time and an 18.6% improvement in surface roughness peak‐to‐valley (PV) value have been achieved. The proposed method and the optimized parameters were verified through simulations using the MSTMM model, resulting in a minimal error of only 0.9%.
Author Ding, Yuanyuan
Chang, Yu
Chen, Yiheng
Shehzad, Adeel
Lu, Hanjing
Rui, Xiaoting
Author_xml – sequence: 1
  givenname: Adeel
  surname: Shehzad
  fullname: Shehzad, Adeel
  organization: Nanjing University of Science and Technology
– sequence: 2
  givenname: Yuanyuan
  surname: Ding
  fullname: Ding, Yuanyuan
  organization: Nanjing University of Science and Technology
– sequence: 3
  givenname: Yu
  surname: Chang
  fullname: Chang, Yu
  organization: Jiangsu University
– sequence: 4
  givenname: Yiheng
  surname: Chen
  fullname: Chen, Yiheng
  organization: Nanjing University of Science and Technology
– sequence: 5
  givenname: Xiaoting
  orcidid: 0000-0002-6114-7685
  surname: Rui
  fullname: Rui, Xiaoting
  organization: Nanjing University of Science and Technology
– sequence: 6
  givenname: Hanjing
  orcidid: 0000-0003-1351-0272
  surname: Lu
  fullname: Lu, Hanjing
  email: luhanjing@pku.edu.cn
  organization: Nanjing University of Science and Technology
BookMark eNp9kN9OwjAUhxuDiYjc-AS91gzb7k-3S4KgJCwkAt4upWuhZuuWdoPMKx_BZ_RJHExvuTrnl3y_k5PvFvR0oQUA9xiNMELkKbcpGVGEsHsF-oQG1MEeIr3_3Y2iGzC09gO1cIixG_h9YOLVOo5_vr7fWaZSVokUxozvlVZ6B6dSKq6E5g1kOoWr2kjGBXwr6t1eC2vhPC9NcRC50BXc2HPlUGR1pQrNTAOXZaVy9clOGY6zXWFUtc_vwLVkmRXDvzkAm9l0PXl1FsuX-WS8cDihyHU8Grk0CkPuSsoZ5swPg60nMUY8QB6TbfI97qeIECpCTD0R8DAisu1tKaNbdwAeu7u1LllzZFmWlEbl7WMJRsnJWHIylpyNtfRDR3NTWGuEvAzjDj6qTDQXyCRePZOu8wsZqn-h
Cites_doi 10.1111/jfpe.13236
10.1016/j.foodres.2019.108605
10.1016/j.ijmachtools.2009.11.003
10.1007/s00170-019-04500-9
10.1016/j.energy.2023.129205
10.1016/j.energy.2019.02.157
10.1016/j.energy.2024.130780
10.1177/0954406213516440
10.1007/s00170-021-08648-1
10.1016/j.jcde.2017.12.004
10.1007/s00500-016-2474-6
10.1007/s12541-019-00239-1
10.1007/s11431-023-2615-4
10.1002/widm.1517
10.1007/s00170-024-14885-x
10.1016/j.heliyon.2021.e06043
10.1002/msd2.12037
10.1002/msd2.12096
10.1016/j.foodchem.2020.127828
10.1002/msd2.12051
10.3390/foods11111658
10.1177/0954405415584961
10.1109/ICNN.1995.488968
10.25165/j.ijabe.20191202.3227
10.1007/s12541-018-0083-2
10.1080/21681015.2023.2243312
10.1007/s00170-020-06277-8
10.1049/icp.2022.1748
10.1016/j.lwt.2020.109510
10.1007/s00170-021-07155-7
10.1177/0954405418780164
10.1016/j.procir.2018.08.216
10.1177/09544054241306246
10.1016/j.ijmachtools.2016.01.001
10.1007/s11831-022-09849-x
10.1016/j.jsv.2023.117565
10.1007/s00170-010-2958-y
10.1016/j.ijmachtools.2015.02.001
10.1177/09544054221111879
10.1016/j.eswa.2011.11.110
10.1007/s00170-013-5020-z
10.1080/10426914.2017.1328112
10.1016/j.jmsy.2024.03.008
10.1007/s11431-018-9425-x
ContentType Journal Article
Copyright 2025 The Author(s). published by John Wiley & Sons Australia, Ltd on behalf of Nanjing University of Science and Technology.
Copyright_xml – notice: 2025 The Author(s). published by John Wiley & Sons Australia, Ltd on behalf of Nanjing University of Science and Technology.
DBID 24P
AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1002/msd2.70013
DatabaseName Wiley Online Library Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2767-1402
EndPage 371
ExternalDocumentID 10.1002/msd2.70013
10_1002_msd2_70013
MSD270013
Genre researchArticle
GrantInformation_xml – fundername: This study was supported by the National Natural Science Foundation of China (Grant No. 12302042).
GroupedDBID 0R~
1OC
24P
AAHHS
ABJCF
ACCFJ
ACCMX
ADZOD
AEEZP
AEQDE
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARCSS
BENPR
BGLVJ
CCPQU
GROUPED_DOAJ
HCIFZ
M7S
OK1
PHGZM
PHGZT
PIMPY
PTHSS
AAYXX
CITATION
PQGLB
PUEGO
WIN
ADTOC
UNPAY
ID FETCH-LOGICAL-c2703-47937988c3f7ca1ca586b4f110c604af86b54c5d0227e8174e6c892f479b7a7b3
IEDL.DBID UNPAY
ISSN 2767-1399
2767-1402
IngestDate Wed Oct 01 16:32:53 EDT 2025
Wed Oct 01 06:02:30 EDT 2025
Wed Jun 25 09:40:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
License Attribution
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2703-47937988c3f7ca1ca586b4f110c604af86b54c5d0227e8174e6c892f479b7a7b3
ORCID 0000-0002-6114-7685
0000-0003-1351-0272
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/msd2.70013
PageCount 18
ParticipantIDs unpaywall_primary_10_1002_msd2_70013
crossref_primary_10_1002_msd2_70013
wiley_primary_10_1002_msd2_70013_MSD270013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2025
2025-06-00
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: June 2025
PublicationDecade 2020
PublicationTitle International journal of mechanical system dynamics
PublicationYear 2025
References 2021; 7
2023; 30
2025; 136
2013; 69
2023; 284
2017; 22
2019; 12
2019; 126
2020; 106
2024; 74
2020; 129
1995
2011; 54
2012; 39
2023; 549
2016; 103
2024
2024; 14
2018; 22
2014; 228
2018; 19
2022; 120
2023; 40
2018; 5
2019; 62
2022; 2022
2019; 42
2021; 112
2021; 115
2021; 338
2024; 294
2023; 237
2018
2015; 91
2024; 4
2024; 67
2022; 11
2022; 2
2020; 21
2018; 77
2018; 33
2016; 230
2019; 233
2019; 175
2010; 50
e_1_2_13_25_1
e_1_2_13_24_1
e_1_2_13_27_1
e_1_2_13_46_1
e_1_2_13_26_1
e_1_2_13_47_1
e_1_2_13_21_1
e_1_2_13_44_1
e_1_2_13_20_1
e_1_2_13_45_1
e_1_2_13_23_1
e_1_2_13_42_1
e_1_2_13_22_1
e_1_2_13_43_1
e_1_2_13_9_1
e_1_2_13_40_1
e_1_2_13_8_1
e_1_2_13_41_1
e_1_2_13_7_1
e_1_2_13_6_1
Rui X. (e_1_2_13_39_1) 2018
e_1_2_13_17_1
e_1_2_13_18_1
e_1_2_13_19_1
e_1_2_13_13_1
e_1_2_13_36_1
e_1_2_13_14_1
e_1_2_13_35_1
e_1_2_13_15_1
e_1_2_13_38_1
e_1_2_13_16_1
e_1_2_13_37_1
e_1_2_13_32_1
e_1_2_13_10_1
e_1_2_13_31_1
e_1_2_13_11_1
e_1_2_13_34_1
e_1_2_13_12_1
e_1_2_13_30_1
e_1_2_13_5_1
Shehzad A. (e_1_2_13_33_1) 2024
e_1_2_13_4_1
e_1_2_13_3_1
e_1_2_13_2_1
e_1_2_13_29_1
e_1_2_13_28_1
References_xml – volume: 175
  start-page: 1021
  year: 2019
  end-page: 1037
  article-title: Integrated Optimization of Cutting Tool and Cutting Parameters in Face Milling for Minimizing Energy Footprint and Production Time
  publication-title: Energy
– volume: 338
  year: 2021
  article-title: Rapid Measurement of Fatty Acid Content During Flour Storage Using a Color‐Sensitive Gas Sensor Array: Comparing the Effects of Swarm Intelligence Optimization Algorithms on Sensor Features
  publication-title: Food Chemistry
– volume: 136
  start-page: 775
  issue: 2
  year: 2025
  end-page: 787
  article-title: Optimization of Single‐Point Diamond Turning Processes for Single Crystal Calcium Fluoride: A Surrogate Model for Surface Roughness Prediction
  publication-title: International Journal of Advanced Manufacturing Technology
– volume: 4
  start-page: 34
  issue: 1
  year: 2024
  end-page: 47
  article-title: Tool‐Tip Vibration Prediction Based on a Novel Convolutional Enhanced Transformer
  publication-title: International Journal of Mechanical System Dynamics
– volume: 62
  start-page: 712
  year: 2019
  end-page: 720
  article-title: Transfer Matrix Method for Multibody Systems (Rui Method) and Its Applications
  publication-title: Science China: Technological Sciences
– volume: 7
  year: 2021
  article-title: Multi‐Objective Cutting Parameter Optimization Model of Multi‐Pass Turning in CNC Machines for Sustainable Manufacturing
  publication-title: Heliyon
– volume: 2022
  start-page: 340
  year: 2022
  end-page: 345
  article-title: Modelling and Simulation of the 3D Surface Topography in Ultra‐Precision Flycutting Machining
  publication-title: IET Conference Proceedings
– volume: 30
  start-page: 1663
  issue: 3
  year: 2023
  end-page: 1725
  article-title: 25 Years of Particle Swarm Optimization: Flourishing Voyage of Two Decades
  publication-title: Archives of Computational Methods in Engineering
– year: 2024
  article-title: Surface Quality Predictive Model for Ultraprecision Fly‐Cutting Based on an Integrated Hybrid CNN‐LSTM
  publication-title: Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture
– volume: 14
  issue: 1
  year: 2024
  article-title: The State‐of‐Art Review of Ultra‐Precision Machining Using Text Mining: Identification of Main Themes and Recommendations for the Future Direction
  publication-title: WIREs Data Mining and Knowledge Discovery
– volume: 50
  start-page: 374
  issue: 4
  year: 2010
  end-page: 385
  article-title: Modeling of Dynamic Characteristic of the Aerostatic Bearing Spindle in an Ultra‐Precision Fly Cutting Machine
  publication-title: International Journal of Machine Tools and Manufacture
– volume: 284
  year: 2023
  article-title: Multi‐Objective Optimisation for Energy Saving and High Efficiency Production Oriented Multidirectional Turning Based on Improved Fireworks Algorithm Considering Energy, Efficiency and Quality
  publication-title: Energy
– volume: 39
  start-page: 5982
  issue: 5
  year: 2012
  end-page: 5989
  article-title: Application of Particle Swarm Optimization Technique for Achieving Desired Milled Surface Roughness in Minimum Machining Time
  publication-title: Expert Systems With Applications
– volume: 2
  start-page: 3
  issue: 1
  year: 2022
  end-page: 26
  article-title: Multibody System Transfer Matrix Method: The Past, the Present, and the Future
  publication-title: International Journal of Mechanical System Dynamics
– volume: 294
  year: 2024
  article-title: Multi‐Objective Modeling and Evaluation for Energy Saving and High Efficiency Production Oriented Multidirectional Turning Considering Energy, Efficiency, Economy and Quality
  publication-title: Energy
– volume: 19
  start-page: 695
  issue: 5
  year: 2018
  end-page: 704
  article-title: Machining Parameters Optimization of AA6061 Using Response Surface Methodology and Particle Swarm Optimization
  publication-title: International Journal of Precision Engineering and Manufacturing
– volume: 2
  start-page: 290
  issue: 3
  year: 2022
  end-page: 307
  article-title: Hybrid Multibody System Method for the Dynamic Analysis of an Ultra‐Precision Fly‐Cutting Machine Tool
  publication-title: International Journal of Mechanical System Dynamics
– volume: 22
  start-page: 387
  issue: 2
  year: 2017
  end-page: 408
  article-title: Particle Swarm Optimization Algorithm: An Overview
  publication-title: Soft Computing
– volume: 33
  start-page: 1150
  issue: 11
  year: 2018
  end-page: 1159
  article-title: Synthesis of Polishing Fluid and Novel Approach for Nanofinishing of Copper Using Ball‐End Magnetorheological Finishing Process
  publication-title: Materials and Manufacturing Processes
– volume: 237
  start-page: 1086
  issue: 6–7
  year: 2023
  end-page: 1099
  article-title: Finishing of OFHC Copper Using Fluid Filled Open‐Cell Porous Flexible Abrasive Impregnated Tools
  publication-title: Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture
– volume: 42
  issue: 6
  year: 2019
  article-title: Electronic Nose Classification and Differentiation of Bacterial Foodborne Pathogens Based on Support Vector Machine Optimized With Particle Swarm Optimization Algorithm
  publication-title: Journal of Food Process Engineering
– volume: 230
  start-page: 381
  issue: 2
  year: 2016
  end-page: 386
  article-title: An Experimental and Theoretical Investigation Into Multimode Machine Tool Vibration With Surface Generation in Flycutting
  publication-title: Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture
– volume: 67
  start-page: 1482
  year: 2024
  end-page: 1497
  article-title: Deep‐Learning‐Assisted Online Surface Roughness Monitoring in Ultraprecision Fly Cutting
  publication-title: Science China: Technological Sciences
– volume: 5
  start-page: 299
  issue: 3
  year: 2018
  end-page: 304
  article-title: Development of Smart Machining System for Optimizing Feedrates to Minimize Machining Time
  publication-title: Journal of Computational Design and Engineering
– volume: 112
  start-page: 437
  year: 2021
  end-page: 451
  article-title: RSM and MD—A Roughness Predictive Model and Simulation Comparison of Monocrystalline Optical Grade Silicon
  publication-title: International Journal of Advanced Manufacturing Technology
– volume: 115
  start-page: 31
  issue: 1
  year: 2021
  end-page: 47
  article-title: A Review: Use of Evolutionary Algorithm for Optimisation of Machining Parameters
  publication-title: International Journal of Advanced Manufacturing Technology
– year: 2018
– volume: 126
  year: 2019
  article-title: Evaluating Aroma Quality of Black Tea by an Olfactory Visualization System: Selection of Feature Sensor Using Particle Swarm Optimization
  publication-title: Food Research International
– volume: 22
  start-page: 387
  issue: 2
  year: 2018
  end-page: 408
  article-title: Particle Swarm Optimization Algorithm: An Overview
  publication-title: Soft Computing
– volume: 233
  start-page: 1136
  issue: 4
  year: 2019
  end-page: 1143
  article-title: Investigation on the Influence of Aerostatic Pressure Upon Surface Generation in Flycutting
  publication-title: Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture
– volume: 106
  start-page: 441
  year: 2020
  end-page: 454
  article-title: Research on the Dynamic Characteristics of the Ultra‐Precision Fly Cutting Machine Tool and Its Influence on the Mid‐Frequency Waviness of the Surface
  publication-title: Journal of Advanced Manufacturing Technology
– volume: 228
  start-page: 2162
  issue: 12
  year: 2014
  end-page: 2167
  article-title: Investigation of the Tool‐Tip Vibration and Its Influence Upon Surface Generation in Flycutting
  publication-title: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
– volume: 129
  year: 2020
  article-title: Simultaneous Quantification of Active Constituents and Antioxidant Capability of Green Tea Using NIR Spectroscopy Coupled With Swarm Intelligence Algorithm
  publication-title: LWT
– volume: 21
  start-page: 189
  year: 2020
  end-page: 202
  article-title: Dynamics Modelling and Simulating of Ultra‐Precision Fly‐Cutting Machine Tool
  publication-title: International Journal of Precision Engineering and Manufacturing
– volume: 549
  year: 2023
  article-title: Transfer Matrix Method for Linear Vibration Analysis of Flexible Multibody Systems
  publication-title: Journal of Sound and Vibration
– volume: 120
  start-page: 1609
  issue: 3
  year: 2022
  end-page: 1624
  article-title: Milling of Inconel 718: An Experimental and Integrated Modeling Approach for Surface Roughness
  publication-title: Journal of Advanced Manufacturing Technology
– volume: 74
  start-page: 233
  year: 2024
  end-page: 251
  article-title: A Review: Insight Into Smart and Sustainable Ultra‐Precision Machining Augmented by Intelligent IoT
  publication-title: Journal of Manufacturing Systems
– volume: 103
  start-page: 13
  year: 2016
  end-page: 27
  article-title: A Review of Fly Cutting Applied to Surface Generation in Ultra‐Precision Machining
  publication-title: International Journal of Machine Tools and Manufacture
– start-page: 1942
  year: 1995
  end-page: 1948
– volume: 54
  start-page: 445
  year: 2011
  end-page: 463
  article-title: Particle Swarm Optimization Technique for Determining Optimal Machining Parameters of Different Work Piece Materials in Turning Operation
  publication-title: International Journal of Advanced Manufacturing Technology
– volume: 91
  start-page: 76
  year: 2015
  end-page: 95
  article-title: A Review of Surface Roughness Generation in Ultra‐Precision Machining
  publication-title: International Journal of Machine Tools and Manufacture
– volume: 40
  start-page: 554
  issue: 7
  year: 2023
  end-page: 571
  article-title: A Combination of PSO‐ANN Hybrid Algorithm and Genetic Algorithm to Optimize Technological Parameters During Milling 2017A Alloy
  publication-title: Journal of Industrial and Production Engineering
– volume: 11
  start-page: 1658
  issue: 11
  year: 2022
  article-title: Classification of Tea Quality Levels Using Near‐Infrared Spectroscopy Based on CLPSO‐SVM
  publication-title: Foods
– volume: 77
  start-page: 578
  year: 2018
  end-page: 581
  article-title: Reducing Machining Time by Pre‐Process Control of Spindle Speed and Feed‐Rate in Milling Strategies
  publication-title: Procedia CIRP
– volume: 69
  start-page: 237
  year: 2013
  end-page: 244
  article-title: Design and Dynamic Optimization of an Ultraprecision Diamond Flycutting Machine Tool for Large KDP Crystal Machining
  publication-title: International Journal of Advanced Manufacturing Technology
– volume: 12
  start-page: 36
  issue: 2
  year: 2019
  end-page: 41
  article-title: A Dynamic Tire Model Based on HPSO‐SVM
  publication-title: International Journal of Agricultural and Biological Engineering
– ident: e_1_2_13_17_1
  doi: 10.1111/jfpe.13236
– ident: e_1_2_13_15_1
  doi: 10.1016/j.foodres.2019.108605
– ident: e_1_2_13_28_1
  doi: 10.1016/j.ijmachtools.2009.11.003
– ident: e_1_2_13_36_1
  doi: 10.1007/s00170-019-04500-9
– ident: e_1_2_13_9_1
  doi: 10.1016/j.energy.2023.129205
– ident: e_1_2_13_6_1
  doi: 10.1016/j.energy.2019.02.157
– ident: e_1_2_13_10_1
  doi: 10.1016/j.energy.2024.130780
– ident: e_1_2_13_29_1
  doi: 10.1177/0954406213516440
– ident: e_1_2_13_13_1
  doi: 10.1007/s00170-021-08648-1
– ident: e_1_2_13_5_1
  doi: 10.1016/j.jcde.2017.12.004
– ident: e_1_2_13_44_1
  doi: 10.1007/s00500-016-2474-6
– ident: e_1_2_13_37_1
  doi: 10.1007/s12541-019-00239-1
– ident: e_1_2_13_32_1
  doi: 10.1007/s11431-023-2615-4
– ident: e_1_2_13_2_1
  doi: 10.1002/widm.1517
– ident: e_1_2_13_24_1
  doi: 10.1007/s00170-024-14885-x
– ident: e_1_2_13_8_1
  doi: 10.1016/j.heliyon.2021.e06043
– ident: e_1_2_13_34_1
  doi: 10.1002/msd2.12037
– ident: e_1_2_13_31_1
  doi: 10.1002/msd2.12096
– ident: e_1_2_13_18_1
  doi: 10.1016/j.foodchem.2020.127828
– ident: e_1_2_13_25_1
  doi: 10.1002/msd2.12051
– ident: e_1_2_13_19_1
  doi: 10.3390/foods11111658
– ident: e_1_2_13_27_1
  doi: 10.1177/0954405415584961
– ident: e_1_2_13_43_1
  doi: 10.1109/ICNN.1995.488968
– ident: e_1_2_13_14_1
  doi: 10.25165/j.ijabe.20191202.3227
– ident: e_1_2_13_20_1
  doi: 10.1007/s12541-018-0083-2
– ident: e_1_2_13_21_1
  doi: 10.1080/21681015.2023.2243312
– ident: e_1_2_13_46_1
  doi: 10.1007/s00500-016-2474-6
– ident: e_1_2_13_23_1
  doi: 10.1007/s00170-020-06277-8
– ident: e_1_2_13_47_1
  doi: 10.1049/icp.2022.1748
– ident: e_1_2_13_16_1
  doi: 10.1016/j.lwt.2020.109510
– ident: e_1_2_13_11_1
  doi: 10.1007/s00170-021-07155-7
– ident: e_1_2_13_30_1
  doi: 10.1177/0954405418780164
– ident: e_1_2_13_7_1
  doi: 10.1016/j.procir.2018.08.216
– year: 2024
  ident: e_1_2_13_33_1
  article-title: Surface Quality Predictive Model for Ultraprecision Fly‐Cutting Based on an Integrated Hybrid CNN‐LSTM
  publication-title: Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture
  doi: 10.1177/09544054241306246
– ident: e_1_2_13_4_1
  doi: 10.1016/j.ijmachtools.2016.01.001
– ident: e_1_2_13_12_1
  doi: 10.1007/s11831-022-09849-x
– ident: e_1_2_13_40_1
  doi: 10.1016/j.jsv.2023.117565
– ident: e_1_2_13_45_1
  doi: 10.1007/s00170-010-2958-y
– ident: e_1_2_13_3_1
  doi: 10.1016/j.ijmachtools.2015.02.001
– volume-title: Transfer Matrix Method for Multibody Systems: Theory and Applications
  year: 2018
  ident: e_1_2_13_39_1
– ident: e_1_2_13_41_1
  doi: 10.1177/09544054221111879
– ident: e_1_2_13_22_1
  doi: 10.1016/j.eswa.2011.11.110
– ident: e_1_2_13_26_1
  doi: 10.1007/s00170-013-5020-z
– ident: e_1_2_13_42_1
  doi: 10.1080/10426914.2017.1328112
– ident: e_1_2_13_38_1
  doi: 10.1016/j.jmsy.2024.03.008
– ident: e_1_2_13_35_1
  doi: 10.1007/s11431-018-9425-x
SSID ssj0002811365
Score 2.2953546
Snippet ABSTRACT Ultra‐precision machining (UPM) has been extensively employed for the production of high‐end precision components. The process is highly precise, and...
Ultra‐precision machining (UPM) has been extensively employed for the production of high‐end precision components. The process is highly precise, and the...
SourceID unpaywall
crossref
wiley
SourceType Open Access Repository
Index Database
Publisher
StartPage 354
SubjectTerms machining efficiency
particle swarm optimization
transfer matrix methods for multibody systems
ultra‐precision fly cutting
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4gHtSD8RnxlU3kZFKB7WtJvBCFEJOqETDcmu1uqyZQSAGNN3-Cv9Ff4sy2FLmQeGw6c5ndeew8viGk7FoKDjpShopqwrCCOthBkzuGchwwlMpWXLf8e_dOu2fd9e1-gVzPZ2FSfIg84Yaaoe01KrgIJpUFaOhwotgVVk3NNbJeg0AG7zezHvMMC-O4rwR7GJkL1gAo6jk-Kass2Jc80sYsHovPDzEYLEer2t20dsh2FifSRnqwu6QQxntk6w964D5JvE7X836-vp8hlsaHu6Kebo2Ev7SpoSFwrpKKWNHOLImEDOkTLuVB60bTbIJODlLdN0Cb79k1BJnQBzAlw2xGkzYGL6Pkbfo6PCC9VrN70zayFQqGZKDLOm-GiGTSjFwpalLY3AmsCHy-dKqWiODLtqStEEgw5PA6CR3J6ywCvsAVbmAekmI8isMjQk3wpohlEyCiHPALiUXCKlDVXBFyXiIXczH64xQpw08xkZmPwva1sEuknEt4JdmlFv4KEt_r3OqquXn8H-ITsslwha9OpJyS4jSZhWcQV0yDc319fgG8W8gU
  priority: 102
  providerName: Wiley-Blackwell
Title MSTMM‐Validated Machining Efficiency and Surface Roughness Improvement Using Evolutionary Optimization Algorithm
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmsd2.70013
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/msd2.70013
UnpaywallVersion publishedVersion
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2767-1402
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002811365
  issn: 2767-1402
  databaseCode: BENPR
  dateStart: 20210901
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2767-1402
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002811365
  issn: 2767-1402
  databaseCode: 24P
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT8IwFD5ReDA-qHiJGCVN5MlkCLvziAohJkPCxeDT0rWbGmEQ3DT65E_wN_pLPO0GAU2IiW9b1i5dT_v12zmnXwGKls7R0AFXeFChiu5VEQc121S4aSJQcoPbMuXfaZnNvn49MAYLu_gTfYi5w03MDInXYoJPeJDgfBrdV89Hz1wticiptg5Z00A2noFsv9Wu3Ykz5SzEACQ41fm1TObJ_a68tCZtxOGEvr3S4XCZr8oFp7ENdNbUJM_kqRRHXom9_1Bx_M-37MBWykZJLRk-OVjzw13YXNAo3IOp0-05ztfH5y0yduEe4MSRCZj4lNSlAIXYvUloyEk3ngaU-aQjjv4RGEoSn4V0QRKZnUDqL-lgx9aSGwSsUboTlNSG9-PpY_Qw2od-o967bCrpQQ0KUxExpHdO6J4xLbAYrTBq2KanB8gsmFnWaYB3hs4MLuQKfRv_gXyT2VU1wHqeRS1PO4BMOA79QyAartlCMccTunVYnzIRiixjqYpFfdvOw-nMVO4k0eNwE-Vl1RU96MoezENxbsWVxc6kVVYUcZ3ulYzNa0d_e-cxZKJp7J8gVYm8AqyrersA2Yt6q90ppGPzG0vK7Fc
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4oHtCD8RnxuYmcTCp2227LkSgElaIRMNya7W6rJlAIgsabP8Hf6C9xZltBLiQem85cZnfn8e3sN4QUXVvBQsfKULEpDDssgx-0PG4ozsFRKkd5uuXfb_J6x77pOt2sNwffwqT8EFPADU-G9td4wBGQLs1YQ_uvip3jtam1TFZsbnKsvZh9P4VYmIcDS7CJkbngDiDXKU8JSllppj4XkvKTZCg-3kWvN5-u6nhT2yDrWaJIK-nKbpKlKNkia3_oA7fJyG-1ff_78-sRkmms3BX1dW8k_KVVzQ2BDyupSBRtTUaxkBF9wKk86N5oCidodJDqxgFafcv2IRiF3oEv6WePNGml9zQYvYyf-zukU6u2L-tGNkPBkAwOswbOkJJMWrErhSmF4_HQjiHoS35hixi-HFs6CpkEIw_Kk4hLr8xi0Atd4YbWLsklgyTaI9SCcIpkNiFSyoG-kHhLeAFSpisizyuQ018zBsOUKiNISZFZgMYOtLELpDi18EKxM238BSKB37rS1-bW_n-ET0i-3vYbQeO6eXtAVhnO89WoyiHJjUeT6AiSjHF4rLfSD5gZy4A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4oJj4OxmfE5yZyMqnA9smRCAQfRSJguDXb3VZNoJAKGm_-BH-jv8SZbS1yIfHYdOYyu_PYeXxDSME2JBx0KDUZlrlm-BWwg7pjadKywFBKUzqq5d9tWc2ecdM3-2lvDs7CJPgQWcINNUPZa1TwYCzD4gw1dPgq2SWWTfVlsmKY4AoR2NloZykW5uDCEmxiZDaYA4h1KhlAKSvO2Odc0to0GvOPdz4YzIeryt80tshmGijSanKy22QpiHbIxh_4wF0Su52u635_fj1CMI0vd0ld1RsJf2ldYUPgYCXlkaSdaRxyEdAH3MqD5o0m6QSVHaSqcYDW39J7CEKh92BLhumQJq0Onkbxy-R5uEd6jXr3qqmlOxQ0wUCZVeIMIcmEHtqClwU3Hcs3QnD6wioZPIQv0xCmRCTBwIHnSWAJp8JC4PNtbvv6PslFoyg4IFQHd4pgNj5CygE_F1glLAFV2eaB4-TJ-a8YvXECleEloMjMQ2F7Sth5UsgkvJDsQgl_AYnndmqqbK4f_of4jKy2aw3v7rp1e0TWGa7zVUmVY5KbxNPgBGKMiX-qbtIPk_LLDw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dS8MwFA26PYgP6vzAiUrAPQmdWz_S7nHoxhA6xW0yn0qaNCqu3aitok_-BH-jv8SbtBubwhB8a2lS0tzk5PTemxOEKrbJwdCCa1zUqWb6DcBBwyEaJwSAklvcUSn_bpd0Bubl0BrO7eLP9CFmDjc5MxReywk-4SLD-Ty6r5-Fz1yvysipsYqKxAI2XkDFQfe6eSfPlLMBA4DgNGbXKpmn9Lvywpq0lkYT-vZKR6NFvqoWnPYmotOmZnkmT9U08avs_YeK43--ZQtt5GwUN7PhU0IrQbSN1uc0CndQ7Pb6rvv18XkLjF26Bzh2VQImPMUtJUAhd29iGnHcS2NBWYBv5NE_EkNx5rNQLkisshNw6yUf7NBafAWAFeY7QXFzdD-OH5OHcBcN2q3-eUfLD2rQmA6IobxzUveMGcJmtM6o5RDfFMAsGKmZVMCdZTKLS7nCwIF_oIAwp6ELqOfb1PaNPVSIxlGwj7ABa7ZUzPGlbh3Up0yGImtQqm7TwHHK6GRqKm-S6XF4mfKy7ske9FQPllFlZsWlxU6VVZYU8dzehYrNGwd_e-chKiRxGhwBVUn843w0fgN2fenm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MSTMM%E2%80%90Validated+Machining+Efficiency+and+Surface+Roughness+Improvement+Using+Evolutionary+Optimization+Algorithm&rft.jtitle=International+journal+of+mechanical+system+dynamics&rft.au=Shehzad%2C+Adeel&rft.au=Ding%2C+Yuanyuan&rft.au=Chang%2C+Yu&rft.au=Chen%2C+Yiheng&rft.date=2025-06-01&rft.issn=2767-1399&rft.eissn=2767-1402&rft.volume=5&rft.issue=2&rft.spage=354&rft.epage=371&rft_id=info:doi/10.1002%2Fmsd2.70013&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_msd2_70013
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2767-1399&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2767-1399&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2767-1399&client=summon