Environmental damage cost and exergoenvironmental evaluations of piston prop aviation engines for the landing and take-off flight phases

This study presents a comprehensive investigation of the environmental damage cost, exergoenvironmental and life cycle assessment (LCA) analyses of four piston prop aviation engines (AE) entitled as AE1, AE2, AE3,and AE4 for different flight conditions. The data of energetic, exergetic, economic, an...

Full description

Saved in:
Bibliographic Details
Published inEnergy (Oxford) Vol. 261; p. 125356
Main Authors Balli, Ozgur, Kale, Utku, Rohács, Dániel, Hikmet Karakoc, T.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.12.2022
Subjects
Online AccessGet full text
ISSN0360-5442
DOI10.1016/j.energy.2022.125356

Cover

Abstract This study presents a comprehensive investigation of the environmental damage cost, exergoenvironmental and life cycle assessment (LCA) analyses of four piston prop aviation engines (AE) entitled as AE1, AE2, AE3,and AE4 for different flight conditions. The data of energetic, exergetic, economic, and exergoeconomic as well as emission are firstly given as a briefly. Then, cost formation of environmental damages, LCA, and exergoenvironmental analyses are realized. AE3 has minimum specific environmental damage with 0.0380 $/MJ and the lowest specific exergoenvironmental cost with 0.360 $/MJ for take-off phase. Besides, minimum environmental impact values of engine shaft power are estimated to be 29.33 mPts/MJ for AE1 in taxi phase, 23.93 mPts/MJ for AE3 in take-off phase, 26.36 mPts/MJ for AE1 in climb-out phase, and 25.20 mPts/MJ for AE2 in approach phase. Fuel consumption is main contributor for environmental impact with over 89%. The highest relative environmental differences is occurred in AE4 by 1001.69% for taxi phase while AE1 has minimum exergoenvironmental factor. and AE3 has minimum values of environment impact point costs. As a result, AE3 is the best engine in the perspective of thermodynamically, economically and environmentally. •Environmental damage cost, exergoenvironmental and life cycle assessment analyses are done for piston prop aviation engines.•Investigation is realized for four different engine and landing and take-off flight (LTO) phases.•Fuel consumption is main contributor for environmental impact rate.•AE3 is the best engine in the perspective of thermodynamically, economically and environmentally.
AbstractList This study presents a comprehensive investigation of the environmental damage cost, exergoenvironmental and life cycle assessment (LCA) analyses of four piston prop aviation engines (AE) entitled as AE1, AE2, AE3,and AE4 for different flight conditions. The data of energetic, exergetic, economic, and exergoeconomic as well as emission are firstly given as a briefly. Then, cost formation of environmental damages, LCA, and exergoenvironmental analyses are realized. AE3 has minimum specific environmental damage with 0.0380 $/MJ and the lowest specific exergoenvironmental cost with 0.360 $/MJ for take-off phase. Besides, minimum environmental impact values of engine shaft power are estimated to be 29.33 mPts/MJ for AE1 in taxi phase, 23.93 mPts/MJ for AE3 in take-off phase, 26.36 mPts/MJ for AE1 in climb-out phase, and 25.20 mPts/MJ for AE2 in approach phase. Fuel consumption is main contributor for environmental impact with over 89%. The highest relative environmental differences is occurred in AE4 by 1001.69% for taxi phase while AE1 has minimum exergoenvironmental factor. and AE3 has minimum values of environment impact point costs. As a result, AE3 is the best engine in the perspective of thermodynamically, economically and environmentally.
This study presents a comprehensive investigation of the environmental damage cost, exergoenvironmental and life cycle assessment (LCA) analyses of four piston prop aviation engines (AE) entitled as AE1, AE2, AE3,and AE4 for different flight conditions. The data of energetic, exergetic, economic, and exergoeconomic as well as emission are firstly given as a briefly. Then, cost formation of environmental damages, LCA, and exergoenvironmental analyses are realized. AE3 has minimum specific environmental damage with 0.0380 $/MJ and the lowest specific exergoenvironmental cost with 0.360 $/MJ for take-off phase. Besides, minimum environmental impact values of engine shaft power are estimated to be 29.33 mPts/MJ for AE1 in taxi phase, 23.93 mPts/MJ for AE3 in take-off phase, 26.36 mPts/MJ for AE1 in climb-out phase, and 25.20 mPts/MJ for AE2 in approach phase. Fuel consumption is main contributor for environmental impact with over 89%. The highest relative environmental differences is occurred in AE4 by 1001.69% for taxi phase while AE1 has minimum exergoenvironmental factor. and AE3 has minimum values of environment impact point costs. As a result, AE3 is the best engine in the perspective of thermodynamically, economically and environmentally. •Environmental damage cost, exergoenvironmental and life cycle assessment analyses are done for piston prop aviation engines.•Investigation is realized for four different engine and landing and take-off flight (LTO) phases.•Fuel consumption is main contributor for environmental impact rate.•AE3 is the best engine in the perspective of thermodynamically, economically and environmentally.
ArticleNumber 125356
Author Balli, Ozgur
Kale, Utku
Hikmet Karakoc, T.
Rohács, Dániel
Author_xml – sequence: 1
  givenname: Ozgur
  orcidid: 0000-0001-6465-8387
  surname: Balli
  fullname: Balli, Ozgur
  email: balli07balli@yahoo.com
  organization: 1'st Air Maintenance Factory Directorate, Ministry of Turkey National Defence, Eskisehir, Turkey
– sequence: 2
  givenname: Utku
  orcidid: 0000-0001-9178-5138
  surname: Kale
  fullname: Kale, Utku
  email: kaleutku@kjk.bme.hu
  organization: Department of Aeronautics, and Naval Architecture, Faculty of Transportation Engineering and Vehicle Engineering, Budapest University of Technology and Economics, Budapest, Hungary
– sequence: 3
  givenname: Dániel
  surname: Rohács
  fullname: Rohács, Dániel
  email: daniel.rohacs@kjk.bme.hu
  organization: Department of Aeronautics, and Naval Architecture, Faculty of Transportation Engineering and Vehicle Engineering, Budapest University of Technology and Economics, Budapest, Hungary
– sequence: 4
  givenname: T.
  surname: Hikmet Karakoc
  fullname: Hikmet Karakoc, T.
  email: hkarakoc@eskisehir.edu.tr
  organization: Faculty of Aeronautics and Astronautics, Eskisehir Technical University, Eskisehir, Turkey
BookMark eNqFkL1OwzAURj0UibbwBgweWVIcJ7ETBiRUlR-pEgvMlutcpy6pHWy3gjfgsUkbFhhgusP9vqN7zwSNrLOA0EVKZilJ2dVmBhZ88zGjhNJZSousYCM0JhkjSZHn9BRNQtgQQoqyqsboc2H3xju7BRtli2u5lQ1g5ULE0tYY3nuWgx8Z2Mt2J6NxNmCncWdCdBZ33nVY7s1xgcE2xkLA2nkc14DbHmZsc2RG-QqJ0xrr1jTriLu1DBDO0ImWbYDz7zlFL3eL5_lDsny6f5zfLhNFWRWTglPJK5mXPKc8Zassz9MSSk45K6u8ZjojBWOMalr3aybpqqy51rpccbUiQLMpuhy4_cFvOwhRbE1Q0PYXgtsFQTnNUsKzIuuj10NUeReCBy2Uicf_opemFSkRB-ViIwbl4qBcDMr7cv6r3Hmzlf7jv9rNUIPewd6AF0EZsApq40FFUTvzN-AL1zyj9Q
CitedBy_id crossref_primary_10_58559_ijes_1270530
crossref_primary_10_1007_s10973_023_11996_7
crossref_primary_10_3390_app13020971
crossref_primary_10_1016_j_energy_2022_126487
crossref_primary_10_1016_j_csite_2023_102806
crossref_primary_10_1016_j_ijhydene_2025_02_362
crossref_primary_10_1016_j_enconman_2024_118658
crossref_primary_10_1016_j_engfailanal_2023_107515
crossref_primary_10_1016_j_energy_2023_128156
crossref_primary_10_1016_j_energy_2023_127593
crossref_primary_10_1016_j_energy_2023_127508
Cites_doi 10.1016/j.energy.2010.05.020
10.1108/AEAT-05-2017-0116
10.1504/IJGW.2022.120841
10.1016/j.enconman.2016.05.077
10.1007/s11356-022-21876-6
10.1016/j.jclepro.2011.07.027
10.1016/j.jclepro.2020.123729
10.1515/tjj-2017-0019
10.1016/j.energy.2021.122420
10.1080/15435075.2014.889003
10.3311/PPtr.14925
10.1016/j.energy.2019.116188
10.1002/ep.13578
10.1016/j.energy.2013.05.064
10.1016/j.energy.2022.123179
10.19206/CE-141890
10.1016/j.energy.2019.115894
10.1016/j.egyr.2022.07.157
10.1016/j.enconman.2022.115813
10.1016/j.egypro.2015.12.003
10.1016/j.renene.2019.04.109
10.1016/S0360-5442(02)00009-9
10.1007/s12544-013-0106-0
10.1016/j.enconman.2020.112765
10.1016/j.energy.2022.124620
10.1016/j.jclepro.2018.11.090
10.1002/er.6398
10.1016/j.enconman.2020.113232
10.1016/j.energy.2013.06.017
10.1016/j.energy.2020.117692
10.1007/s10973-020-09926-y
10.1515/tjj-2019-0005
10.1016/j.energy.2013.09.066
10.1080/15435075.2017.1358626
10.1016/j.energy.2012.01.042
10.1016/j.energy.2022.124827
10.1016/j.energy.2022.123725
10.1016/j.energy.2008.07.018
10.1016/j.energy.2019.05.171
10.3390/en15041422
ContentType Journal Article
Copyright 2022
Copyright_xml – notice: 2022
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.energy.2022.125356
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
ExternalDocumentID 10_1016_j_energy_2022_125356
S0360544222022381
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SAC
SEW
SSH
WUQ
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c269t-572a79a48742716b34418e87276894d6f3056662f2d7166a2b8d7fff8b7cb0e23
IEDL.DBID .~1
ISSN 0360-5442
IngestDate Fri Sep 05 14:39:08 EDT 2025
Tue Jul 01 04:19:42 EDT 2025
Thu Apr 24 23:05:36 EDT 2025
Fri Feb 23 02:37:45 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Life cycle assessment analysis
Exergoenvironmantal analysis
Specific exergoenvironmental impact
Environmental damage cost
Specific environmental impact point cost
Exergoenvironmental factor
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c269t-572a79a48742716b34418e87276894d6f3056662f2d7166a2b8d7fff8b7cb0e23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6465-8387
0000-0001-9178-5138
PQID 2723107353
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2723107353
crossref_citationtrail_10_1016_j_energy_2022_125356
crossref_primary_10_1016_j_energy_2022_125356
elsevier_sciencedirect_doi_10_1016_j_energy_2022_125356
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-15
PublicationDateYYYYMMDD 2022-12-15
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-15
  day: 15
PublicationDecade 2020
PublicationTitle Energy (Oxford)
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Balli, Ekici, Karakoc (bib15) 2021; 40
Boyano, Blanco-Marigort, Morosuk, Tsatsaronis (bib47) 2011; 36
Kalivoda, Kudrna (bib32) 1997
Balli, Dalkiran, Karakoc (bib36) 2022; 26
Altuntas, Karakoc, Hepbasli (bib16) 2012; 32
Goedkoop, Effting, Collignon (bib46) 2000
Meyer, Tsatsaronis, Buchgeister, Schebek (bib53) 2009; 34
Akdeniz (bib2) 2022; 243
Continental A.erospaceTechnogies. 540 AVGAS engine series. https://www.continental.aero/uploadedFiles/Content/Engines/Gasoline_engines/550AvGas-SpecSheet.pdfaccessed date: 15 April 2022.
Aygun, Turan (bib44) 2021; 279
Rohacs, Kale, Rohacs (bib9) 2022; 239
Petrakopoulou, Tsatsaronis, Morosuk, Paitazoglou (bib57) 2012; 45
Ekici, Orhan, Sohret, Altuntas, Karakoc (bib12) 2022; 39
Blumberg, Lee, Morosuk, Tsatsaronis (bib58) 2019; 181
https://jet-a1-fuel.com/Avgas 100LL Price, accessed date: 02 April 2022.
(bib25) June 2006
Koruyucu, Ekici, Karakoc (bib13) 2020
Balli, Kale, Rohács, Karakoc (bib28) 2022; 8
Tsatsaronis (bib59) 2011
Balli, Karakoc (bib11) 2022; 256
Balli (bib10) 2022; 266
(bib24) October 2005
Hadelu, Boyaghchi (bib51) 2020; 216
Cavalcanti, da Silva, Carvalho (bib56) 2022; 15
Aghbashlo, Tabatabaei, Soltanian, Ghanavati (bib50) 2019; 143
Caglayan, Caliskan (bib54) 2022; 52
Balli (bib6) 2020; 37
Boyano, Morosuk, Blanco-Marigorta, Tsatsaronis (bib48) 2012; 20
Smoot, G. What is the carbon footprint of aviation/jet fuel? A Life Cycle Assessment.https://impactful.ninja/the-carbon-footprint-of-aviation-jet-fuel/accessed date: 15 April 2022.
Cavalcanti, Carvalho, da Silva (bib55) 2020; 222
Atilgan, Turan, Altuntas, Aydin (bib43) 2019; 186
Winther, Rypdal (bib31) 2019
Toffolo, Lazzaretto (bib35) 2002; 27
Goedkoop, Spriensma (bib61) June 2001
Balli, Hepbasli (bib5) 2014; 64
Carlucci, Ficarella, Trullo (bib19) 2016; 122
Yildirim, Altuntas, Mahir, Karakoc (bib20) 2017; 14
Lycoming. 540 Series six-cylinder engines.https://www.lycoming.com/sites/default/files/series-engine-540_0.png accessed date: 15 April 2022.
Atilgan, Turan, Altuntas, Aydin, Synylo (bib42) 2013; 58
(bib1) September 2019
Sohret, Ekici, Altuntas, Karakoc (bib21) 2018; 91
Ekici, Orhan, Gumus, Bahce (bib3) 2022; 258
Balli (bib7) 2022; 250
https://www.cfinotebook.net/notebook/operation-of-aircraft-systems/powerplant accessed date: 15 April 2022.
Czarnigowski, Rekas, Ścisłowski, Skiba, Trendak (bib22) 2021; 187
Khardi (bib4) 2014; 6
Altuntas (bib23) 2021; 145
Ansarinasab, Mehrpooya, Sadeghzadeh (bib45) 2019; 210
Szabados, Knaup, Bereczky (bib62) 2022; 50
Huang, Wang, Lub, Wang (bib52) 2020; 211
International Money Transfer. 1 EUR to USD- convert euros to US dollars. https://www.xe.com/currencyconverter/convert/?Amount=1&From=EUR&To=USD accessed date: 02 April 2022.
Cavalcanti, Carvalho, Azevedo (bib60) 2019; 189
Balli, Ekici, Karakoc (bib30) 2021; 45
Published Online 08 July 2022.
Continental A.erospaceTechnogies. 520 AVGAS engine series. https://www.continental.aero/uploadedFiles/Content/Engines/Gasoline_engines/520AvGas-SpecSheet.pdfaccessed date: 15 April 2022.
https://www.ecocostsvalue.com/EVR/img/Ecocosts2022_V1-1_midpoint-tables.xlsx.
Manesh, Navid, Blanco-Marigorta, Amidpour, Hamedi (bib49) 2013; 59
Ekici (bib14) 2020; 202
Donateo, Spedicato, Trullo, Carlucci, Ficarella (bib18) 2015; 82
Marimuthu, Al-Rabeei, Boha (bib8) 2022; 7
Balli O,Caliskan H. Environmental impact assessments of different auxiliary power units used for commercial aircraft by using global warming potential approach. Environ Sci Pollut Control Ser, 2022.
https://www.ecocostsvalue.com/eco-costs/eco-costs-emissions/.
Altuntas, Karakoc, Hepbasli (bib17) 2015; 12
Aghbashlo (10.1016/j.energy.2022.125356_bib50) 2019; 143
Meyer (10.1016/j.energy.2022.125356_bib53) 2009; 34
Atilgan (10.1016/j.energy.2022.125356_bib42) 2013; 58
Goedkoop (10.1016/j.energy.2022.125356_bib46) 2000
Winther (10.1016/j.energy.2022.125356_bib31) 2019
Petrakopoulou (10.1016/j.energy.2022.125356_bib57) 2012; 45
Balli (10.1016/j.energy.2022.125356_bib11) 2022; 256
Boyano (10.1016/j.energy.2022.125356_bib48) 2012; 20
Ekici (10.1016/j.energy.2022.125356_bib3) 2022; 258
Atilgan (10.1016/j.energy.2022.125356_bib43) 2019; 186
Balli (10.1016/j.energy.2022.125356_bib5) 2014; 64
Carlucci (10.1016/j.energy.2022.125356_bib19) 2016; 122
10.1016/j.energy.2022.125356_bib41
10.1016/j.energy.2022.125356_bib40
Hadelu (10.1016/j.energy.2022.125356_bib51) 2020; 216
Balli (10.1016/j.energy.2022.125356_bib10) 2022; 266
Ekici (10.1016/j.energy.2022.125356_bib14) 2020; 202
Kalivoda (10.1016/j.energy.2022.125356_bib32) 1997
Aygun (10.1016/j.energy.2022.125356_bib44) 2021; 279
Ekici (10.1016/j.energy.2022.125356_bib12) 2022; 39
Huang (10.1016/j.energy.2022.125356_bib52) 2020; 211
Szabados (10.1016/j.energy.2022.125356_bib62) 2022; 50
Akdeniz (10.1016/j.energy.2022.125356_bib2) 2022; 243
Balli (10.1016/j.energy.2022.125356_bib36) 2022; 26
Balli (10.1016/j.energy.2022.125356_bib28) 2022; 8
Balli (10.1016/j.energy.2022.125356_bib6) 2020; 37
(10.1016/j.energy.2022.125356_bib24) 2005
Manesh (10.1016/j.energy.2022.125356_bib49) 2013; 59
Balli (10.1016/j.energy.2022.125356_bib15) 2021; 40
Altuntas (10.1016/j.energy.2022.125356_bib23) 2021; 145
(10.1016/j.energy.2022.125356_bib1) 2019
Koruyucu (10.1016/j.energy.2022.125356_bib13) 2020
Marimuthu (10.1016/j.energy.2022.125356_bib8) 2022; 7
Balli (10.1016/j.energy.2022.125356_bib30) 2021; 45
Altuntas (10.1016/j.energy.2022.125356_bib17) 2015; 12
Khardi (10.1016/j.energy.2022.125356_bib4) 2014; 6
Toffolo (10.1016/j.energy.2022.125356_bib35) 2002; 27
(10.1016/j.energy.2022.125356_bib25) 2006
10.1016/j.energy.2022.125356_bib27
Cavalcanti (10.1016/j.energy.2022.125356_bib56) 2022; 15
10.1016/j.energy.2022.125356_bib26
10.1016/j.energy.2022.125356_bib29
Caglayan (10.1016/j.energy.2022.125356_bib54) 2022; 52
Goedkoop (10.1016/j.energy.2022.125356_bib61) 2001
Altuntas (10.1016/j.energy.2022.125356_bib16) 2012; 32
Donateo (10.1016/j.energy.2022.125356_bib18) 2015; 82
Sohret (10.1016/j.energy.2022.125356_bib21) 2018; 91
Ansarinasab (10.1016/j.energy.2022.125356_bib45) 2019; 210
Cavalcanti (10.1016/j.energy.2022.125356_bib60) 2019; 189
Tsatsaronis (10.1016/j.energy.2022.125356_bib59) 2011
Blumberg (10.1016/j.energy.2022.125356_bib58) 2019; 181
Czarnigowski (10.1016/j.energy.2022.125356_bib22) 2021; 187
Cavalcanti (10.1016/j.energy.2022.125356_bib55) 2020; 222
10.1016/j.energy.2022.125356_bib38
10.1016/j.energy.2022.125356_bib37
10.1016/j.energy.2022.125356_bib39
Boyano (10.1016/j.energy.2022.125356_bib47) 2011; 36
Yildirim (10.1016/j.energy.2022.125356_bib20) 2017; 14
Balli (10.1016/j.energy.2022.125356_bib7) 2022; 250
10.1016/j.energy.2022.125356_bib34
10.1016/j.energy.2022.125356_bib33
Rohacs (10.1016/j.energy.2022.125356_bib9) 2022; 239
References_xml – volume: 32
  start-page: 133
  year: 2012
  end-page: 143
  ident: bib16
  article-title: Exergetic, exergoeconomic and sustainability assessments of piston-prop aircraft engines
  publication-title: J Therm Sci Technol
– reference: Smoot, G. What is the carbon footprint of aviation/jet fuel? A Life Cycle Assessment.https://impactful.ninja/the-carbon-footprint-of-aviation-jet-fuel/accessed date: 15 April 2022.
– year: 2019
  ident: bib31
  article-title: EMEP/EEA air pollutnt emission inventory guide book
– volume: 222
  year: 2020
  ident: bib55
  article-title: Energy, exergy and exergoenvironmental analyses of a sugarcane bagasse power cogeneration system
  publication-title: Energy Convers Manag
– volume: 189
  year: 2019
  ident: bib60
  article-title: Exergoenvironmental results of a eucalyptud biomass-fired power plant
  publication-title: Energy
– year: June 2006
  ident: bib25
  article-title: IO-540 series operator's Manual.Lycoming Part Number: 60297-10
– volume: 36
  start-page: 2202
  year: 2011
  end-page: 2214
  ident: bib47
  article-title: Exergoenvironmental analysis of a steam methane reforming process for hydrogen production
  publication-title: Energy
– volume: 7
  start-page: 1
  year: 2022
  end-page: 9
  ident: bib8
  article-title: Three-dimensional analysis of biomimetic aerofoil inTransonic flow
  publication-title: Biomimetics
– year: June 2001
  ident: bib61
  article-title: The eco-indicador 99: a damage oriented method for life cycle impact assessment e methodology report
– year: September 2019
  ident: bib1
  article-title: Aviation: benefits beyond borders
– volume: 8
  start-page: 9828
  year: 2022
  end-page: 9845
  ident: bib28
  article-title: Exergoenvironmental, environmental impact and damage cost analyses of a micro turbojet engine (m-TJE)
  publication-title: Energy Rep
– year: 2020
  ident: bib13
  article-title: Performing thermodynamic analysis by simulating the general characteristics of the two-spool turbojet engine suitable for drone and UAV propulsion
  publication-title: J Therm Anal Calorim
– volume: 45
  start-page: 23
  year: 2012
  end-page: 30
  ident: bib57
  article-title: Environmental evaluation of a power plant using conventional and advanced exergy-based methods
  publication-title: Energy
– volume: 20
  start-page: 152
  year: 2012
  end-page: 160
  ident: bib48
  article-title: Conventional and advanced exergoenvironmental analysis of a steam methane reforming reactor for hydrogen production
  publication-title: J Clean Prod
– volume: 187
  start-page: 83
  year: 2021
  end-page: 89
  ident: bib22
  article-title: Analysis of operating parameters of the aircraft piston engine in real operating conditions
  publication-title: Combustion Engines
– volume: 122
  start-page: 279
  year: 2016
  end-page: 289
  ident: bib19
  article-title: Performance optimization of a Two-Stroke supercharged diesel engine for aircraft propulsion
  publication-title: Energy Convers Manag
– volume: 266
  year: 2022
  ident: bib10
  article-title: Life cycle assessment and exergoenvironmental analyses for making a decision in the fuel selection for aero-engines: an application for a medium-size turboprop engine (m-TPE)
  publication-title: Energy Convers Manag
– reference: International Money Transfer. 1 EUR to USD- convert euros to US dollars. https://www.xe.com/currencyconverter/convert/?Amount=1&From=EUR&To=USD accessed date: 02 April 2022.
– volume: 12
  start-page: 2
  year: 2015
  end-page: 14
  ident: bib17
  article-title: A parametric study of a piston-prop aircraft engine using exergy and exergoeconomic analysis methods
  publication-title: Int J Green Energy
– volume: 58
  start-page: 664
  year: 2013
  end-page: 671
  ident: bib42
  article-title: Environmental impact assessment of a turboprop engine with the aid of exergy
  publication-title: Energy
– reference: https://jet-a1-fuel.com/Avgas 100LL Price, accessed date: 02 April 2022.
– volume: 186
  year: 2019
  ident: bib43
  article-title: Dynamic exergo-environmental analysis of a turboprop aircraft engine at various torques
  publication-title: Energy
– volume: 52
  year: 2022
  ident: bib54
  article-title: Life cycle assessment based exergoenvironmental analysis of a cogeneration system used for ceramic factories
  publication-title: Sustain Energy Technol Assessments
– volume: 27
  start-page: 549
  year: 2002
  end-page: 567
  ident: bib35
  article-title: Evolutionary algorithms for multiobjective energetic and economic optimization in thermal system design
  publication-title: energy
– reference: Continental A.erospaceTechnogies. 520 AVGAS engine series. https://www.continental.aero/uploadedFiles/Content/Engines/Gasoline_engines/520AvGas-SpecSheet.pdfaccessed date: 15 April 2022.
– reference: Lycoming. 540 Series six-cylinder engines.https://www.lycoming.com/sites/default/files/series-engine-540_0.png accessed date: 15 April 2022.
– volume: 258
  year: 2022
  ident: bib3
  article-title: A policy on the externality problem and solution suggestions in air transportation: the environment and sustainability
  publication-title: Energy
– reference: , Published Online 08 July 2022.
– volume: 256
  year: 2022
  ident: bib11
  article-title: Exergetic, exergoeconomic, exergoenvironmental damage cost and impact analyses of an aircraft turbofan engine(ATFE)
  publication-title: Energy
– volume: 239
  year: 2022
  ident: bib9
  article-title: Radically new solutions for reducing the energy use by future aircraft and their operations
  publication-title: Energy
– volume: 202
  year: 2020
  ident: bib14
  article-title: Thermodynamic mapping of A321-200 in terms of performance parameters, sustainability indicators and thermo-ecological performance at various flight phases
  publication-title: Energy
– volume: 37
  start-page: 167
  year: 2020
  end-page: 194
  ident: bib6
  article-title: Exergetic, exergoeconomic, sustainability and environmental damage cost analyses of J85 turbojet engine with afterburner
  publication-title: Int J Turbo Jet Engines
– volume: 14
  start-page: 1093
  year: 2017
  end-page: 1099
  ident: bib20
  article-title: Energy, exergy analysis, and sustainability assessment of different engine powers for helicopter engines
  publication-title: Int J Green Energy
– volume: 6
  start-page: 71
  year: 2014
  end-page: 84
  ident: bib4
  article-title: Environmental impact reduction of commercial aircraft around airports. Less noise and less fuel consumption
  publication-title: Eur. Transp. Res. Rev.
– volume: 279
  year: 2021
  ident: bib44
  article-title: Environmental impact of an aircraft engine with exergo-life cycle assessment on dynamic flight
  publication-title: J Clean Prod
– volume: 210
  start-page: 530
  year: 2019
  end-page: 541
  ident: bib45
  article-title: An exergy-based investigation on hydrogen liquefaction plant-exergy, exergoeconomic, and exergoenvironmental analyses
  publication-title: J Clean Prod
– volume: 59
  start-page: 314
  year: 2013
  end-page: 333
  ident: bib49
  article-title: New procedure for optimal design and evaluation of cogeneration system based on advanced exergoeconomic and exergoenvironmental analyses
  publication-title: Energy
– volume: 211
  year: 2020
  ident: bib52
  article-title: Exergoeconomic and exergoenvironmental analysis of a combined heating and power system driven by geothermal source
  publication-title: Energy Convers Manag
– year: 1997
  ident: bib32
  article-title: Methodologies for estimating emissions from air traffic, MEET Deliverable No:18, the European Comission
– volume: 250
  year: 2022
  ident: bib7
  article-title: Thermodynamic, thermoenvironmental and thermoeconomic analyses of piston-prop engines (PPEs) for landing and take-off (LTO) flight phases
  publication-title: Energy
– volume: 40
  year: 2021
  ident: bib15
  article-title: TF33 Turbofan engine in every respect: performance,environmental, and sustainability assessment
  publication-title: Environ Prog Sustain Energy
– reference: Continental A.erospaceTechnogies. 540 AVGAS engine series. https://www.continental.aero/uploadedFiles/Content/Engines/Gasoline_engines/550AvGas-SpecSheet.pdfaccessed date: 15 April 2022.
– volume: 64
  start-page: 582
  year: 2014
  end-page: 600
  ident: bib5
  article-title: Exergoeconomic, sustainability and environmental damage cost analyses of T56 turboprop engine
  publication-title: At Energ
– year: 2000
  ident: bib46
  article-title: The eco-indicator 99: a damage oriented method for life-cycle impact assessment: manual for designers
– volume: 181
  start-page: 1273
  year: 2019
  end-page: 1284
  ident: bib58
  article-title: Exergoenvironmental analysis of methanol production by steam reforming and auto thermal reforming of natural gas
  publication-title: Energy
– volume: 50
  start-page: 11
  year: 2022
  end-page: 22
  ident: bib62
  article-title: ICE relevant physical-chemical properties and air pollutant emission of renewable transport fuels from different generations – an overview
  publication-title: Period Polytech Transp Eng
– volume: 145
  start-page: 659
  year: 2021
  end-page: 667
  ident: bib23
  article-title: Comparing diferent piston-prop aircraft engines with combustion efciency and exergy
  publication-title: J Therm Anal Calorim
– volume: 143
  start-page: 64
  year: 2019
  end-page: 76
  ident: bib50
  article-title: Biopower and biofertilizer production from organic municipal solid waste: an exergoenvironmental analysis
  publication-title: Renew Energy
– reference: https://www.ecocostsvalue.com/EVR/img/Ecocosts2022_V1-1_midpoint-tables.xlsx.
– year: October 2005
  ident: bib24
  article-title: TIO-360 series operator's manual. Lycoming Part Number: 60297-12
– volume: 34
  start-page: 75
  year: 2009
  end-page: 89
  ident: bib53
  article-title: Exergoenvironmental analysis for evaluation of the environmental impact of energy conversion systems
  publication-title: Energy
– volume: 91
  start-page: 987
  year: 2018
  end-page: 993
  ident: bib21
  article-title: LCA of the maintenance of a piston-prop engine
  publication-title: Aircraft Eng Aero Technol
– volume: 26
  start-page: 162
  year: 2022
  end-page: 178
  ident: bib36
  article-title: Environmental damage analysis of GE90 turbofan engines used on Boeing 777 aircraft
  publication-title: Int J Glob Warming
– volume: 15
  start-page: 1422
  year: 2022
  ident: bib56
  article-title: Life cycle and exergoenvironmental analyses of ethanol: performance of a flex-fuel spark-ignition engine at wide-open throttle conditions
  publication-title: Energies
– reference: Balli O,Caliskan H. Environmental impact assessments of different auxiliary power units used for commercial aircraft by using global warming potential approach. Environ Sci Pollut Control Ser, 2022.
– volume: 243
  year: 2022
  ident: bib2
  article-title: Landing and take-off (LTO) flight phase performances of various piston-prop aviation engines in terms of energy, exergy, irreversibility, aviation, sustainability and environmental viewpoints
  publication-title: Energy
– reference: https://www.cfinotebook.net/notebook/operation-of-aircraft-systems/powerplant accessed date: 15 April 2022.
– volume: 216
  year: 2020
  ident: bib51
  article-title: Exergoeconomic and exergoenvironmental analyses and optimization of different ejector based two stage expander-organic flash cycles fuelled by by solar energy
  publication-title: Energy Convers Manag
– start-page: 377
  year: 2011
  end-page: 401
  ident: bib59
  article-title: Exergoeconomics and exergoenvironmental analysis
  publication-title: Thermodynamics and the destruction of sources
– volume: 82
  start-page: 119
  year: 2015
  end-page: 124
  ident: bib18
  article-title: Sizing and simulation of a piston-prop UAV
  publication-title: Energy Proc
– volume: 45
  start-page: 8620
  year: 2021
  end-page: 8638
  ident: bib30
  article-title: Achieving a more efficient and greener combined heat and power system driven by a micro gas turbine engine: issues, opportunities, and benefits in the presence of thermodynamic perspective
  publication-title: Int J Energy Res
– reference: https://www.ecocostsvalue.com/eco-costs/eco-costs-emissions/.
– volume: 39
  start-page: 233
  year: 2022
  end-page: 240
  ident: bib12
  article-title: Calculating endogenous and exogenous exergy destruction for an experimental turbojet engine
  publication-title: Int J Turbo Jet Engines
– volume: 36
  start-page: 2202
  year: 2011
  ident: 10.1016/j.energy.2022.125356_bib47
  article-title: Exergoenvironmental analysis of a steam methane reforming process for hydrogen production
  publication-title: Energy
  doi: 10.1016/j.energy.2010.05.020
– volume: 91
  start-page: 987
  issue: 7
  year: 2018
  ident: 10.1016/j.energy.2022.125356_bib21
  article-title: LCA of the maintenance of a piston-prop engine
  publication-title: Aircraft Eng Aero Technol
  doi: 10.1108/AEAT-05-2017-0116
– volume: 26
  start-page: 162
  issue: 2
  year: 2022
  ident: 10.1016/j.energy.2022.125356_bib36
  article-title: Environmental damage analysis of GE90 turbofan engines used on Boeing 777 aircraft
  publication-title: Int J Glob Warming
  doi: 10.1504/IJGW.2022.120841
– ident: 10.1016/j.energy.2022.125356_bib41
– ident: 10.1016/j.energy.2022.125356_bib26
– volume: 122
  start-page: 279
  year: 2016
  ident: 10.1016/j.energy.2022.125356_bib19
  article-title: Performance optimization of a Two-Stroke supercharged diesel engine for aircraft propulsion
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2016.05.077
– ident: 10.1016/j.energy.2022.125356_bib37
  doi: 10.1007/s11356-022-21876-6
– volume: 20
  start-page: 152
  year: 2012
  ident: 10.1016/j.energy.2022.125356_bib48
  article-title: Conventional and advanced exergoenvironmental analysis of a steam methane reforming reactor for hydrogen production
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2011.07.027
– volume: 279
  year: 2021
  ident: 10.1016/j.energy.2022.125356_bib44
  article-title: Environmental impact of an aircraft engine with exergo-life cycle assessment on dynamic flight
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2020.123729
– volume: 37
  start-page: 167
  year: 2020
  ident: 10.1016/j.energy.2022.125356_bib6
  article-title: Exergetic, exergoeconomic, sustainability and environmental damage cost analyses of J85 turbojet engine with afterburner
  publication-title: Int J Turbo Jet Engines
  doi: 10.1515/tjj-2017-0019
– volume: 239
  year: 2022
  ident: 10.1016/j.energy.2022.125356_bib9
  article-title: Radically new solutions for reducing the energy use by future aircraft and their operations
  publication-title: Energy
  doi: 10.1016/j.energy.2021.122420
– volume: 12
  start-page: 2
  issue: 1
  year: 2015
  ident: 10.1016/j.energy.2022.125356_bib17
  article-title: A parametric study of a piston-prop aircraft engine using exergy and exergoeconomic analysis methods
  publication-title: Int J Green Energy
  doi: 10.1080/15435075.2014.889003
– volume: 50
  start-page: 11
  issue: 1
  year: 2022
  ident: 10.1016/j.energy.2022.125356_bib62
  article-title: ICE relevant physical-chemical properties and air pollutant emission of renewable transport fuels from different generations – an overview
  publication-title: Period Polytech Transp Eng
  doi: 10.3311/PPtr.14925
– year: 2019
  ident: 10.1016/j.energy.2022.125356_bib1
– volume: 52
  year: 2022
  ident: 10.1016/j.energy.2022.125356_bib54
  article-title: Life cycle assessment based exergoenvironmental analysis of a cogeneration system used for ceramic factories
  publication-title: Sustain Energy Technol Assessments
– volume: 189
  year: 2019
  ident: 10.1016/j.energy.2022.125356_bib60
  article-title: Exergoenvironmental results of a eucalyptud biomass-fired power plant
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116188
– volume: 7
  start-page: 1
  issue: 20
  year: 2022
  ident: 10.1016/j.energy.2022.125356_bib8
  article-title: Three-dimensional analysis of biomimetic aerofoil inTransonic flow
  publication-title: Biomimetics
– volume: 40
  year: 2021
  ident: 10.1016/j.energy.2022.125356_bib15
  article-title: TF33 Turbofan engine in every respect: performance,environmental, and sustainability assessment
  publication-title: Environ Prog Sustain Energy
  doi: 10.1002/ep.13578
– year: 2006
  ident: 10.1016/j.energy.2022.125356_bib25
– volume: 58
  start-page: 664
  issue: 43
  year: 2013
  ident: 10.1016/j.energy.2022.125356_bib42
  article-title: Environmental impact assessment of a turboprop engine with the aid of exergy
  publication-title: Energy
  doi: 10.1016/j.energy.2013.05.064
– volume: 243
  year: 2022
  ident: 10.1016/j.energy.2022.125356_bib2
  article-title: Landing and take-off (LTO) flight phase performances of various piston-prop aviation engines in terms of energy, exergy, irreversibility, aviation, sustainability and environmental viewpoints
  publication-title: Energy
  doi: 10.1016/j.energy.2022.123179
– volume: 187
  start-page: 83
  issue: 4
  year: 2021
  ident: 10.1016/j.energy.2022.125356_bib22
  article-title: Analysis of operating parameters of the aircraft piston engine in real operating conditions
  publication-title: Combustion Engines
  doi: 10.19206/CE-141890
– year: 2019
  ident: 10.1016/j.energy.2022.125356_bib31
– volume: 186
  year: 2019
  ident: 10.1016/j.energy.2022.125356_bib43
  article-title: Dynamic exergo-environmental analysis of a turboprop aircraft engine at various torques
  publication-title: Energy
  doi: 10.1016/j.energy.2019.115894
– volume: 32
  start-page: 133
  issue: 2
  year: 2012
  ident: 10.1016/j.energy.2022.125356_bib16
  article-title: Exergetic, exergoeconomic and sustainability assessments of piston-prop aircraft engines
  publication-title: J Therm Sci Technol
– ident: 10.1016/j.energy.2022.125356_bib27
– volume: 8
  start-page: 9828
  year: 2022
  ident: 10.1016/j.energy.2022.125356_bib28
  article-title: Exergoenvironmental, environmental impact and damage cost analyses of a micro turbojet engine (m-TJE)
  publication-title: Energy Rep
  doi: 10.1016/j.egyr.2022.07.157
– ident: 10.1016/j.energy.2022.125356_bib40
– volume: 266
  year: 2022
  ident: 10.1016/j.energy.2022.125356_bib10
  article-title: Life cycle assessment and exergoenvironmental analyses for making a decision in the fuel selection for aero-engines: an application for a medium-size turboprop engine (m-TPE)
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2022.115813
– volume: 82
  start-page: 119
  year: 2015
  ident: 10.1016/j.energy.2022.125356_bib18
  article-title: Sizing and simulation of a piston-prop UAV
  publication-title: Energy Proc
  doi: 10.1016/j.egypro.2015.12.003
– volume: 143
  start-page: 64
  year: 2019
  ident: 10.1016/j.energy.2022.125356_bib50
  article-title: Biopower and biofertilizer production from organic municipal solid waste: an exergoenvironmental analysis
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2019.04.109
– volume: 27
  start-page: 549
  year: 2002
  ident: 10.1016/j.energy.2022.125356_bib35
  article-title: Evolutionary algorithms for multiobjective energetic and economic optimization in thermal system design
  publication-title: energy
  doi: 10.1016/S0360-5442(02)00009-9
– volume: 216
  year: 2020
  ident: 10.1016/j.energy.2022.125356_bib51
  article-title: Exergoeconomic and exergoenvironmental analyses and optimization of different ejector based two stage expander-organic flash cycles fuelled by by solar energy
  publication-title: Energy Convers Manag
– volume: 6
  start-page: 71
  year: 2014
  ident: 10.1016/j.energy.2022.125356_bib4
  article-title: Environmental impact reduction of commercial aircraft around airports. Less noise and less fuel consumption
  publication-title: Eur. Transp. Res. Rev.
  doi: 10.1007/s12544-013-0106-0
– ident: 10.1016/j.energy.2022.125356_bib33
– volume: 211
  year: 2020
  ident: 10.1016/j.energy.2022.125356_bib52
  article-title: Exergoeconomic and exergoenvironmental analysis of a combined heating and power system driven by geothermal source
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2020.112765
– year: 1997
  ident: 10.1016/j.energy.2022.125356_bib32
– volume: 256
  year: 2022
  ident: 10.1016/j.energy.2022.125356_bib11
  article-title: Exergetic, exergoeconomic, exergoenvironmental damage cost and impact analyses of an aircraft turbofan engine(ATFE)
  publication-title: Energy
  doi: 10.1016/j.energy.2022.124620
– volume: 210
  start-page: 530
  year: 2019
  ident: 10.1016/j.energy.2022.125356_bib45
  article-title: An exergy-based investigation on hydrogen liquefaction plant-exergy, exergoeconomic, and exergoenvironmental analyses
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2018.11.090
– year: 2000
  ident: 10.1016/j.energy.2022.125356_bib46
– volume: 45
  start-page: 8620
  year: 2021
  ident: 10.1016/j.energy.2022.125356_bib30
  article-title: Achieving a more efficient and greener combined heat and power system driven by a micro gas turbine engine: issues, opportunities, and benefits in the presence of thermodynamic perspective
  publication-title: Int J Energy Res
  doi: 10.1002/er.6398
– year: 2005
  ident: 10.1016/j.energy.2022.125356_bib24
– ident: 10.1016/j.energy.2022.125356_bib34
– year: 2020
  ident: 10.1016/j.energy.2022.125356_bib13
  article-title: Performing thermodynamic analysis by simulating the general characteristics of the two-spool turbojet engine suitable for drone and UAV propulsion
  publication-title: J Therm Anal Calorim
– ident: 10.1016/j.energy.2022.125356_bib38
– volume: 222
  year: 2020
  ident: 10.1016/j.energy.2022.125356_bib55
  article-title: Energy, exergy and exergoenvironmental analyses of a sugarcane bagasse power cogeneration system
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2020.113232
– volume: 59
  start-page: 314
  year: 2013
  ident: 10.1016/j.energy.2022.125356_bib49
  article-title: New procedure for optimal design and evaluation of cogeneration system based on advanced exergoeconomic and exergoenvironmental analyses
  publication-title: Energy
  doi: 10.1016/j.energy.2013.06.017
– volume: 202
  year: 2020
  ident: 10.1016/j.energy.2022.125356_bib14
  article-title: Thermodynamic mapping of A321-200 in terms of performance parameters, sustainability indicators and thermo-ecological performance at various flight phases
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117692
– volume: 145
  start-page: 659
  year: 2021
  ident: 10.1016/j.energy.2022.125356_bib23
  article-title: Comparing diferent piston-prop aircraft engines with combustion efciency and exergy
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-020-09926-y
– volume: 39
  start-page: 233
  issue: 2
  year: 2022
  ident: 10.1016/j.energy.2022.125356_bib12
  article-title: Calculating endogenous and exogenous exergy destruction for an experimental turbojet engine
  publication-title: Int J Turbo Jet Engines
  doi: 10.1515/tjj-2019-0005
– volume: 64
  start-page: 582
  year: 2014
  ident: 10.1016/j.energy.2022.125356_bib5
  article-title: Exergoeconomic, sustainability and environmental damage cost analyses of T56 turboprop engine
  publication-title: At Energ
  doi: 10.1016/j.energy.2013.09.066
– start-page: 377
  year: 2011
  ident: 10.1016/j.energy.2022.125356_bib59
  article-title: Exergoeconomics and exergoenvironmental analysis
– volume: 14
  start-page: 1093
  issue: 13
  year: 2017
  ident: 10.1016/j.energy.2022.125356_bib20
  article-title: Energy, exergy analysis, and sustainability assessment of different engine powers for helicopter engines
  publication-title: Int J Green Energy
  doi: 10.1080/15435075.2017.1358626
– ident: 10.1016/j.energy.2022.125356_bib29
– volume: 45
  start-page: 23
  issue: 1
  year: 2012
  ident: 10.1016/j.energy.2022.125356_bib57
  article-title: Environmental evaluation of a power plant using conventional and advanced exergy-based methods
  publication-title: Energy
  doi: 10.1016/j.energy.2012.01.042
– volume: 258
  year: 2022
  ident: 10.1016/j.energy.2022.125356_bib3
  article-title: A policy on the externality problem and solution suggestions in air transportation: the environment and sustainability
  publication-title: Energy
  doi: 10.1016/j.energy.2022.124827
– year: 2001
  ident: 10.1016/j.energy.2022.125356_bib61
– volume: 250
  year: 2022
  ident: 10.1016/j.energy.2022.125356_bib7
  article-title: Thermodynamic, thermoenvironmental and thermoeconomic analyses of piston-prop engines (PPEs) for landing and take-off (LTO) flight phases
  publication-title: Energy
  doi: 10.1016/j.energy.2022.123725
– volume: 34
  start-page: 75
  year: 2009
  ident: 10.1016/j.energy.2022.125356_bib53
  article-title: Exergoenvironmental analysis for evaluation of the environmental impact of energy conversion systems
  publication-title: Energy
  doi: 10.1016/j.energy.2008.07.018
– ident: 10.1016/j.energy.2022.125356_bib39
– volume: 181
  start-page: 1273
  year: 2019
  ident: 10.1016/j.energy.2022.125356_bib58
  article-title: Exergoenvironmental analysis of methanol production by steam reforming and auto thermal reforming of natural gas
  publication-title: Energy
  doi: 10.1016/j.energy.2019.05.171
– volume: 15
  start-page: 1422
  year: 2022
  ident: 10.1016/j.energy.2022.125356_bib56
  article-title: Life cycle and exergoenvironmental analyses of ethanol: performance of a flex-fuel spark-ignition engine at wide-open throttle conditions
  publication-title: Energies
  doi: 10.3390/en15041422
SSID ssj0005899
Score 2.4629836
Snippet This study presents a comprehensive investigation of the environmental damage cost, exergoenvironmental and life cycle assessment (LCA) analyses of four piston...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 125356
SubjectTerms aviation
energy
energy use and consumption
Environmental damage cost
environmental impact
Exergoenvironmantal analysis
Exergoenvironmental factor
flight
life cycle assessment
Life cycle assessment analysis
Specific environmental impact point cost
Specific exergoenvironmental impact
thermodynamics
Title Environmental damage cost and exergoenvironmental evaluations of piston prop aviation engines for the landing and take-off flight phases
URI https://dx.doi.org/10.1016/j.energy.2022.125356
https://www.proquest.com/docview/2723107353
Volume 261
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0360-5442
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0005899
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  issn: 0360-5442
  databaseCode: ACRLP
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0005899
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2013
  issn: 0360-5442
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0005899
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  issn: 0360-5442
  databaseCode: AIKHN
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0005899
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0360-5442
  databaseCode: AKRWK
  dateStart: 19760301
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BTtwwELUQHMoFAS0qFJAr9erdEDt29ohWi5ZW5dIicbNsx6bAkkRN4MiZz2bGSaCLKiFxTDy2LI8985zMmyHkm_HGKizfngQumXBFwkxiJcNMJ0cFuAwVeWs_z-T8XHy_yC5WyHTgwmBYZW_7O5serXX_Ztyv5ri-uhr_AtsLeAM_YYAf4pF-jdm_YE-PHv4J88hjDUkUZig90OdijJeP_LoRDjACT8-xjPX_3dMrQx29z8km2ehhIz3uZrZFVny5TT4MrOJmm-zMXhhrINgf2eYjeVxuKMwtWBDqqqalpiwolly6rPySzEsG8IZWgdaYfaCkMLWamvtOldTHPIYNBcxLAUPSRUePiWO25sazKgQaFnj1p_UfcJXNJ3J-Mvs9nbO-_AJzqZy0LFOpURMDNxqRwq3KckBOuc8B8Mh8IgoZ8PYhZRrSApqlSW1eqBBCbpWziU_5Dlktq9J_JjRLHPc-8U6ITHCbW5G54KRMwBooYYpdwodV167PTY4lMhZ6CEK71p2uNOpKd7raJey5V93l5nhDXg0K1Ut7TIP7eKPn10H_Go4f_lMxpa_uGp0qBMiKZ3zv3aN_Iev4hEEyR9k-WW3_3vkDgDqtPYx7-ZCsHZ_-mJ89ASmgACU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB6h5UAvFYWi8mhxpV7Nhjixs0eEQEuBvQASN8t2bKDdJhEJ_AZ-NjN5dLVVJSSu8diyMvY3M8l8MwA_jDdWUfv2KAjJE5dH3ERWcqp0cpijyVAtb-1yJqc3yc_b9HYFjgcuDKVV9tjfYXqL1v2Tcf82x9XDw_gKsRf9DfqEgXZIEP16NUkRk0ewenR2Pp0tMj2yto0kyXOaMDDo2jQv31LsDmiNAzT2gjpZ_99C_YPVrQE6XYePvefIjrrNfYIVX2zA2kAsrjdg62RBWkPB_tbWm_CyPJCbPwgizJV1w0yRM-q6dFf6JZlFEfCalYFVVICgYLi1ipnnTpvMt6UMa4ZuL0M3ks07hky7ZmN-e16GwMKcon9W3aO1rD_DzenJ9fGU9x0YuIvlpOGpio2aGAxqkhgDKyvQecp8hj6PzCZJLgMFIFLGIc5xWJrYZrkKIWRWORv5WGzBqCgL_wVYGjnhfeRdgkoSNrNJ6oKTMkJAUInJt0EMb127vjw5dcmY6yEP7ZfudKVJV7rT1Tbwv7OqrjzHG_JqUKheOmYaLcgbM78P-td4A-m3iil8-VTrWJGPrEQqdt69-j6sTa8vL_TF2ex8Fz7QCOXMHKZ7MGoen_xX9Hwa-60_2a_SxALQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Environmental+damage+cost+and+exergoenvironmental+evaluations+of+piston+prop+aviation+engines+for+the+landing+and+take-off+flight+phases&rft.jtitle=Energy+%28Oxford%29&rft.au=Balli%2C+Ozgur&rft.au=Kale%2C+Utku&rft.au=Roh%C3%A1cs%2C+D%C3%A1niel&rft.au=Hikmet+Karakoc%2C+T.&rft.date=2022-12-15&rft.pub=Elsevier+Ltd&rft.issn=0360-5442&rft.volume=261&rft_id=info:doi/10.1016%2Fj.energy.2022.125356&rft.externalDocID=S0360544222022381
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon