Environmental damage cost and exergoenvironmental evaluations of piston prop aviation engines for the landing and take-off flight phases
This study presents a comprehensive investigation of the environmental damage cost, exergoenvironmental and life cycle assessment (LCA) analyses of four piston prop aviation engines (AE) entitled as AE1, AE2, AE3,and AE4 for different flight conditions. The data of energetic, exergetic, economic, an...
Saved in:
Published in | Energy (Oxford) Vol. 261; p. 125356 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.12.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0360-5442 |
DOI | 10.1016/j.energy.2022.125356 |
Cover
Abstract | This study presents a comprehensive investigation of the environmental damage cost, exergoenvironmental and life cycle assessment (LCA) analyses of four piston prop aviation engines (AE) entitled as AE1, AE2, AE3,and AE4 for different flight conditions. The data of energetic, exergetic, economic, and exergoeconomic as well as emission are firstly given as a briefly. Then, cost formation of environmental damages, LCA, and exergoenvironmental analyses are realized. AE3 has minimum specific environmental damage with 0.0380 $/MJ and the lowest specific exergoenvironmental cost with 0.360 $/MJ for take-off phase. Besides, minimum environmental impact values of engine shaft power are estimated to be 29.33 mPts/MJ for AE1 in taxi phase, 23.93 mPts/MJ for AE3 in take-off phase, 26.36 mPts/MJ for AE1 in climb-out phase, and 25.20 mPts/MJ for AE2 in approach phase. Fuel consumption is main contributor for environmental impact with over 89%. The highest relative environmental differences is occurred in AE4 by 1001.69% for taxi phase while AE1 has minimum exergoenvironmental factor. and AE3 has minimum values of environment impact point costs. As a result, AE3 is the best engine in the perspective of thermodynamically, economically and environmentally.
•Environmental damage cost, exergoenvironmental and life cycle assessment analyses are done for piston prop aviation engines.•Investigation is realized for four different engine and landing and take-off flight (LTO) phases.•Fuel consumption is main contributor for environmental impact rate.•AE3 is the best engine in the perspective of thermodynamically, economically and environmentally. |
---|---|
AbstractList | This study presents a comprehensive investigation of the environmental damage cost, exergoenvironmental and life cycle assessment (LCA) analyses of four piston prop aviation engines (AE) entitled as AE1, AE2, AE3,and AE4 for different flight conditions. The data of energetic, exergetic, economic, and exergoeconomic as well as emission are firstly given as a briefly. Then, cost formation of environmental damages, LCA, and exergoenvironmental analyses are realized. AE3 has minimum specific environmental damage with 0.0380 $/MJ and the lowest specific exergoenvironmental cost with 0.360 $/MJ for take-off phase. Besides, minimum environmental impact values of engine shaft power are estimated to be 29.33 mPts/MJ for AE1 in taxi phase, 23.93 mPts/MJ for AE3 in take-off phase, 26.36 mPts/MJ for AE1 in climb-out phase, and 25.20 mPts/MJ for AE2 in approach phase. Fuel consumption is main contributor for environmental impact with over 89%. The highest relative environmental differences is occurred in AE4 by 1001.69% for taxi phase while AE1 has minimum exergoenvironmental factor. and AE3 has minimum values of environment impact point costs. As a result, AE3 is the best engine in the perspective of thermodynamically, economically and environmentally. This study presents a comprehensive investigation of the environmental damage cost, exergoenvironmental and life cycle assessment (LCA) analyses of four piston prop aviation engines (AE) entitled as AE1, AE2, AE3,and AE4 for different flight conditions. The data of energetic, exergetic, economic, and exergoeconomic as well as emission are firstly given as a briefly. Then, cost formation of environmental damages, LCA, and exergoenvironmental analyses are realized. AE3 has minimum specific environmental damage with 0.0380 $/MJ and the lowest specific exergoenvironmental cost with 0.360 $/MJ for take-off phase. Besides, minimum environmental impact values of engine shaft power are estimated to be 29.33 mPts/MJ for AE1 in taxi phase, 23.93 mPts/MJ for AE3 in take-off phase, 26.36 mPts/MJ for AE1 in climb-out phase, and 25.20 mPts/MJ for AE2 in approach phase. Fuel consumption is main contributor for environmental impact with over 89%. The highest relative environmental differences is occurred in AE4 by 1001.69% for taxi phase while AE1 has minimum exergoenvironmental factor. and AE3 has minimum values of environment impact point costs. As a result, AE3 is the best engine in the perspective of thermodynamically, economically and environmentally. •Environmental damage cost, exergoenvironmental and life cycle assessment analyses are done for piston prop aviation engines.•Investigation is realized for four different engine and landing and take-off flight (LTO) phases.•Fuel consumption is main contributor for environmental impact rate.•AE3 is the best engine in the perspective of thermodynamically, economically and environmentally. |
ArticleNumber | 125356 |
Author | Balli, Ozgur Kale, Utku Hikmet Karakoc, T. Rohács, Dániel |
Author_xml | – sequence: 1 givenname: Ozgur orcidid: 0000-0001-6465-8387 surname: Balli fullname: Balli, Ozgur email: balli07balli@yahoo.com organization: 1'st Air Maintenance Factory Directorate, Ministry of Turkey National Defence, Eskisehir, Turkey – sequence: 2 givenname: Utku orcidid: 0000-0001-9178-5138 surname: Kale fullname: Kale, Utku email: kaleutku@kjk.bme.hu organization: Department of Aeronautics, and Naval Architecture, Faculty of Transportation Engineering and Vehicle Engineering, Budapest University of Technology and Economics, Budapest, Hungary – sequence: 3 givenname: Dániel surname: Rohács fullname: Rohács, Dániel email: daniel.rohacs@kjk.bme.hu organization: Department of Aeronautics, and Naval Architecture, Faculty of Transportation Engineering and Vehicle Engineering, Budapest University of Technology and Economics, Budapest, Hungary – sequence: 4 givenname: T. surname: Hikmet Karakoc fullname: Hikmet Karakoc, T. email: hkarakoc@eskisehir.edu.tr organization: Faculty of Aeronautics and Astronautics, Eskisehir Technical University, Eskisehir, Turkey |
BookMark | eNqFkL1OwzAURj0UibbwBgweWVIcJ7ETBiRUlR-pEgvMlutcpy6pHWy3gjfgsUkbFhhgusP9vqN7zwSNrLOA0EVKZilJ2dVmBhZ88zGjhNJZSousYCM0JhkjSZHn9BRNQtgQQoqyqsboc2H3xju7BRtli2u5lQ1g5ULE0tYY3nuWgx8Z2Mt2J6NxNmCncWdCdBZ33nVY7s1xgcE2xkLA2nkc14DbHmZsc2RG-QqJ0xrr1jTriLu1DBDO0ImWbYDz7zlFL3eL5_lDsny6f5zfLhNFWRWTglPJK5mXPKc8Zassz9MSSk45K6u8ZjojBWOMalr3aybpqqy51rpccbUiQLMpuhy4_cFvOwhRbE1Q0PYXgtsFQTnNUsKzIuuj10NUeReCBy2Uicf_opemFSkRB-ViIwbl4qBcDMr7cv6r3Hmzlf7jv9rNUIPewd6AF0EZsApq40FFUTvzN-AL1zyj9Q |
CitedBy_id | crossref_primary_10_58559_ijes_1270530 crossref_primary_10_1007_s10973_023_11996_7 crossref_primary_10_3390_app13020971 crossref_primary_10_1016_j_energy_2022_126487 crossref_primary_10_1016_j_csite_2023_102806 crossref_primary_10_1016_j_ijhydene_2025_02_362 crossref_primary_10_1016_j_enconman_2024_118658 crossref_primary_10_1016_j_engfailanal_2023_107515 crossref_primary_10_1016_j_energy_2023_128156 crossref_primary_10_1016_j_energy_2023_127593 crossref_primary_10_1016_j_energy_2023_127508 |
Cites_doi | 10.1016/j.energy.2010.05.020 10.1108/AEAT-05-2017-0116 10.1504/IJGW.2022.120841 10.1016/j.enconman.2016.05.077 10.1007/s11356-022-21876-6 10.1016/j.jclepro.2011.07.027 10.1016/j.jclepro.2020.123729 10.1515/tjj-2017-0019 10.1016/j.energy.2021.122420 10.1080/15435075.2014.889003 10.3311/PPtr.14925 10.1016/j.energy.2019.116188 10.1002/ep.13578 10.1016/j.energy.2013.05.064 10.1016/j.energy.2022.123179 10.19206/CE-141890 10.1016/j.energy.2019.115894 10.1016/j.egyr.2022.07.157 10.1016/j.enconman.2022.115813 10.1016/j.egypro.2015.12.003 10.1016/j.renene.2019.04.109 10.1016/S0360-5442(02)00009-9 10.1007/s12544-013-0106-0 10.1016/j.enconman.2020.112765 10.1016/j.energy.2022.124620 10.1016/j.jclepro.2018.11.090 10.1002/er.6398 10.1016/j.enconman.2020.113232 10.1016/j.energy.2013.06.017 10.1016/j.energy.2020.117692 10.1007/s10973-020-09926-y 10.1515/tjj-2019-0005 10.1016/j.energy.2013.09.066 10.1080/15435075.2017.1358626 10.1016/j.energy.2012.01.042 10.1016/j.energy.2022.124827 10.1016/j.energy.2022.123725 10.1016/j.energy.2008.07.018 10.1016/j.energy.2019.05.171 10.3390/en15041422 |
ContentType | Journal Article |
Copyright | 2022 |
Copyright_xml | – notice: 2022 |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.energy.2022.125356 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Environmental Sciences |
ExternalDocumentID | 10_1016_j_energy_2022_125356 S0360544222022381 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SAC SEW SSH WUQ 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c269t-572a79a48742716b34418e87276894d6f3056662f2d7166a2b8d7fff8b7cb0e23 |
IEDL.DBID | .~1 |
ISSN | 0360-5442 |
IngestDate | Fri Sep 05 14:39:08 EDT 2025 Tue Jul 01 04:19:42 EDT 2025 Thu Apr 24 23:05:36 EDT 2025 Fri Feb 23 02:37:45 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Life cycle assessment analysis Exergoenvironmantal analysis Specific exergoenvironmental impact Environmental damage cost Specific environmental impact point cost Exergoenvironmental factor |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c269t-572a79a48742716b34418e87276894d6f3056662f2d7166a2b8d7fff8b7cb0e23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6465-8387 0000-0001-9178-5138 |
PQID | 2723107353 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2723107353 crossref_citationtrail_10_1016_j_energy_2022_125356 crossref_primary_10_1016_j_energy_2022_125356 elsevier_sciencedirect_doi_10_1016_j_energy_2022_125356 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-15 |
PublicationDateYYYYMMDD | 2022-12-15 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Energy (Oxford) |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Balli, Ekici, Karakoc (bib15) 2021; 40 Boyano, Blanco-Marigort, Morosuk, Tsatsaronis (bib47) 2011; 36 Kalivoda, Kudrna (bib32) 1997 Balli, Dalkiran, Karakoc (bib36) 2022; 26 Altuntas, Karakoc, Hepbasli (bib16) 2012; 32 Goedkoop, Effting, Collignon (bib46) 2000 Meyer, Tsatsaronis, Buchgeister, Schebek (bib53) 2009; 34 Akdeniz (bib2) 2022; 243 Continental A.erospaceTechnogies. 540 AVGAS engine series. https://www.continental.aero/uploadedFiles/Content/Engines/Gasoline_engines/550AvGas-SpecSheet.pdfaccessed date: 15 April 2022. Aygun, Turan (bib44) 2021; 279 Rohacs, Kale, Rohacs (bib9) 2022; 239 Petrakopoulou, Tsatsaronis, Morosuk, Paitazoglou (bib57) 2012; 45 Ekici, Orhan, Sohret, Altuntas, Karakoc (bib12) 2022; 39 Blumberg, Lee, Morosuk, Tsatsaronis (bib58) 2019; 181 https://jet-a1-fuel.com/Avgas 100LL Price, accessed date: 02 April 2022. (bib25) June 2006 Koruyucu, Ekici, Karakoc (bib13) 2020 Balli, Kale, Rohács, Karakoc (bib28) 2022; 8 Tsatsaronis (bib59) 2011 Balli, Karakoc (bib11) 2022; 256 Balli (bib10) 2022; 266 (bib24) October 2005 Hadelu, Boyaghchi (bib51) 2020; 216 Cavalcanti, da Silva, Carvalho (bib56) 2022; 15 Aghbashlo, Tabatabaei, Soltanian, Ghanavati (bib50) 2019; 143 Caglayan, Caliskan (bib54) 2022; 52 Balli (bib6) 2020; 37 Boyano, Morosuk, Blanco-Marigorta, Tsatsaronis (bib48) 2012; 20 Smoot, G. What is the carbon footprint of aviation/jet fuel? A Life Cycle Assessment.https://impactful.ninja/the-carbon-footprint-of-aviation-jet-fuel/accessed date: 15 April 2022. Cavalcanti, Carvalho, da Silva (bib55) 2020; 222 Atilgan, Turan, Altuntas, Aydin (bib43) 2019; 186 Winther, Rypdal (bib31) 2019 Toffolo, Lazzaretto (bib35) 2002; 27 Goedkoop, Spriensma (bib61) June 2001 Balli, Hepbasli (bib5) 2014; 64 Carlucci, Ficarella, Trullo (bib19) 2016; 122 Yildirim, Altuntas, Mahir, Karakoc (bib20) 2017; 14 Lycoming. 540 Series six-cylinder engines.https://www.lycoming.com/sites/default/files/series-engine-540_0.png accessed date: 15 April 2022. Atilgan, Turan, Altuntas, Aydin, Synylo (bib42) 2013; 58 (bib1) September 2019 Sohret, Ekici, Altuntas, Karakoc (bib21) 2018; 91 Ekici, Orhan, Gumus, Bahce (bib3) 2022; 258 Balli (bib7) 2022; 250 https://www.cfinotebook.net/notebook/operation-of-aircraft-systems/powerplant accessed date: 15 April 2022. Czarnigowski, Rekas, Ścisłowski, Skiba, Trendak (bib22) 2021; 187 Khardi (bib4) 2014; 6 Altuntas (bib23) 2021; 145 Ansarinasab, Mehrpooya, Sadeghzadeh (bib45) 2019; 210 Szabados, Knaup, Bereczky (bib62) 2022; 50 Huang, Wang, Lub, Wang (bib52) 2020; 211 International Money Transfer. 1 EUR to USD- convert euros to US dollars. https://www.xe.com/currencyconverter/convert/?Amount=1&From=EUR&To=USD accessed date: 02 April 2022. Cavalcanti, Carvalho, Azevedo (bib60) 2019; 189 Balli, Ekici, Karakoc (bib30) 2021; 45 Published Online 08 July 2022. Continental A.erospaceTechnogies. 520 AVGAS engine series. https://www.continental.aero/uploadedFiles/Content/Engines/Gasoline_engines/520AvGas-SpecSheet.pdfaccessed date: 15 April 2022. https://www.ecocostsvalue.com/EVR/img/Ecocosts2022_V1-1_midpoint-tables.xlsx. Manesh, Navid, Blanco-Marigorta, Amidpour, Hamedi (bib49) 2013; 59 Ekici (bib14) 2020; 202 Donateo, Spedicato, Trullo, Carlucci, Ficarella (bib18) 2015; 82 Marimuthu, Al-Rabeei, Boha (bib8) 2022; 7 Balli O,Caliskan H. Environmental impact assessments of different auxiliary power units used for commercial aircraft by using global warming potential approach. Environ Sci Pollut Control Ser, 2022. https://www.ecocostsvalue.com/eco-costs/eco-costs-emissions/. Altuntas, Karakoc, Hepbasli (bib17) 2015; 12 Aghbashlo (10.1016/j.energy.2022.125356_bib50) 2019; 143 Meyer (10.1016/j.energy.2022.125356_bib53) 2009; 34 Atilgan (10.1016/j.energy.2022.125356_bib42) 2013; 58 Goedkoop (10.1016/j.energy.2022.125356_bib46) 2000 Winther (10.1016/j.energy.2022.125356_bib31) 2019 Petrakopoulou (10.1016/j.energy.2022.125356_bib57) 2012; 45 Balli (10.1016/j.energy.2022.125356_bib11) 2022; 256 Boyano (10.1016/j.energy.2022.125356_bib48) 2012; 20 Ekici (10.1016/j.energy.2022.125356_bib3) 2022; 258 Atilgan (10.1016/j.energy.2022.125356_bib43) 2019; 186 Balli (10.1016/j.energy.2022.125356_bib5) 2014; 64 Carlucci (10.1016/j.energy.2022.125356_bib19) 2016; 122 10.1016/j.energy.2022.125356_bib41 10.1016/j.energy.2022.125356_bib40 Hadelu (10.1016/j.energy.2022.125356_bib51) 2020; 216 Balli (10.1016/j.energy.2022.125356_bib10) 2022; 266 Ekici (10.1016/j.energy.2022.125356_bib14) 2020; 202 Kalivoda (10.1016/j.energy.2022.125356_bib32) 1997 Aygun (10.1016/j.energy.2022.125356_bib44) 2021; 279 Ekici (10.1016/j.energy.2022.125356_bib12) 2022; 39 Huang (10.1016/j.energy.2022.125356_bib52) 2020; 211 Szabados (10.1016/j.energy.2022.125356_bib62) 2022; 50 Akdeniz (10.1016/j.energy.2022.125356_bib2) 2022; 243 Balli (10.1016/j.energy.2022.125356_bib36) 2022; 26 Balli (10.1016/j.energy.2022.125356_bib28) 2022; 8 Balli (10.1016/j.energy.2022.125356_bib6) 2020; 37 (10.1016/j.energy.2022.125356_bib24) 2005 Manesh (10.1016/j.energy.2022.125356_bib49) 2013; 59 Balli (10.1016/j.energy.2022.125356_bib15) 2021; 40 Altuntas (10.1016/j.energy.2022.125356_bib23) 2021; 145 (10.1016/j.energy.2022.125356_bib1) 2019 Koruyucu (10.1016/j.energy.2022.125356_bib13) 2020 Marimuthu (10.1016/j.energy.2022.125356_bib8) 2022; 7 Balli (10.1016/j.energy.2022.125356_bib30) 2021; 45 Altuntas (10.1016/j.energy.2022.125356_bib17) 2015; 12 Khardi (10.1016/j.energy.2022.125356_bib4) 2014; 6 Toffolo (10.1016/j.energy.2022.125356_bib35) 2002; 27 (10.1016/j.energy.2022.125356_bib25) 2006 10.1016/j.energy.2022.125356_bib27 Cavalcanti (10.1016/j.energy.2022.125356_bib56) 2022; 15 10.1016/j.energy.2022.125356_bib26 10.1016/j.energy.2022.125356_bib29 Caglayan (10.1016/j.energy.2022.125356_bib54) 2022; 52 Goedkoop (10.1016/j.energy.2022.125356_bib61) 2001 Altuntas (10.1016/j.energy.2022.125356_bib16) 2012; 32 Donateo (10.1016/j.energy.2022.125356_bib18) 2015; 82 Sohret (10.1016/j.energy.2022.125356_bib21) 2018; 91 Ansarinasab (10.1016/j.energy.2022.125356_bib45) 2019; 210 Cavalcanti (10.1016/j.energy.2022.125356_bib60) 2019; 189 Tsatsaronis (10.1016/j.energy.2022.125356_bib59) 2011 Blumberg (10.1016/j.energy.2022.125356_bib58) 2019; 181 Czarnigowski (10.1016/j.energy.2022.125356_bib22) 2021; 187 Cavalcanti (10.1016/j.energy.2022.125356_bib55) 2020; 222 10.1016/j.energy.2022.125356_bib38 10.1016/j.energy.2022.125356_bib37 10.1016/j.energy.2022.125356_bib39 Boyano (10.1016/j.energy.2022.125356_bib47) 2011; 36 Yildirim (10.1016/j.energy.2022.125356_bib20) 2017; 14 Balli (10.1016/j.energy.2022.125356_bib7) 2022; 250 10.1016/j.energy.2022.125356_bib34 10.1016/j.energy.2022.125356_bib33 Rohacs (10.1016/j.energy.2022.125356_bib9) 2022; 239 |
References_xml | – volume: 32 start-page: 133 year: 2012 end-page: 143 ident: bib16 article-title: Exergetic, exergoeconomic and sustainability assessments of piston-prop aircraft engines publication-title: J Therm Sci Technol – reference: Smoot, G. What is the carbon footprint of aviation/jet fuel? A Life Cycle Assessment.https://impactful.ninja/the-carbon-footprint-of-aviation-jet-fuel/accessed date: 15 April 2022. – year: 2019 ident: bib31 article-title: EMEP/EEA air pollutnt emission inventory guide book – volume: 222 year: 2020 ident: bib55 article-title: Energy, exergy and exergoenvironmental analyses of a sugarcane bagasse power cogeneration system publication-title: Energy Convers Manag – volume: 189 year: 2019 ident: bib60 article-title: Exergoenvironmental results of a eucalyptud biomass-fired power plant publication-title: Energy – year: June 2006 ident: bib25 article-title: IO-540 series operator's Manual.Lycoming Part Number: 60297-10 – volume: 36 start-page: 2202 year: 2011 end-page: 2214 ident: bib47 article-title: Exergoenvironmental analysis of a steam methane reforming process for hydrogen production publication-title: Energy – volume: 7 start-page: 1 year: 2022 end-page: 9 ident: bib8 article-title: Three-dimensional analysis of biomimetic aerofoil inTransonic flow publication-title: Biomimetics – year: June 2001 ident: bib61 article-title: The eco-indicador 99: a damage oriented method for life cycle impact assessment e methodology report – year: September 2019 ident: bib1 article-title: Aviation: benefits beyond borders – volume: 8 start-page: 9828 year: 2022 end-page: 9845 ident: bib28 article-title: Exergoenvironmental, environmental impact and damage cost analyses of a micro turbojet engine (m-TJE) publication-title: Energy Rep – year: 2020 ident: bib13 article-title: Performing thermodynamic analysis by simulating the general characteristics of the two-spool turbojet engine suitable for drone and UAV propulsion publication-title: J Therm Anal Calorim – volume: 45 start-page: 23 year: 2012 end-page: 30 ident: bib57 article-title: Environmental evaluation of a power plant using conventional and advanced exergy-based methods publication-title: Energy – volume: 20 start-page: 152 year: 2012 end-page: 160 ident: bib48 article-title: Conventional and advanced exergoenvironmental analysis of a steam methane reforming reactor for hydrogen production publication-title: J Clean Prod – volume: 187 start-page: 83 year: 2021 end-page: 89 ident: bib22 article-title: Analysis of operating parameters of the aircraft piston engine in real operating conditions publication-title: Combustion Engines – volume: 122 start-page: 279 year: 2016 end-page: 289 ident: bib19 article-title: Performance optimization of a Two-Stroke supercharged diesel engine for aircraft propulsion publication-title: Energy Convers Manag – volume: 266 year: 2022 ident: bib10 article-title: Life cycle assessment and exergoenvironmental analyses for making a decision in the fuel selection for aero-engines: an application for a medium-size turboprop engine (m-TPE) publication-title: Energy Convers Manag – reference: International Money Transfer. 1 EUR to USD- convert euros to US dollars. https://www.xe.com/currencyconverter/convert/?Amount=1&From=EUR&To=USD accessed date: 02 April 2022. – volume: 12 start-page: 2 year: 2015 end-page: 14 ident: bib17 article-title: A parametric study of a piston-prop aircraft engine using exergy and exergoeconomic analysis methods publication-title: Int J Green Energy – volume: 58 start-page: 664 year: 2013 end-page: 671 ident: bib42 article-title: Environmental impact assessment of a turboprop engine with the aid of exergy publication-title: Energy – reference: https://jet-a1-fuel.com/Avgas 100LL Price, accessed date: 02 April 2022. – volume: 186 year: 2019 ident: bib43 article-title: Dynamic exergo-environmental analysis of a turboprop aircraft engine at various torques publication-title: Energy – volume: 52 year: 2022 ident: bib54 article-title: Life cycle assessment based exergoenvironmental analysis of a cogeneration system used for ceramic factories publication-title: Sustain Energy Technol Assessments – volume: 27 start-page: 549 year: 2002 end-page: 567 ident: bib35 article-title: Evolutionary algorithms for multiobjective energetic and economic optimization in thermal system design publication-title: energy – reference: Continental A.erospaceTechnogies. 520 AVGAS engine series. https://www.continental.aero/uploadedFiles/Content/Engines/Gasoline_engines/520AvGas-SpecSheet.pdfaccessed date: 15 April 2022. – reference: Lycoming. 540 Series six-cylinder engines.https://www.lycoming.com/sites/default/files/series-engine-540_0.png accessed date: 15 April 2022. – volume: 258 year: 2022 ident: bib3 article-title: A policy on the externality problem and solution suggestions in air transportation: the environment and sustainability publication-title: Energy – reference: , Published Online 08 July 2022. – volume: 256 year: 2022 ident: bib11 article-title: Exergetic, exergoeconomic, exergoenvironmental damage cost and impact analyses of an aircraft turbofan engine(ATFE) publication-title: Energy – volume: 239 year: 2022 ident: bib9 article-title: Radically new solutions for reducing the energy use by future aircraft and their operations publication-title: Energy – volume: 202 year: 2020 ident: bib14 article-title: Thermodynamic mapping of A321-200 in terms of performance parameters, sustainability indicators and thermo-ecological performance at various flight phases publication-title: Energy – volume: 37 start-page: 167 year: 2020 end-page: 194 ident: bib6 article-title: Exergetic, exergoeconomic, sustainability and environmental damage cost analyses of J85 turbojet engine with afterburner publication-title: Int J Turbo Jet Engines – volume: 14 start-page: 1093 year: 2017 end-page: 1099 ident: bib20 article-title: Energy, exergy analysis, and sustainability assessment of different engine powers for helicopter engines publication-title: Int J Green Energy – volume: 6 start-page: 71 year: 2014 end-page: 84 ident: bib4 article-title: Environmental impact reduction of commercial aircraft around airports. Less noise and less fuel consumption publication-title: Eur. Transp. Res. Rev. – volume: 279 year: 2021 ident: bib44 article-title: Environmental impact of an aircraft engine with exergo-life cycle assessment on dynamic flight publication-title: J Clean Prod – volume: 210 start-page: 530 year: 2019 end-page: 541 ident: bib45 article-title: An exergy-based investigation on hydrogen liquefaction plant-exergy, exergoeconomic, and exergoenvironmental analyses publication-title: J Clean Prod – volume: 59 start-page: 314 year: 2013 end-page: 333 ident: bib49 article-title: New procedure for optimal design and evaluation of cogeneration system based on advanced exergoeconomic and exergoenvironmental analyses publication-title: Energy – volume: 211 year: 2020 ident: bib52 article-title: Exergoeconomic and exergoenvironmental analysis of a combined heating and power system driven by geothermal source publication-title: Energy Convers Manag – year: 1997 ident: bib32 article-title: Methodologies for estimating emissions from air traffic, MEET Deliverable No:18, the European Comission – volume: 250 year: 2022 ident: bib7 article-title: Thermodynamic, thermoenvironmental and thermoeconomic analyses of piston-prop engines (PPEs) for landing and take-off (LTO) flight phases publication-title: Energy – volume: 40 year: 2021 ident: bib15 article-title: TF33 Turbofan engine in every respect: performance,environmental, and sustainability assessment publication-title: Environ Prog Sustain Energy – reference: Continental A.erospaceTechnogies. 540 AVGAS engine series. https://www.continental.aero/uploadedFiles/Content/Engines/Gasoline_engines/550AvGas-SpecSheet.pdfaccessed date: 15 April 2022. – volume: 64 start-page: 582 year: 2014 end-page: 600 ident: bib5 article-title: Exergoeconomic, sustainability and environmental damage cost analyses of T56 turboprop engine publication-title: At Energ – year: 2000 ident: bib46 article-title: The eco-indicator 99: a damage oriented method for life-cycle impact assessment: manual for designers – volume: 181 start-page: 1273 year: 2019 end-page: 1284 ident: bib58 article-title: Exergoenvironmental analysis of methanol production by steam reforming and auto thermal reforming of natural gas publication-title: Energy – volume: 50 start-page: 11 year: 2022 end-page: 22 ident: bib62 article-title: ICE relevant physical-chemical properties and air pollutant emission of renewable transport fuels from different generations – an overview publication-title: Period Polytech Transp Eng – volume: 145 start-page: 659 year: 2021 end-page: 667 ident: bib23 article-title: Comparing diferent piston-prop aircraft engines with combustion efciency and exergy publication-title: J Therm Anal Calorim – volume: 143 start-page: 64 year: 2019 end-page: 76 ident: bib50 article-title: Biopower and biofertilizer production from organic municipal solid waste: an exergoenvironmental analysis publication-title: Renew Energy – reference: https://www.ecocostsvalue.com/EVR/img/Ecocosts2022_V1-1_midpoint-tables.xlsx. – year: October 2005 ident: bib24 article-title: TIO-360 series operator's manual. Lycoming Part Number: 60297-12 – volume: 34 start-page: 75 year: 2009 end-page: 89 ident: bib53 article-title: Exergoenvironmental analysis for evaluation of the environmental impact of energy conversion systems publication-title: Energy – volume: 91 start-page: 987 year: 2018 end-page: 993 ident: bib21 article-title: LCA of the maintenance of a piston-prop engine publication-title: Aircraft Eng Aero Technol – volume: 26 start-page: 162 year: 2022 end-page: 178 ident: bib36 article-title: Environmental damage analysis of GE90 turbofan engines used on Boeing 777 aircraft publication-title: Int J Glob Warming – volume: 15 start-page: 1422 year: 2022 ident: bib56 article-title: Life cycle and exergoenvironmental analyses of ethanol: performance of a flex-fuel spark-ignition engine at wide-open throttle conditions publication-title: Energies – reference: Balli O,Caliskan H. Environmental impact assessments of different auxiliary power units used for commercial aircraft by using global warming potential approach. Environ Sci Pollut Control Ser, 2022. – volume: 243 year: 2022 ident: bib2 article-title: Landing and take-off (LTO) flight phase performances of various piston-prop aviation engines in terms of energy, exergy, irreversibility, aviation, sustainability and environmental viewpoints publication-title: Energy – reference: https://www.cfinotebook.net/notebook/operation-of-aircraft-systems/powerplant accessed date: 15 April 2022. – volume: 216 year: 2020 ident: bib51 article-title: Exergoeconomic and exergoenvironmental analyses and optimization of different ejector based two stage expander-organic flash cycles fuelled by by solar energy publication-title: Energy Convers Manag – start-page: 377 year: 2011 end-page: 401 ident: bib59 article-title: Exergoeconomics and exergoenvironmental analysis publication-title: Thermodynamics and the destruction of sources – volume: 82 start-page: 119 year: 2015 end-page: 124 ident: bib18 article-title: Sizing and simulation of a piston-prop UAV publication-title: Energy Proc – volume: 45 start-page: 8620 year: 2021 end-page: 8638 ident: bib30 article-title: Achieving a more efficient and greener combined heat and power system driven by a micro gas turbine engine: issues, opportunities, and benefits in the presence of thermodynamic perspective publication-title: Int J Energy Res – reference: https://www.ecocostsvalue.com/eco-costs/eco-costs-emissions/. – volume: 39 start-page: 233 year: 2022 end-page: 240 ident: bib12 article-title: Calculating endogenous and exogenous exergy destruction for an experimental turbojet engine publication-title: Int J Turbo Jet Engines – volume: 36 start-page: 2202 year: 2011 ident: 10.1016/j.energy.2022.125356_bib47 article-title: Exergoenvironmental analysis of a steam methane reforming process for hydrogen production publication-title: Energy doi: 10.1016/j.energy.2010.05.020 – volume: 91 start-page: 987 issue: 7 year: 2018 ident: 10.1016/j.energy.2022.125356_bib21 article-title: LCA of the maintenance of a piston-prop engine publication-title: Aircraft Eng Aero Technol doi: 10.1108/AEAT-05-2017-0116 – volume: 26 start-page: 162 issue: 2 year: 2022 ident: 10.1016/j.energy.2022.125356_bib36 article-title: Environmental damage analysis of GE90 turbofan engines used on Boeing 777 aircraft publication-title: Int J Glob Warming doi: 10.1504/IJGW.2022.120841 – ident: 10.1016/j.energy.2022.125356_bib41 – ident: 10.1016/j.energy.2022.125356_bib26 – volume: 122 start-page: 279 year: 2016 ident: 10.1016/j.energy.2022.125356_bib19 article-title: Performance optimization of a Two-Stroke supercharged diesel engine for aircraft propulsion publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2016.05.077 – ident: 10.1016/j.energy.2022.125356_bib37 doi: 10.1007/s11356-022-21876-6 – volume: 20 start-page: 152 year: 2012 ident: 10.1016/j.energy.2022.125356_bib48 article-title: Conventional and advanced exergoenvironmental analysis of a steam methane reforming reactor for hydrogen production publication-title: J Clean Prod doi: 10.1016/j.jclepro.2011.07.027 – volume: 279 year: 2021 ident: 10.1016/j.energy.2022.125356_bib44 article-title: Environmental impact of an aircraft engine with exergo-life cycle assessment on dynamic flight publication-title: J Clean Prod doi: 10.1016/j.jclepro.2020.123729 – volume: 37 start-page: 167 year: 2020 ident: 10.1016/j.energy.2022.125356_bib6 article-title: Exergetic, exergoeconomic, sustainability and environmental damage cost analyses of J85 turbojet engine with afterburner publication-title: Int J Turbo Jet Engines doi: 10.1515/tjj-2017-0019 – volume: 239 year: 2022 ident: 10.1016/j.energy.2022.125356_bib9 article-title: Radically new solutions for reducing the energy use by future aircraft and their operations publication-title: Energy doi: 10.1016/j.energy.2021.122420 – volume: 12 start-page: 2 issue: 1 year: 2015 ident: 10.1016/j.energy.2022.125356_bib17 article-title: A parametric study of a piston-prop aircraft engine using exergy and exergoeconomic analysis methods publication-title: Int J Green Energy doi: 10.1080/15435075.2014.889003 – volume: 50 start-page: 11 issue: 1 year: 2022 ident: 10.1016/j.energy.2022.125356_bib62 article-title: ICE relevant physical-chemical properties and air pollutant emission of renewable transport fuels from different generations – an overview publication-title: Period Polytech Transp Eng doi: 10.3311/PPtr.14925 – year: 2019 ident: 10.1016/j.energy.2022.125356_bib1 – volume: 52 year: 2022 ident: 10.1016/j.energy.2022.125356_bib54 article-title: Life cycle assessment based exergoenvironmental analysis of a cogeneration system used for ceramic factories publication-title: Sustain Energy Technol Assessments – volume: 189 year: 2019 ident: 10.1016/j.energy.2022.125356_bib60 article-title: Exergoenvironmental results of a eucalyptud biomass-fired power plant publication-title: Energy doi: 10.1016/j.energy.2019.116188 – volume: 7 start-page: 1 issue: 20 year: 2022 ident: 10.1016/j.energy.2022.125356_bib8 article-title: Three-dimensional analysis of biomimetic aerofoil inTransonic flow publication-title: Biomimetics – volume: 40 year: 2021 ident: 10.1016/j.energy.2022.125356_bib15 article-title: TF33 Turbofan engine in every respect: performance,environmental, and sustainability assessment publication-title: Environ Prog Sustain Energy doi: 10.1002/ep.13578 – year: 2006 ident: 10.1016/j.energy.2022.125356_bib25 – volume: 58 start-page: 664 issue: 43 year: 2013 ident: 10.1016/j.energy.2022.125356_bib42 article-title: Environmental impact assessment of a turboprop engine with the aid of exergy publication-title: Energy doi: 10.1016/j.energy.2013.05.064 – volume: 243 year: 2022 ident: 10.1016/j.energy.2022.125356_bib2 article-title: Landing and take-off (LTO) flight phase performances of various piston-prop aviation engines in terms of energy, exergy, irreversibility, aviation, sustainability and environmental viewpoints publication-title: Energy doi: 10.1016/j.energy.2022.123179 – volume: 187 start-page: 83 issue: 4 year: 2021 ident: 10.1016/j.energy.2022.125356_bib22 article-title: Analysis of operating parameters of the aircraft piston engine in real operating conditions publication-title: Combustion Engines doi: 10.19206/CE-141890 – year: 2019 ident: 10.1016/j.energy.2022.125356_bib31 – volume: 186 year: 2019 ident: 10.1016/j.energy.2022.125356_bib43 article-title: Dynamic exergo-environmental analysis of a turboprop aircraft engine at various torques publication-title: Energy doi: 10.1016/j.energy.2019.115894 – volume: 32 start-page: 133 issue: 2 year: 2012 ident: 10.1016/j.energy.2022.125356_bib16 article-title: Exergetic, exergoeconomic and sustainability assessments of piston-prop aircraft engines publication-title: J Therm Sci Technol – ident: 10.1016/j.energy.2022.125356_bib27 – volume: 8 start-page: 9828 year: 2022 ident: 10.1016/j.energy.2022.125356_bib28 article-title: Exergoenvironmental, environmental impact and damage cost analyses of a micro turbojet engine (m-TJE) publication-title: Energy Rep doi: 10.1016/j.egyr.2022.07.157 – ident: 10.1016/j.energy.2022.125356_bib40 – volume: 266 year: 2022 ident: 10.1016/j.energy.2022.125356_bib10 article-title: Life cycle assessment and exergoenvironmental analyses for making a decision in the fuel selection for aero-engines: an application for a medium-size turboprop engine (m-TPE) publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2022.115813 – volume: 82 start-page: 119 year: 2015 ident: 10.1016/j.energy.2022.125356_bib18 article-title: Sizing and simulation of a piston-prop UAV publication-title: Energy Proc doi: 10.1016/j.egypro.2015.12.003 – volume: 143 start-page: 64 year: 2019 ident: 10.1016/j.energy.2022.125356_bib50 article-title: Biopower and biofertilizer production from organic municipal solid waste: an exergoenvironmental analysis publication-title: Renew Energy doi: 10.1016/j.renene.2019.04.109 – volume: 27 start-page: 549 year: 2002 ident: 10.1016/j.energy.2022.125356_bib35 article-title: Evolutionary algorithms for multiobjective energetic and economic optimization in thermal system design publication-title: energy doi: 10.1016/S0360-5442(02)00009-9 – volume: 216 year: 2020 ident: 10.1016/j.energy.2022.125356_bib51 article-title: Exergoeconomic and exergoenvironmental analyses and optimization of different ejector based two stage expander-organic flash cycles fuelled by by solar energy publication-title: Energy Convers Manag – volume: 6 start-page: 71 year: 2014 ident: 10.1016/j.energy.2022.125356_bib4 article-title: Environmental impact reduction of commercial aircraft around airports. Less noise and less fuel consumption publication-title: Eur. Transp. Res. Rev. doi: 10.1007/s12544-013-0106-0 – ident: 10.1016/j.energy.2022.125356_bib33 – volume: 211 year: 2020 ident: 10.1016/j.energy.2022.125356_bib52 article-title: Exergoeconomic and exergoenvironmental analysis of a combined heating and power system driven by geothermal source publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2020.112765 – year: 1997 ident: 10.1016/j.energy.2022.125356_bib32 – volume: 256 year: 2022 ident: 10.1016/j.energy.2022.125356_bib11 article-title: Exergetic, exergoeconomic, exergoenvironmental damage cost and impact analyses of an aircraft turbofan engine(ATFE) publication-title: Energy doi: 10.1016/j.energy.2022.124620 – volume: 210 start-page: 530 year: 2019 ident: 10.1016/j.energy.2022.125356_bib45 article-title: An exergy-based investigation on hydrogen liquefaction plant-exergy, exergoeconomic, and exergoenvironmental analyses publication-title: J Clean Prod doi: 10.1016/j.jclepro.2018.11.090 – year: 2000 ident: 10.1016/j.energy.2022.125356_bib46 – volume: 45 start-page: 8620 year: 2021 ident: 10.1016/j.energy.2022.125356_bib30 article-title: Achieving a more efficient and greener combined heat and power system driven by a micro gas turbine engine: issues, opportunities, and benefits in the presence of thermodynamic perspective publication-title: Int J Energy Res doi: 10.1002/er.6398 – year: 2005 ident: 10.1016/j.energy.2022.125356_bib24 – ident: 10.1016/j.energy.2022.125356_bib34 – year: 2020 ident: 10.1016/j.energy.2022.125356_bib13 article-title: Performing thermodynamic analysis by simulating the general characteristics of the two-spool turbojet engine suitable for drone and UAV propulsion publication-title: J Therm Anal Calorim – ident: 10.1016/j.energy.2022.125356_bib38 – volume: 222 year: 2020 ident: 10.1016/j.energy.2022.125356_bib55 article-title: Energy, exergy and exergoenvironmental analyses of a sugarcane bagasse power cogeneration system publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2020.113232 – volume: 59 start-page: 314 year: 2013 ident: 10.1016/j.energy.2022.125356_bib49 article-title: New procedure for optimal design and evaluation of cogeneration system based on advanced exergoeconomic and exergoenvironmental analyses publication-title: Energy doi: 10.1016/j.energy.2013.06.017 – volume: 202 year: 2020 ident: 10.1016/j.energy.2022.125356_bib14 article-title: Thermodynamic mapping of A321-200 in terms of performance parameters, sustainability indicators and thermo-ecological performance at various flight phases publication-title: Energy doi: 10.1016/j.energy.2020.117692 – volume: 145 start-page: 659 year: 2021 ident: 10.1016/j.energy.2022.125356_bib23 article-title: Comparing diferent piston-prop aircraft engines with combustion efciency and exergy publication-title: J Therm Anal Calorim doi: 10.1007/s10973-020-09926-y – volume: 39 start-page: 233 issue: 2 year: 2022 ident: 10.1016/j.energy.2022.125356_bib12 article-title: Calculating endogenous and exogenous exergy destruction for an experimental turbojet engine publication-title: Int J Turbo Jet Engines doi: 10.1515/tjj-2019-0005 – volume: 64 start-page: 582 year: 2014 ident: 10.1016/j.energy.2022.125356_bib5 article-title: Exergoeconomic, sustainability and environmental damage cost analyses of T56 turboprop engine publication-title: At Energ doi: 10.1016/j.energy.2013.09.066 – start-page: 377 year: 2011 ident: 10.1016/j.energy.2022.125356_bib59 article-title: Exergoeconomics and exergoenvironmental analysis – volume: 14 start-page: 1093 issue: 13 year: 2017 ident: 10.1016/j.energy.2022.125356_bib20 article-title: Energy, exergy analysis, and sustainability assessment of different engine powers for helicopter engines publication-title: Int J Green Energy doi: 10.1080/15435075.2017.1358626 – ident: 10.1016/j.energy.2022.125356_bib29 – volume: 45 start-page: 23 issue: 1 year: 2012 ident: 10.1016/j.energy.2022.125356_bib57 article-title: Environmental evaluation of a power plant using conventional and advanced exergy-based methods publication-title: Energy doi: 10.1016/j.energy.2012.01.042 – volume: 258 year: 2022 ident: 10.1016/j.energy.2022.125356_bib3 article-title: A policy on the externality problem and solution suggestions in air transportation: the environment and sustainability publication-title: Energy doi: 10.1016/j.energy.2022.124827 – year: 2001 ident: 10.1016/j.energy.2022.125356_bib61 – volume: 250 year: 2022 ident: 10.1016/j.energy.2022.125356_bib7 article-title: Thermodynamic, thermoenvironmental and thermoeconomic analyses of piston-prop engines (PPEs) for landing and take-off (LTO) flight phases publication-title: Energy doi: 10.1016/j.energy.2022.123725 – volume: 34 start-page: 75 year: 2009 ident: 10.1016/j.energy.2022.125356_bib53 article-title: Exergoenvironmental analysis for evaluation of the environmental impact of energy conversion systems publication-title: Energy doi: 10.1016/j.energy.2008.07.018 – ident: 10.1016/j.energy.2022.125356_bib39 – volume: 181 start-page: 1273 year: 2019 ident: 10.1016/j.energy.2022.125356_bib58 article-title: Exergoenvironmental analysis of methanol production by steam reforming and auto thermal reforming of natural gas publication-title: Energy doi: 10.1016/j.energy.2019.05.171 – volume: 15 start-page: 1422 year: 2022 ident: 10.1016/j.energy.2022.125356_bib56 article-title: Life cycle and exergoenvironmental analyses of ethanol: performance of a flex-fuel spark-ignition engine at wide-open throttle conditions publication-title: Energies doi: 10.3390/en15041422 |
SSID | ssj0005899 |
Score | 2.4629836 |
Snippet | This study presents a comprehensive investigation of the environmental damage cost, exergoenvironmental and life cycle assessment (LCA) analyses of four piston... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 125356 |
SubjectTerms | aviation energy energy use and consumption Environmental damage cost environmental impact Exergoenvironmantal analysis Exergoenvironmental factor flight life cycle assessment Life cycle assessment analysis Specific environmental impact point cost Specific exergoenvironmental impact thermodynamics |
Title | Environmental damage cost and exergoenvironmental evaluations of piston prop aviation engines for the landing and take-off flight phases |
URI | https://dx.doi.org/10.1016/j.energy.2022.125356 https://www.proquest.com/docview/2723107353 |
Volume | 261 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0360-5442 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0005899 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] issn: 0360-5442 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0005899 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2013 issn: 0360-5442 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0005899 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals issn: 0360-5442 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0005899 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0360-5442 databaseCode: AKRWK dateStart: 19760301 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BTtwwELUQHMoFAS0qFJAr9erdEDt29ohWi5ZW5dIicbNsx6bAkkRN4MiZz2bGSaCLKiFxTDy2LI8985zMmyHkm_HGKizfngQumXBFwkxiJcNMJ0cFuAwVeWs_z-T8XHy_yC5WyHTgwmBYZW_7O5serXX_Ztyv5ri-uhr_AtsLeAM_YYAf4pF-jdm_YE-PHv4J88hjDUkUZig90OdijJeP_LoRDjACT8-xjPX_3dMrQx29z8km2ehhIz3uZrZFVny5TT4MrOJmm-zMXhhrINgf2eYjeVxuKMwtWBDqqqalpiwolly6rPySzEsG8IZWgdaYfaCkMLWamvtOldTHPIYNBcxLAUPSRUePiWO25sazKgQaFnj1p_UfcJXNJ3J-Mvs9nbO-_AJzqZy0LFOpURMDNxqRwq3KckBOuc8B8Mh8IgoZ8PYhZRrSApqlSW1eqBBCbpWziU_5Dlktq9J_JjRLHPc-8U6ITHCbW5G54KRMwBooYYpdwodV167PTY4lMhZ6CEK71p2uNOpKd7raJey5V93l5nhDXg0K1Ut7TIP7eKPn10H_Go4f_lMxpa_uGp0qBMiKZ3zv3aN_Iev4hEEyR9k-WW3_3vkDgDqtPYx7-ZCsHZ_-mJ89ASmgACU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB6h5UAvFYWi8mhxpV7Nhjixs0eEQEuBvQASN8t2bKDdJhEJ_AZ-NjN5dLVVJSSu8diyMvY3M8l8MwA_jDdWUfv2KAjJE5dH3ERWcqp0cpijyVAtb-1yJqc3yc_b9HYFjgcuDKVV9tjfYXqL1v2Tcf82x9XDw_gKsRf9DfqEgXZIEP16NUkRk0ewenR2Pp0tMj2yto0kyXOaMDDo2jQv31LsDmiNAzT2gjpZ_99C_YPVrQE6XYePvefIjrrNfYIVX2zA2kAsrjdg62RBWkPB_tbWm_CyPJCbPwgizJV1w0yRM-q6dFf6JZlFEfCalYFVVICgYLi1ipnnTpvMt6UMa4ZuL0M3ks07hky7ZmN-e16GwMKcon9W3aO1rD_DzenJ9fGU9x0YuIvlpOGpio2aGAxqkhgDKyvQecp8hj6PzCZJLgMFIFLGIc5xWJrYZrkKIWRWORv5WGzBqCgL_wVYGjnhfeRdgkoSNrNJ6oKTMkJAUInJt0EMb127vjw5dcmY6yEP7ZfudKVJV7rT1Tbwv7OqrjzHG_JqUKheOmYaLcgbM78P-td4A-m3iil8-VTrWJGPrEQqdt69-j6sTa8vL_TF2ex8Fz7QCOXMHKZ7MGoen_xX9Hwa-60_2a_SxALQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Environmental+damage+cost+and+exergoenvironmental+evaluations+of+piston+prop+aviation+engines+for+the+landing+and+take-off+flight+phases&rft.jtitle=Energy+%28Oxford%29&rft.au=Balli%2C+Ozgur&rft.au=Kale%2C+Utku&rft.au=Roh%C3%A1cs%2C+D%C3%A1niel&rft.au=Hikmet+Karakoc%2C+T.&rft.date=2022-12-15&rft.pub=Elsevier+Ltd&rft.issn=0360-5442&rft.volume=261&rft_id=info:doi/10.1016%2Fj.energy.2022.125356&rft.externalDocID=S0360544222022381 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |