Artificial Intelligence-Driven Vehicle Fault Diagnosis to Revolutionize Automotive Maintenance: A Review

Conventional fault diagnosis systems have constrained the automotive industry to damage vehicle maintenance and component longevity critically. Hence, there is a growing demand for advanced fault diagnosis technologies to mitigate the impact of these limitations on unplanned vehicular downtime cause...

Full description

Saved in:
Bibliographic Details
Published inComputer modeling in engineering & sciences Vol. 141; no. 2; pp. 951 - 996
Main Authors Hossain, Md Naeem, Rahman, Md Mustafizur, Ramasamy, Devarajan
Format Journal Article
LanguageEnglish
Published Henderson Tech Science Press 2024
Subjects
Online AccessGet full text
ISSN1526-1506
1526-1492
1526-1506
DOI10.32604/cmes.2024.056022

Cover

Abstract Conventional fault diagnosis systems have constrained the automotive industry to damage vehicle maintenance and component longevity critically. Hence, there is a growing demand for advanced fault diagnosis technologies to mitigate the impact of these limitations on unplanned vehicular downtime caused by unanticipated vehicle breakdowns. Due to vehicles’ increasingly complex and autonomous nature, there is a growing urgency to investigate novel diagnosis methodologies for improving safety, reliability, and maintainability. While Artificial Intelligence (AI) has provided a great opportunity in this area, a systematic review of the feasibility and application of AI for Vehicle Fault Diagnosis (VFD) systems is unavailable. Therefore, this review brings new insights into the potential of AI in VFD methodologies and offers a broad analysis using multiple techniques. We focus on reviewing relevant literature in the field of machine learning as well as deep learning algorithms for fault diagnosis in engines, lifting systems (suspensions and tires), gearboxes, and brakes, among other vehicular subsystems. We then delve into some examples of the use of AI in fault diagnosis and maintenance for electric vehicles and autonomous cars. The review elucidates the transformation of VFD systems that consequently increase accuracy, economization, and prediction in most vehicular sub-systems due to AI applications. Indeed, the limited performance of systems based on only one of these AI techniques is likely to be addressed by combinations: The integration shows that a single technique or method fails its expectations, which can lead to more reliable and versatile diagnostic support. By synthesizing current information and distinguishing forthcoming patterns, this work aims to accelerate advancement in smart automotive innovations, conforming with the requests of Industry 4.0 and adding to the progression of more secure, more dependable vehicles. The findings underscored the necessity for cross-disciplinary cooperation and examined the total potential of AI in vehicle default analysis.
AbstractList Conventional fault diagnosis systems have constrained the automotive industry to damage vehicle maintenance and component longevity critically. Hence, there is a growing demand for advanced fault diagnosis technologies to mitigate the impact of these limitations on unplanned vehicular downtime caused by unanticipated vehicle breakdowns. Due to vehicles’ increasingly complex and autonomous nature, there is a growing urgency to investigate novel diagnosis methodologies for improving safety, reliability, and maintainability. While Artificial Intelligence (AI) has provided a great opportunity in this area, a systematic review of the feasibility and application of AI for Vehicle Fault Diagnosis (VFD) systems is unavailable. Therefore, this review brings new insights into the potential of AI in VFD methodologies and offers a broad analysis using multiple techniques. We focus on reviewing relevant literature in the field of machine learning as well as deep learning algorithms for fault diagnosis in engines, lifting systems (suspensions and tires), gearboxes, and brakes, among other vehicular subsystems. We then delve into some examples of the use of AI in fault diagnosis and maintenance for electric vehicles and autonomous cars. The review elucidates the transformation of VFD systems that consequently increase accuracy, economization, and prediction in most vehicular sub-systems due to AI applications. Indeed, the limited performance of systems based on only one of these AI techniques is likely to be addressed by combinations: The integration shows that a single technique or method fails its expectations, which can lead to more reliable and versatile diagnostic support. By synthesizing current information and distinguishing forthcoming patterns, this work aims to accelerate advancement in smart automotive innovations, conforming with the requests of Industry 4.0 and adding to the progression of more secure, more dependable vehicles. The findings underscored the necessity for cross-disciplinary cooperation and examined the total potential of AI in vehicle default analysis.
Author Rahman, Md Mustafizur
Hossain, Md Naeem
Ramasamy, Devarajan
Author_xml – sequence: 1
  givenname: Md Naeem
  surname: Hossain
  fullname: Hossain, Md Naeem
– sequence: 2
  givenname: Md Mustafizur
  surname: Rahman
  fullname: Rahman, Md Mustafizur
– sequence: 3
  givenname: Devarajan
  surname: Ramasamy
  fullname: Ramasamy, Devarajan
BookMark eNqNkMFOAjEURRuDiYB-gLsmrgc7bacO7giIkmhMjLqdtPUNlJQWpx0Ifr3FceHS1XuLe25uzgD1nHeA0GVORowKwq_1BsKIEspHpBCE0hPUzwsqsrwgovfnP0ODENaEMMHKcR-tJk00tdFGWrxwEaw1S3AaslljduDwO6yMtoDnsrURz4xcOh9MwNHjF9h520bjnfkCPGmj3_iYIPwkTWpyMtXc4skxZ2B_jk5raQNc_N4hepvfvU4fssfn-8V08phpKsqYQRoGaVmuai1qznhRgiokV4pDCTdCg6pLJcY5JQXTrBDjUvGSaamYUB-1YENEu97WbeVhL62tto3ZyOZQ5aT6cVUdXVVHV1XnKkFXHbRt_GcLIVZr3zYu7UwEITllouAplXcp3fgQGqj_0fwNQ9t85A
Cites_doi 10.1016/j.scitotenv.2021.149832
10.1007/978-3-030-76493-7_4
10.1109/TIE.2019.2912763
10.1016/j.ymssp.2020.107398
10.1109/TFUZZ.2019.2918999
10.3390/electronics12030511
10.1016/j.aei.2022.101682
10.1162/neco_a_01199
10.1007/s12239-019-0090-z
10.1016/j.ymssp.2020.107181
10.1155/2019/8469868
10.1109/TPEL.2020.3008194
10.3390/s20061685
10.1007/s10462-020-09934-2
10.1155/2021/6626024
10.1109/ACCESS.2021.3063929
10.3390/app11030919
10.1177/09544070211063719
10.1109/TIE.2020.3047040
10.1177/1077546319859704
10.1021/acsomega.2c04991
10.1016/j.ijpe.2015.12.013
10.1109/ACCESS.2020.3024251
10.1109/TTE.2022.3209166
10.1007/978-1-0716-3195-9_4
10.1016/j.micpro.2023.104771
10.1504/IJVP.2022.119440
10.1016/j.neucom.2019.10.008
10.1007/s11263-019-01237-6
10.1016/j.energy.2020.118866
10.1109/TGCN.2022.3179350
10.1016/j.ymssp.2021.108752
10.1177/0008125619864925
10.3390/app12115327
10.1109/MCI.2010.938364
10.1007/s00521-019-04663-2
10.1109/MNET.001.2100688
10.1109/JIOT.2022.3163606
10.1109/ACCESS.2022.3192111
10.1109/TVT.2020.2977353
10.3390/e25030424
10.1140/epjst/e2019-900046-x
10.12928/telkomnika.v19i6.22027
10.1016/j.measurement.2020.107802
10.1109/TII.2020.2966326
10.1016/j.est.2023.107426
10.1109/TITS.2020.3038155
10.1016/j.dajour.2022.100071
10.1109/JSYST.2020.3009998
10.3390/s21072547
10.1007/s00521-020-05520-3
10.3390/s23042177
10.1016/j.engappai.2022.105524
10.1016/j.engappai.2024.108098
10.1243/09544070JAUTO996
10.1109/JSEN.2020.3010291
10.1088/1742-6596/1222/1/012045
10.1016/j.matdes.2023.111742
10.1016/j.eswa.2023.120023
10.1016/j.asoc.2019.105919
10.1109/ACCESS.2022.3163270
10.1007/s00521-022-08020-8
10.1016/j.ymssp.2018.12.024
10.32604/sdhm.2022.010622
10.17485/ijst/2016/v9i47/107926
10.1016/j.ijpe.2019.107534
10.3390/s23249681
10.1016/j.knosys.2020.106453
10.1109/JSYST.2019.2905565
10.1177/1536867X20909688
10.1016/j.pecs.2021.100967
10.1016/j.engappai.2020.103765
10.3390/machines11080778
10.3390/app12168388
10.1016/j.isatra.2021.05.019
10.1002/adts.202100402
10.3390/e22091044
10.1145/3514242
10.1007/s42154-021-00140-6
10.1007/s12525-021-00475-2
10.3390/s22093208
10.1109/TITS.2021.3084396
10.3390/s18082720
10.1016/j.patcog.2021.107996
10.30464/jmee.2020.4.2.109
10.15282/jmes.18.2.2024.9.0796
10.1016/j.ymssp.2005.09.012
10.1002/jnm.2541
10.1016/j.ress.2018.11.011
10.1016/j.measurement.2019.01.038
10.1016/j.matpr.2021.02.419
10.3390/s19153306
10.1109/TITS.2019.2947756
10.29354/diag/133091
10.1111/coin.12553
10.3390/mi13091380
10.1109/TVT.2022.3199407
10.4271/03-15-04-0027
10.1038/s41467-020-19088-y
10.38094/jastt20165
10.1007/978-3-319-31895-0_11
10.1109/ACCESS.2021.3064360
10.1201/9781003022961
10.1109/TKDE.2022.3155450
10.1016/j.engappai.2023.106031
10.1007/s42154-021-00138-0
10.3390/s21062140
10.1109/ACCESS.2020.3029307
10.1109/TIM.2022.3219307
10.1007/978-3-030-22475-2_1
10.1520/JTE20220099
10.1177/09544089231152698
10.1080/0951192X.2020.1747642
10.1049/cit2.12170
10.1016/j.eswa.2023.120002
10.1007/978-3-031-04424-3_6
10.1007/s42979-021-00592-x
10.3390/pr10030497
10.1016/j.ijepes.2019.105761
10.1016/j.paerosci.2021.100758
10.1108/JQME-04-2016-0014
10.1155/2022/7606896
10.1115/1.4046818
10.3390/atmos14040651
10.1007/978-3-031-16990-8_10
10.1177/0954407019833521
10.1109/ACCESS.2020.2988796
10.1016/j.jmsy.2020.07.008
10.1515/9783110595703
10.1109/TIE.2019.2952807
10.21015/vtse.v12i1.1713
10.1007/s40799-021-00518-5
10.32604/sdhm.2022.011396
10.1109/TIE.2020.2994868
10.1109/ACCESS.2023.3294569
10.3390/math10193626
10.4271/2021-26-0016
10.1007/s11063-021-10557-z
10.1016/j.ymssp.2021.108336
10.1109/TPEL.2019.2893622
10.1016/j.neunet.2020.01.018
10.1109/ACCESS.2019.2891073
10.3390/s21217073
10.1109/TTE.2021.3110318
10.1016/j.isatra.2021.03.015
10.1109/TCST.2021.3123611
10.1109/JSEN.2023.3236838
10.1007/s00371-018-1500-3
10.1109/TVCG.2017.2744818
10.1002/cpt.1796
10.1016/j.cose.2017.04.005
10.4324/9781315387185
10.1016/j.comnet.2018.04.008
10.1016/j.ymssp.2020.106861
10.1109/TITS.2021.3138255
10.1186/s13638-021-01895-6
10.3390/iot1020012
10.1016/j.adhoc.2021.102685
10.3390/app13085202
10.1016/j.eswa.2021.116233
10.1007/978-981-15-5495-7_11
10.3390/en14206599
10.3390/pr9060919
10.1109/TII.2013.2243743
10.1088/2631-8695/ac4834
ContentType Journal Article
Copyright 2024. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ADTOC
UNPAY
DOI 10.32604/cmes.2024.056022
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Database
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection (Proquest)
ProQuest Computer Science Collection
Computer Science Database (Proquest)
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database (Proquest)
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1526-1506
EndPage 996
ExternalDocumentID 10.32604/cmes.2024.056022
10_32604_cmes_2024_056022
GroupedDBID -~X
AAFWJ
AAYXX
ABJCF
ACIWK
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BENPR
BGLVJ
CCPQU
CITATION
EBS
EJD
F5P
IPNFZ
J9A
K7-
M7S
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PTHSS
PUEGO
RIG
RTS
7SC
7TB
8FD
8FE
8FG
ABUWG
ARAPS
AZQEC
COVID
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
KR7
L6V
L7M
L~C
L~D
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
ID FETCH-LOGICAL-c268t-e036e3891bfc6f43458eb5a4bb4e8e76cebf8b6912053c35698b483cab36bdf63
IEDL.DBID UNPAY
ISSN 1526-1506
1526-1492
IngestDate Sun Sep 07 10:48:43 EDT 2025
Sat Sep 06 07:29:54 EDT 2025
Wed Oct 01 06:52:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c268t-e036e3891bfc6f43458eb5a4bb4e8e76cebf8b6912053c35698b483cab36bdf63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.32604/cmes.2024.056022
PQID 3200123654
PQPubID 2048798
PageCount 46
ParticipantIDs unpaywall_primary_10_32604_cmes_2024_056022
proquest_journals_3200123654
crossref_primary_10_32604_cmes_2024_056022
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-00-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024-00-00
PublicationDecade 2020
PublicationPlace Henderson
PublicationPlace_xml – name: Henderson
PublicationTitle Computer modeling in engineering & sciences
PublicationYear 2024
Publisher Tech Science Press
Publisher_xml – name: Tech Science Press
References Raveendran (ref120) 2020; 8
Azamfar (ref104) 2020; 144
Anoop (ref89) 2016; 9
Biddle (ref142) 2021; 4
Aliramezani (ref60) 2022; 88
Kapanigowda (ref105) 2023; 13
da Silva (ref53) 2022
Na (ref39) 2018; 18
Sarker (ref131) 2021; 2
Vasavi (ref149) 2021; 46
Kern (ref239) 2021
Trzesniowski (ref80) 2023
Zhong (ref226) 2022; 36
Li (ref187) 2020; 36
Arel (ref164) 2010; 5
Cervantes-Bobadilla (ref162) 2023; 117
Sachan (ref90) 2021; 4
Tagawa (ref192) 2015
Alamelu Manghai (ref119) 2019; 25
Kumar (ref51) 2020; 208
Rodgers (ref77) 2020
Jeong (ref64) 2019; 20
Luo (ref68) 2019; 137
Dai (ref28) 2013; 9
Kang (ref154) 2020
Wang (ref238) 2021; 4
Bansal (ref135) 2022; 3
Ajitha (ref2) 2021; 64
Zuber (ref97) 2014; 16
Ding (ref233) 2022; 72
Ongsulee (ref158) 2017
Khazaee (ref49) 2021; 33
Zhang (ref47) 2019; 2019
Ma (ref45) 2023; 51
Rausch (ref84) 2022; 803
Kaplan (ref186) 2021; 14
Wang (ref87) 2021; 21
Jegadeeshwaran (ref121) 2018; 14
Zhou (ref215) 2022; 53
Baldini (ref236) 2020; 22
Shinde (ref157) 2018
Sundaram (ref22) 2021; 9
Szandała (ref166) 2021
Rahim (ref13) 2021; 27
Chi (ref26) 2022; 9
Xu (ref91) 2020; 23
Ge (ref44) 2023; 14
Gackowiec (ref198) 2019; 2
Voronov (ref219) 2020; 11
Abdelfattah (ref65) 2021
Suranjan (ref73) 2021; 45
Alghassi (ref16) 2016
Zakaria (ref102) 2022
Yang (ref133) 2019
Rahim (ref48) 2022; 6
Xu (ref204) 2019
Marimuthu (ref126) 2022; 16
El Kihel (ref209)
Naveen Venkatesh (ref52) 2022; 2022
Ajit (ref174) 2020
Francis (ref55) 2022
Li (ref205) 2019; 182
Pecht (ref7) 2018
Hadi (ref177) 2023; 225
Becker (ref17) 2017
Wen (ref111) 2020; 20
Praveen (ref114) 2022; 46
Yu (ref182) 2019; 31
Chaudhuri (ref211) 2021 Sep 22–24
Kokane (ref72) 2019
Chamola (ref222) 2023; 11
Massaro (ref218) 2020; 1
Sharma (ref220) 2022
AlShorman (ref36) 2020; 2020
Fumi (ref116) 2009; 223
Shahid (ref50) 2022; 192
Basha (ref176) 2020; 378
Fang (ref221) 2023; 23
Gültekin (ref37) 2022; 22
Jeong (ref63) 2020; 69
Rahman (ref29) 2022; 23
Jain (ref20) 2022; 38
Handikherkar (ref115) 2021; 34
Ngatiman (ref54) 2021; 19
Kang (ref134) 2020
Pawar (ref191) 2019
Chandra (ref195) 2022; 10
Qin (ref57) 2023; 8
Safavi (ref212) 2021; 21
El-Fatah (ref117) 2021; 2
Wang (ref148) 2022; 10
Holland (ref15)
Zhang (ref106) 2023; 13
Ding (ref173) 2023; 23
Ashibani (ref235) 2017; 68
Khalid (ref42) 2018; 139
Sharma (ref237) 2021; 123
Khoualdia (ref170) 2021; 22
Hossain (ref224) 2024; 8
Drakaki (ref33) 2022; 15
Sai (ref76) 2023; 11
Choudhary (ref35) 2022; 9
Dong (ref95) 2024; 133
Zhao (ref190) 2023; 76
Bo (ref189) 2024; 80
Koukoura (ref94) 2019; 1222
Baicoianu (ref66) 2022
Yeong (ref43) 2021; 21
Pardeshi (ref85) 2022; 16
Li (ref171) 2022; 71
Karamti (ref112) 2023; 35
Gong (ref130) 2020; 20
Tanveer (ref141) 2022
Ahmed (ref234) 2022; 10
Inturi (ref110) 2021; 53
Wang (ref193) 2020; 118
Olugbade (ref30) 2022; 27
Kuric (ref83) 2021; 21
Vinayagam (ref169) 2021
Hu (ref67) 2021; 2021
Khan (ref41) 2007 Jun 18–20
Shahraki (ref207) 2023; 237
Vermesan (ref229) 2021
Yang (ref206) 2023; 66
Zhang (ref230) 2021; 2021
Ćelić (ref6) 2024; 7
Larson (ref240) 2023
Haenlein (ref3) 2019; 61
Miltenović (ref100) 2022; 12
Bernard (ref227) 2018; 34
Xue (ref34) 2022; 120
Hao (ref185) 2020; 159
Huang (ref152) 2021; 117
Hiwase (ref210) 2022
Protopsaltis (ref242) 2020
Chaudhuri (ref213) 2022
Zhou (ref232) 2022; 22
Charbuty (ref132) 2021; 2
Sinaga (ref151) 2020; 8
Li (ref241) 2020
Yepez (ref199) 2019; 21
Alexopoulos (ref4) 2020; 33
Smagulova (ref184) 2019; 228
Tong (ref223) 2019; 7
Risaliti (ref74) 2019; 123
Ramchoun (ref165) 2016; 4
Mode (ref18) 2020
Elvira-ortiz (ref107) 2023; 25
Trivedi (ref23) 2022; 10
Alloghani (ref128) 2020
El Morr (ref147) 2022
Xie (ref163) 2022; 5
Janiesch (ref159) 2021; 31
Nowakowski (ref201) 2019
Bedi (ref31) 2022; 2
Jiregna (ref61) 2020; 4
Yang (ref59) 2022
Liu (ref46) 2019; 37
Gong (ref19) 2022; 13
Zhang (ref101) 2022; 165
Li (ref92) 2019; 21
Taisch (ref5) 2019
Hehn (ref137) 2020; 128
Indu (ref140) 2023
Rasheed (ref21) 2024; 12
Wu (ref155) 2022; 7
Hu (ref118) 2019; 67
Vasantharaj (ref82) 2023; 98
Kiranyaz (ref172) 2021; 151
Cachada (ref8) 2018
Arun Balaji (ref62) 2024; 238
Das (ref183) 2023; 197
Jardine (ref203) 2006; 20
Yang (ref156) 2023
Arun (ref75) 2024; 26
Geglio (ref194) 2022
Maurya (ref88) 2020; 11
Schonlau (ref136) 2020; 20
Chen (ref12) 2020; 86
O’Donnell (ref216) 2020; 20
Yao (ref143) 2021; 214
Lee (ref181) 2022; 23
Ma (ref98) 2021; 70
Yu (ref103) 2020; 16
Deng (ref79) 2023; 227
Xiong (ref40) 2019; 34
Xing (ref124) 2019; 67
Abid (ref25) 2021; 54
Arlsson (ref27) 2019
Wang (ref161) 2020; 94
Vasan (ref81) 2023; 23
Wan (ref138) 2021; 9
Taunk (ref145) 2019
Arthurs (ref231) 2021; 23
Elliott (ref1) 2019
Rihan (ref225) 2020; 15
Byun (ref38) 2019; 19
Milindar (ref93) 2022; 8
Du (ref178) 2022; 4
Vališ (ref217) 2019; 233
Zhang (ref202) 2019; 13
Vos (ref113) 2022; 169
Wei (ref86) 2020; 68
Ravikumar (ref108) 2022; 30
Puiutta (ref129) 2020
Sivri (ref167) 2022
Asteris (ref160) 2020; 32
Liu (ref197) 2022; 71
Jimenez (ref10) 2020; 56
Pisner (ref139) 2020
Schramm (ref78) 2020
Huangfu (ref56) 2021; 15
Zhou (ref175) 2020; 124
Jiang (ref180) 2021; 9
Jeong (ref70) 2022; 30
Yinghua (ref179) 2020
Ranasinghe (ref11) 2022; 128
Panda (ref208) 2023; 122
Lang (ref32) 2021; 8
Yousuf (ref96) 2020
Min (ref196) 2023; 224
Ullah (ref146) 2019; 8
Liu (ref99) 2022; 12
Bernard (ref228) 2017; 24
Erkoyuncu (ref14) 2016; 173
Kang (ref122) 2022; 73
Shahab (ref71) 2019; 32
Bokrantz (ref9) 2020; 223
Jiang (ref24) 2019; 28
Zehelein (ref69) 2019
Stender (ref123) 2021; 149
Raveendran (ref125) 2022; 236
Hossain (ref188) 2020; 8
Nie (ref153) 2022; 35
Lu (ref150) 2021; 11
Revanur (ref214) Sep 2020
Shah (ref109) 2022; 123
Badillo (ref127) 2020; 107
Mohammadzaheri (ref168) 2021; 21
Li (ref58) 2023; 12
Basri (ref200) 2017; 23
Shi (ref144) 2020; 68
References_xml – volume: 803
  start-page: 149832
  year: 2022
  ident: ref84
  article-title: Automated identification and quantification of tire wear particles (TWP) in airborne dust: sEM/EDX single particle analysis coupled to a machine learning classifier
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2021.149832
– start-page: 41
  year: 2022
  ident: ref102
  article-title: Gearbox faut diagnosis optimization using conventional neural networks and machine learning methods
  publication-title: Int J Mechatronics Appl Mech
– start-page: 93
  year: 2021
  ident: ref229
  publication-title: Intelligent technologies for internet of vehicles
  doi: 10.1007/978-3-030-76493-7_4
– start-page: 49
  year: 2020
  ident: ref241
  article-title: Expert system for comprehensive transmission fault diagnosis based on oil sensor
– volume: 67
  start-page: 3216
  year: 2019
  ident: ref118
  article-title: Data-driven fault diagnosis method based on compressed sensing and improved multiscale network
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2019.2912763
– volume: 151
  start-page: 107398
  year: 2021
  ident: ref172
  article-title: 1D convolutional neural networks and applications: a survey
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2020.107398
– volume: 30
  start-page: 101048
  year: 2022
  ident: ref108
  article-title: Classification of gear faults in internal combustion (IC) engine gearbox using discrete wavelet transform features and K star algorithm
  publication-title: Eng Sci Technol Int J
– volume: 28
  start-page: 1585
  year: 2019
  ident: ref24
  article-title: A novel Z-network model based on Bayesian network and Z-number
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2019.2918999
– start-page: 1536
  year: 2023
  ident: ref156
  article-title: Improved K-means algorithm for fault diagnosis of vehicle
– volume: 12
  start-page: 511
  year: 2023
  ident: ref58
  article-title: Data-driven fault early warning model of automobile engines based on soft classification
  publication-title: Electronics
  doi: 10.3390/electronics12030511
– volume: 76
  start-page: 329
  year: 2023
  ident: ref190
  article-title: Unsupervised anomaly detection approach based on adversarial memory autoencoders for multivariate time series
  publication-title: Comput Mater Contin
– volume: 53
  start-page: 101682
  year: 2022
  ident: ref215
  article-title: Remaining useful life prediction of bearings by a new reinforced memory GRU network
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2022.101682
– start-page: 325
  year: 2021
  ident: ref65
  article-title: Health monitoring of automotive suspension system using machine learning
– volume: 31
  start-page: 1235
  year: 2019
  ident: ref182
  article-title: A review of recurrent neural networks: LSTM cells and network architectures
  publication-title: Neural Comput
  doi: 10.1162/neco_a_01199
– volume: 20
  start-page: 961
  year: 2019
  ident: ref64
  article-title: Model-based sensor fault diagnosis of vehicle suspensions with a support vector machine
  publication-title: Int J Automot Technol
  doi: 10.1007/s12239-019-0090-z
– start-page: 1
  year: 2018
  ident: ref157
  article-title: A review of machine learning and deep learning applications
– volume: 149
  start-page: 107181
  year: 2021
  ident: ref123
  article-title: Deep learning for brake squeal: brake noise detection, characterization and prediction
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2020.107181
– start-page: 1
  year: 2023
  ident: ref140
  article-title: Power of kernel functions, its benefits, and limitations
– volume: 2019
  start-page: 8469868
  year: 2019
  ident: ref47
  article-title: Internal combustion engine fault identification based on FBG vibration sensor and support vector machines algorithm
  publication-title: Math Probl Eng
  doi: 10.1155/2019/8469868
– start-page: 1078
  year: 2022
  ident: ref59
  article-title: Research on diesel engine fault diagnosis method based on machine learning
– year: 2020
  ident: ref18
  publication-title: Adversarial robustness of deep learning enabled Industry 4.0 prognostics
– volume: 36
  start-page: 1303
  year: 2020
  ident: ref187
  article-title: Battery fault diagnosis for electric vehicles based on voltage abnormality by combining the long short-term memory neural network and the equivalent circuit model
  publication-title: IEEE Trans Power Electron
  doi: 10.1109/TPEL.2020.3008194
– volume: 20
  start-page: 1685
  year: 2020
  ident: ref111
  article-title: Generative adversarial learning enhanced fault diagnosis for planetary gearbox under varying working conditions
  publication-title: Sensors
  doi: 10.3390/s20061685
– volume: 54
  start-page: 3639
  year: 2021
  ident: ref25
  article-title: A review on fault detection and diagnosis techniques: basics and beyond
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-020-09934-2
– volume: 2021
  start-page: 6626024
  year: 2021
  ident: ref67
  article-title: Health monitoring of automotive suspensions: a LSTM network approach
  publication-title: Shock Vib
  doi: 10.1155/2021/6626024
– volume: 9
  start-page: 37866
  year: 2021
  ident: ref138
  article-title: An efficient rolling bearing fault diagnosis method based on spark and improved random forest algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3063929
– volume: 11
  start-page: 919
  year: 2021
  ident: ref150
  article-title: Enhanced K-nearest neighbor for intelligent fault diagnosis of rotating machinery
  publication-title: Appl Sci
  doi: 10.3390/app11030919
– volume: 236
  start-page: 2598
  year: 2022
  ident: ref125
  article-title: Learning-based fault diagnosis of air brake system using wheel speed data
  publication-title: Proc Inst Mech Eng Part D J Automob Eng
  doi: 10.1177/09544070211063719
– start-page: 1
  year: 2023
  ident: ref80
  publication-title: Suspension system
– volume: 68
  start-page: 12730
  year: 2020
  ident: ref86
  article-title: A low-cost tire pressure loss detection framework using machine learning
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2020.3047040
– start-page: 743
  year: 2022
  ident: ref194
  article-title: Deep convolutional autoencoder for assessment of drive-cycle anomalies in connected vehicle sensor data
– volume: 25
  start-page: 2534
  year: 2019
  ident: ref119
  article-title: Vibration based brake health monitoring using wavelet features: a machine learning approach
  publication-title: JVC/J Vib Control
  doi: 10.1177/1077546319859704
– volume: 7
  start-page: 40145
  year: 2022
  ident: ref155
  article-title: Fault diagnosis method for lithium-ion battery packs in real-world electric vehicles based on K-means and the Fréchet algorithm
  publication-title: ACS Omega
  doi: 10.1021/acsomega.2c04991
– volume: 37
  start-page: 84
  year: 2019
  ident: ref46
  article-title: Engine fault identification method based on TWSVM algorithm
  publication-title: J Intern Combust Engine
– volume: 173
  start-page: 207
  year: 2016
  ident: ref14
  article-title: A framework to estimate the cost of no-fault found events
  publication-title: Int J Prod Econ
  doi: 10.1016/j.ijpe.2015.12.013
– volume: 8
  start-page: 169229
  year: 2020
  ident: ref120
  article-title: Brake fault identification and fault-tolerant directional stability control of heavy road vehicles
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3024251
– volume: 9
  start-page: 2324
  year: 2022
  ident: ref35
  article-title: State of the art technologies in fault diagnosis of electric vehicles: a component-based review
  publication-title: IEEE Trans Transp Electrif
  doi: 10.1109/TTE.2022.3209166
– volume: 197
  start-page: 117
  year: 2023
  ident: ref183
  article-title: Recurrent neural networks (RNNs): architectures, training tricks, and introduction to influential research
  publication-title: Mach Learn Brain Disord
  doi: 10.1007/978-1-0716-3195-9_4
– year: 2019
  ident: ref5
  publication-title: Skills for the future of manufacturing
– volume: 98
  start-page: 104771
  year: 2023
  ident: ref82
  article-title: A low-cost in-tire-pressure monitoring SoC using integer/floating-point type convolutional neural network inference engine
  publication-title: Microprocess Microsyst
  doi: 10.1016/j.micpro.2023.104771
– volume: 8
  start-page: 74
  year: 2022
  ident: ref93
  article-title: Comprehensive review on dual clutch transmission
  publication-title: Int J Veh Perform
  doi: 10.1504/IJVP.2022.119440
– start-page: 145
  year: 2019
  ident: ref72
  article-title: Online model for suspension faults diagnostics using IoT and analytics
– volume: 378
  start-page: 112
  year: 2020
  ident: ref176
  article-title: Impact of fully connected layers on performance of convolutional neural networks for image classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.10.008
– volume: 128
  start-page: 997
  year: 2020
  ident: ref137
  article-title: End-to-end learning of decision trees and forests
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-019-01237-6
– volume: 214
  start-page: 118866
  year: 2021
  ident: ref143
  article-title: An intelligent fault diagnosis method for lithium battery systems based on grid search support vector machine
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118866
– volume: 6
  start-page: 1298
  year: 2022
  ident: ref48
  article-title: An intelligent risk management framework for monitoring vehicular engine health
  publication-title: IEEE Trans Green Commun Netw
  doi: 10.1109/TGCN.2022.3179350
– volume: 169
  start-page: 108752
  year: 2022
  ident: ref113
  article-title: Vibration-based anomaly detection using LSTM/SVM approaches
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2021.108752
– volume: 61
  start-page: 5
  year: 2019
  ident: ref3
  article-title: A brief history of artificial intelligence: on the past, present, and future of artificial intelligence
  publication-title: Calif Manage Rev
  doi: 10.1177/0008125619864925
– volume: 12
  start-page: 5327
  year: 2022
  ident: ref100
  article-title: Detection and monitoring of pitting progression on gear tooth flank using deep learning
  publication-title: Appl Sci
  doi: 10.3390/app12115327
– volume: 5
  start-page: 13
  year: 2010
  ident: ref164
  article-title: Deep machine learning—a new frontier in artificial intelligence research [research frontier]
  publication-title: IEEE Comput Intell Mag
  doi: 10.1109/MCI.2010.938364
– volume: 32
  start-page: 11807
  year: 2020
  ident: ref160
  article-title: Concrete compressive strength using artificial neural networks
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-019-04663-2
– volume: 237
  start-page: 16
  year: 2023
  ident: ref207
  article-title: Using LSTM neural network to predict remaining useful life of electrolytic capacitors in dynamic operating conditions
  publication-title: J Risk Reliab
– year: 2019
  ident: ref27
  publication-title: Monitoring vehicle suspension elements using machine learning techniques
– volume: 11
  start-page: 1
  year: 2020
  ident: ref219
  article-title: Predictive maintenance of lead-acid batteries with sparse vehicle operational data
  publication-title: Int J Progn Heal Manag
– volume: 36
  start-page: 54
  year: 2022
  ident: ref226
  article-title: Empowering the V2X network by integrated sensing and communications: background, design, advances, and opportunities
  publication-title: IEEE Netw
  doi: 10.1109/MNET.001.2100688
– volume: 9
  start-page: 12886
  year: 2022
  ident: ref26
  article-title: Knowledge-based fault diagnosis in industrial Internet of Things: a survey
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2022.3163606
– ident: ref209
  article-title: Development process to bearing fault diagnostic and prognostic for the predictive maintenance era
– volume: 10
  start-page: 77707
  year: 2022
  ident: ref234
  article-title: A novel blockchain based secured and QoS aware IoT vehicular network in edge cloud computing
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3192111
– start-page: 1
  year: 2022
  ident: ref55
  article-title: Data-driven anomaly detection of engine knock based on automotive ECU
– volume: 69
  start-page: 3852
  year: 2020
  ident: ref63
  article-title: Sensor fault detection and isolation using a support vector machine for vehicle suspension systems
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2020.2977353
– volume: 26
  start-page: 174860
  year: 2024
  ident: ref75
  article-title: Fault diagnosis of suspension system based on spectrogram image and vision transformer
  publication-title: Eksploat i Niezawodn
– volume: 25
  start-page: 424
  year: 2023
  ident: ref107
  article-title: An entropy-based condition monitoring strategy for the detection and classification of wear levels in gearboxes
  publication-title: Entropy
  doi: 10.3390/e25030424
– start-page: 1
  year: 2017
  ident: ref158
  article-title: Artificial intelligence, machine learning and deep learning
– volume: 72
  start-page: 1
  year: 2022
  ident: ref233
  article-title: Lightweight multiscale convolutional networks with adaptive pruning for intelligent fault diagnosis of train bogie bearings in edge computing scenarios
  publication-title: IEEE Trans Instrum Meas
– volume: 228
  start-page: 2313
  year: 2019
  ident: ref184
  article-title: A survey on LSTM memristive neural network architectures and applications
  publication-title: Eur Phys J Spec Top
  doi: 10.1140/epjst/e2019-900046-x
– volume: 19
  start-page: 2020
  year: 2021
  ident: ref54
  article-title: Spark plug failure detection using Z-freq and machine learning
  publication-title: TELKOMNIKA (Telecommun Comput Electron Control)
  doi: 10.12928/telkomnika.v19i6.22027
– volume: 159
  start-page: 107802
  year: 2020
  ident: ref185
  article-title: Multisensor bearing fault diagnosis based on one-dimensional convolutional long short-term memory networks
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.107802
– volume: 16
  start-page: 6347
  year: 2020
  ident: ref103
  article-title: One-dimensional residual convolutional autoencoder based feature learning for gearbox fault diagnosis
  publication-title: IEEE Trans Ind Inform
  doi: 10.1109/TII.2020.2966326
– volume: 66
  start-page: 107426
  year: 2023
  ident: ref206
  article-title: Machine learning-based state of health prediction for battery systems in real-world electric vehicles
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2023.107426
– volume: 23
  start-page: 3565
  year: 2020
  ident: ref91
  article-title: Tire force estimation in intelligent tires using machine learning
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2020.3038155
– volume: 3
  start-page: 100071
  year: 2022
  ident: ref135
  article-title: A comparative analysis of K-nearest neighbor, genetic, support vector machine, decision tree, and long short term memory algorithms in machine learning
  publication-title: Decis Anal J
  doi: 10.1016/j.dajour.2022.100071
– year: 2022
  ident: ref210
  publication-title: Engine overheating prediction with machine learning using Gaussian mixture model (GMM)
– start-page: 1255
  year: 2019
  ident: ref145
  article-title: A brief review of nearest neighbor algorithm for learning and classification
– volume: 15
  start-page: 3492
  year: 2020
  ident: ref225
  article-title: Deep-VFog: when artificial intelligence meets fog computing in V2X
  publication-title: IEEE Syst J
  doi: 10.1109/JSYST.2020.3009998
– volume: 21
  start-page: 2547
  year: 2021
  ident: ref212
  article-title: Multi-sensor fault detection, identification, isolation and health forecasting for autonomous vehicles
  publication-title: Sensors
  doi: 10.3390/s21072547
– volume: 33
  start-page: 7785
  year: 2021
  ident: ref49
  article-title: Remaining useful life (RUL) prediction of internal combustion engine timing belt based on vibration signals and artificial neural network
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-020-05520-3
– volume: 2
  start-page: 127
  year: 2022
  ident: ref31
  publication-title: Multimedia technologies in the internet of things environment
– volume: 23
  start-page: 2177
  year: 2023
  ident: ref81
  article-title: Tire condition monitoring using transfer learning-based deep neural network approach
  publication-title: Sensors
  doi: 10.3390/s23042177
– volume: 117
  start-page: 105524
  year: 2023
  ident: ref162
  article-title: Multiple fault detection and isolation using artificial neural networks in sensors of an internal combustion engine
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2022.105524
– volume: 133
  start-page: 108098
  year: 2024
  ident: ref95
  article-title: Dynamic normalization supervised contrastive network with multiscale compound attention mechanism for gearbox imbalanced fault diagnosis
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2024.108098
– volume: 70
  start-page: 1
  year: 2021
  ident: ref98
  article-title: A novel probability confidence CNN model and its application in mechanical fault diagnosis
  publication-title: IEEE Trans Instrum Meas
– start-page: 96
  year: 2015
  ident: ref192
  article-title: Structured denoising autoencoder for fault detection and analysis
– volume: 223
  start-page: 793
  year: 2009
  ident: ref116
  article-title: A novel in-vehicle real-time brake-monitoring system
  publication-title: Proc Inst Mech Eng Part D J Automob Eng
  doi: 10.1243/09544070JAUTO996
– volume: 20
  start-page: 15163
  year: 2020
  ident: ref130
  article-title: Implementation of machine learning for fault classification on vehicle power transmission system
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2020.3010291
– start-page: 1
  year: 2022
  ident: ref167
  article-title: Multiclass classification using arctangent activation function and its variations
– start-page: 1130
  year: 2020
  ident: ref154
  article-title: K-means algorithm description and the application of cluster analysis in heavy truck vehicle fault
– volume: 1222
  start-page: 12045
  year: 2019
  ident: ref94
  article-title: On the use of AI based vibration condition monitoring of wind turbine gearboxes
  publication-title: J Phy Conf Series
  doi: 10.1088/1742-6596/1222/1/012045
– volume: 227
  start-page: 111742
  year: 2023
  ident: ref79
  article-title: A comprehensive review on non-pneumatic tyre research
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2023.111742
– volume: 4
  start-page: 26
  year: 2016
  ident: ref165
  article-title: Multilayer perceptron
  publication-title: Int J Interact Multimed Artif Intell
– volume: 225
  start-page: 120023
  year: 2023
  ident: ref177
  article-title: A lightweight CORONA-NET for COVID-19 detection in X-ray images
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2023.120023
– start-page: 1
  year: 2022
  ident: ref220
  article-title: Predictive maintenance for commercial vehicles tyres using machine learning
– start-page: 101
  year: 2020
  ident: ref139
  publication-title: Machine learning
– volume: 86
  start-page: 105919
  year: 2020
  ident: ref12
  article-title: A novel deep learning method based on attention mechanism for bearing remaining useful life prediction
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2019.105919
– volume: 10
  start-page: 40482
  year: 2022
  ident: ref195
  article-title: Revisiting Bayesian autoencoders with MCMC
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3163270
– volume: 35
  start-page: 7659
  year: 2023
  ident: ref112
  article-title: Accompanying deep framework for faults in motor and gearbox with disproportion vibrational samples
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-022-08020-8
– start-page: 1
  year: 2018
  ident: ref7
  article-title: Introduction to PHM
  publication-title: Prognostics and health management of electronics: fundamentals, machine learning, and the internet of things
– volume: 123
  start-page: 1
  year: 2019
  ident: ref74
  article-title: Multibody model based estimation of multiple loads and strain field on a vehicle suspension system
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2018.12.024
– volume: 16
  start-page: 271
  year: 2022
  ident: ref85
  article-title: Tyre pressure supervision of two wheeler using machine learning
  publication-title: Struct Durab Heal Monit
  doi: 10.32604/sdhm.2022.010622
– volume: 9
  start-page: 1
  year: 2016
  ident: ref89
  article-title: Implementing K-star algorithm to monitor tyre pressure using extracted statistical features from vertical wheel hub vibrations
  publication-title: Indian J Sci Technol
  doi: 10.17485/ijst/2016/v9i47/107926
– volume: 223
  start-page: 107534
  year: 2020
  ident: ref9
  article-title: Smart maintenance: an empirically grounded conceptualization
  publication-title: Int J Prod Econ
  doi: 10.1016/j.ijpe.2019.107534
– volume: 23
  start-page: 9681
  year: 2023
  ident: ref173
  article-title: A novel lightweight human activity recognition method via L-CTCN
  publication-title: Sensors
  doi: 10.3390/s23249681
– volume: 208
  start-page: 106453
  year: 2020
  ident: ref51
  article-title: Improved CNN for the diagnosis of engine defects of 2-wheeler vehicle using wavelet synchro-squeezed transform (WSST)
  publication-title: Knowledge-Based Syst
  doi: 10.1016/j.knosys.2020.106453
– volume: 13
  start-page: 2213
  year: 2019
  ident: ref202
  article-title: Data-driven methods for predictive maintenance of industrial equipment: a survey
  publication-title: IEEE Syst J
  doi: 10.1109/JSYST.2019.2905565
– year: 2023
  ident: ref240
  publication-title: Vehicle diagnostics adapter cybersecurity concerns with wireless connectivity
– volume: 20
  start-page: 3
  year: 2020
  ident: ref136
  article-title: The random forest algorithm for statistical learning
  publication-title: Stata J
  doi: 10.1177/1536867X20909688
– volume: 88
  start-page: 109
  year: 2022
  ident: ref60
  article-title: Modeling, diagnostics, optimization, and control of internal combustion engines via modern machine learning techniques: a review and future directions
  publication-title: Prog Energy Combust Sci
  doi: 10.1016/j.pecs.2021.100967
– start-page: 127
  year: Sep 2020
  ident: ref214
  article-title: Embeddings based parallel stacked autoencoder approach for dimensionality reduction and predictive maintenance of vehicles
– volume: 64
  start-page: 503
  year: 2021
  ident: ref2
  article-title: An overview of artificial intelligence in automobile industry—a case study on Tesla cars
  publication-title: Solid State Technol
– volume: 94
  start-page: 103765
  year: 2020
  ident: ref161
  article-title: An engine-fault-diagnosis system based on sound intensity analysis and wavelet packet pre-processing neural network
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2020.103765
– volume: 11
  start-page: 778
  year: 2023
  ident: ref76
  article-title: Transfer learning based fault detection for suspension system using vibrational analysis and radar plots
  publication-title: Machines
  doi: 10.3390/machines11080778
– volume: 12
  start-page: 8388
  year: 2022
  ident: ref99
  article-title: SRMANet: toward an interpretable neural network with multi-attention mechanism for gearbox fault diagnosis
  publication-title: Appl Sci
  doi: 10.3390/app12168388
– volume: 21
  start-page: 1
  year: 2021
  ident: ref87
  article-title: Unsupervised learning with generative adversarial network for automatic tire defect detection from X-ray images
  publication-title: Sensors
– volume: 21
  start-page: 1
  year: 2021
  ident: ref168
  article-title: Fault diagnosis of an automobile cylinder block with neural process of modal information
  publication-title: Int J Mech Mechatron Eng
– volume: 123
  start-page: 372
  year: 2022
  ident: ref109
  article-title: An evolving neuro-fuzzy classifier for fault diagnosis of gear systems
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2021.05.019
– volume: 5
  start-page: 2100402
  year: 2022
  ident: ref163
  article-title: Universal transparent artificial neural network-based fault section diagnosis models for power systems
  publication-title: Adv Theory Simulations
  doi: 10.1002/adts.202100402
– volume: 46
  start-page: 8645
  year: 2021
  ident: ref149
  article-title: Predictive analytics as a service for vehicle health monitoring using edge computing and AK-NN algorithm
  publication-title: Mater Today: Proc
– volume: 22
  start-page: 1044
  year: 2020
  ident: ref236
  article-title: On the application of entropy measures with sliding window for intrusion detection in automotive in-vehicle networks
  publication-title: Entropy
  doi: 10.3390/e22091044
– volume: 22
  start-page: 1
  year: 2022
  ident: ref232
  article-title: Providing reliable service for parked-vehicle-assisted mobile edge computing
  publication-title: ACM Trans Internet Technol
  doi: 10.1145/3514242
– volume: 4
  start-page: 253
  year: 2021
  ident: ref238
  article-title: A systematic risk assessment framework of automotive cybersecurity
  publication-title: Automot Innov
  doi: 10.1007/s42154-021-00140-6
– volume: 31
  start-page: 685
  year: 2021
  ident: ref159
  article-title: Machine learning and deep learning
  publication-title: Electron Mark
  doi: 10.1007/s12525-021-00475-2
– volume: 22
  start-page: 3208
  year: 2022
  ident: ref37
  article-title: Real-time fault detection and condition monitoring for industrial autonomous transfer vehicles utilizing edge artificial intelligence
  publication-title: Sensors
  doi: 10.3390/s22093208
– volume: 23
  start-page: 6206
  year: 2021
  ident: ref231
  article-title: A taxonomy and survey of edge cloud computing for intelligent transportation systems and connected vehicles
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2021.3084396
– start-page: 1
  year: 2021
  ident: ref239
  article-title: Model-based attack tree generation for cybersecurity risk-assessments in automotive
– volume: 18
  start-page: 2720
  year: 2018
  ident: ref39
  article-title: Sensitivity-based fault detection and isolation algorithm for road vehicle chassis sensors
  publication-title: Sensors
  doi: 10.3390/s18082720
– volume: 117
  start-page: 107996
  year: 2021
  ident: ref152
  article-title: Robust deep k-means: an effective and simple method for data clustering
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2021.107996
– volume: 4
  start-page: 109
  year: 2020
  ident: ref61
  article-title: A review of the vehicle suspension system
  publication-title: J Mech Energy Eng
  doi: 10.30464/jmee.2020.4.2.109
– volume: 8
  start-page: 10077
  year: 2024
  ident: ref224
  article-title: Advancements, challenges, and implications for navigating the autonomous vehicle revolution
  publication-title: J Mech Eng Sci
  doi: 10.15282/jmes.18.2.2024.9.0796
– volume: 20
  start-page: 1483
  year: 2006
  ident: ref203
  article-title: A review on machinery diagnostics and prognostics implementing condition-based maintenance
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2005.09.012
– start-page: 142
  year: 2007 Jun 18–20
  ident: ref41
  article-title: SNTS: sensor network troubleshooting suite
– volume: 32
  start-page: e2541
  year: 2019
  ident: ref71
  article-title: A novel fault diagnosis technique based on model and computational intelligence applied to vehicle active suspension systems
  publication-title: Int J Numer Model Electron Netw Devices Fields
  doi: 10.1002/jnm.2541
– volume: 182
  start-page: 208
  year: 2019
  ident: ref205
  article-title: Deep learning-based remaining useful life estimation of bearings using multi-scale feature extraction
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2018.11.011
– volume: 137
  start-page: 14
  year: 2019
  ident: ref68
  article-title: A dual-tree complex wavelet enhanced convolutional LSTM neural network for structural health monitoring of automotive suspension
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.01.038
– volume: 21
  start-page: 7
  year: 2019
  ident: ref199
  article-title: Intelligent assisted maintenance plan generation for corrective maintenance
  publication-title: Manuf Lett
– volume: 45
  start-page: 7213
  year: 2021
  ident: ref73
  article-title: Numerical modeling and optimization of turns in double wish bone suspension of an automotive
  publication-title: Mater Today Proc
  doi: 10.1016/j.matpr.2021.02.419
– start-page: 331
  year: 2021 Sep 22–24
  ident: ref211
  article-title: Predictive maintenance of vehicle fleets using hierarchical modified fuzzy support vector machine for industrial IoT datasets
– volume: 19
  start-page: 3306
  year: 2019
  ident: ref38
  article-title: Sensor fault detection and signal restoration in intelligent vehicles
  publication-title: Sensors
  doi: 10.3390/s19153306
– start-page: 103
  year: 2019
  ident: ref204
  article-title: Data-driven fault diagnostics and prognostics for predictive maintenance: a brief overview
– volume: 21
  start-page: 4895
  year: 2019
  ident: ref92
  article-title: Ecological adaptive cruise control for vehicles with step-gear transmission based on reinforcement learning
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2019.2947756
– volume: 22
  start-page: 65
  year: 2021
  ident: ref170
  article-title: Optimized multi layer perceptron artificial neural network based fault diagnosis of induction motor using vibration signals
  publication-title: Diagnostyka
  doi: 10.29354/diag/133091
– volume: 38
  start-page: 1990
  year: 2022
  ident: ref20
  article-title: Systematic literature review on predictive maintenance of vehicles and diagnosis of vehicle’s health using machine learning techniques
  publication-title: Comput Intell
  doi: 10.1111/coin.12553
– volume: 13
  start-page: 1
  year: 2022
  ident: ref19
  article-title: How to implement automotive fault diagnosis using artificial intelligence scheme
  publication-title: Micromachines
  doi: 10.3390/mi13091380
– volume: 23
  start-page: 877
  year: 2022
  ident: ref181
  article-title: Failure diagnostics of camera image sensor for vehicle using CNN
  publication-title: J Korea Acad Coop Soc
– volume: 71
  start-page: 12530
  year: 2022
  ident: ref171
  article-title: Privacy-preserving and real-time detection of vehicular congestion using multilayer perceptron approach for internet of vehicles
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2022.3199407
– year: 2019
  ident: ref69
  article-title: An evaluation of autoencoder and sparse filter as automated feature extraction process for automotive damper defect diagnosis
– start-page: 1
  year: 2022
  ident: ref141
  article-title: Comprehensive review on twin support vector machines
  publication-title: Ann Oper Res
– volume: 15
  start-page: 515
  year: 2021
  ident: ref56
  article-title: Fault detection and diagnosis of engine spark plugs using deep learning techniques
  publication-title: SAE Int J Engines
  doi: 10.4271/03-15-04-0027
– volume: 11
  start-page: 5392
  year: 2020
  ident: ref88
  article-title: 3D printed graphene-based self-powered strain sensors for smart tires in autonomous vehicles
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-19088-y
– volume: 2
  start-page: 20
  year: 2021
  ident: ref132
  article-title: Classification based on decision tree algorithm for machine learning
  publication-title: J Appl Sci Technol Trends
  doi: 10.38094/jastt20165
– start-page: 265
  year: 2017
  ident: ref17
  publication-title: Automated driving: safer and more efficient future driving
  doi: 10.1007/978-3-319-31895-0_11
– volume: 14
  start-page: 1
  year: 2018
  ident: ref121
  article-title: Vibration based condition monitoring of a brake system using statistical features with logit boost and simple logistic algorithm
  publication-title: Int J Perform Eng
– volume: 9
  start-page: 41246
  year: 2021
  ident: ref22
  article-title: Deep learning for fault diagnostics in bearings, insulators, PV panels, power lines, and electric vehicle applications—the state-of-the-art approaches
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3064360
– year: 2020
  ident: ref77
  publication-title: Tire engineering: an introduction
  doi: 10.1201/9781003022961
– start-page: 139
  year: 2018
  ident: ref8
  article-title: Maintenance 4.0: intelligent and predictive maintenance system architecture
– volume: 13
  start-page: 4467
  year: 2023
  ident: ref105
  article-title: Internal combustion engine gearbox bearing fault prediction using J48 and random forest classifier
  publication-title: Int J Electr Comput Eng
– volume: 35
  start-page: 3433
  year: 2022
  ident: ref153
  article-title: An effective and efficient algorithm for K-means clustering with new formulation
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2022.3155450
– volume: 122
  start-page: 106031
  year: 2023
  ident: ref208
  article-title: ML-based vehicle downtime reduction: a case of air compressor failure detection
  publication-title: Eng Appl Artif Intel
  doi: 10.1016/j.engappai.2023.106031
– volume: 4
  start-page: 301
  year: 2021
  ident: ref142
  article-title: A novel fault detection, identification and prediction approach for autonomous vehicle controllers using SVM
  publication-title: Automot Innov
  doi: 10.1007/s42154-021-00138-0
– volume: 21
  start-page: 2140
  year: 2021
  ident: ref43
  article-title: Sensor and sensor fusion technology in autonomous vehicles: a review
  publication-title: Sensors
  doi: 10.3390/s21062140
– volume: 8
  start-page: 185489
  year: 2020
  ident: ref188
  article-title: LSTM-based intrusion detection system for in-vehicle can bus communications
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3029307
– volume: 71
  start-page: 1
  year: 2022
  ident: ref197
  article-title: LSTM-GAN-AE: a promising approach for fault diagnosis in machine health monitoring
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2022.3219307
– volume: 27
  start-page: 100285
  year: 2021
  ident: ref13
  article-title: Evolution of IoT-enabled connectivity and applications in automotive industry: a review
  publication-title: Veh Commun
– start-page: 3
  year: 2020
  ident: ref128
  publication-title: Supervised unsupervised learn data science
  doi: 10.1007/978-3-030-22475-2_1
– start-page: 349
  year: 2019
  ident: ref133
  article-title: An extended idea about decision trees
– volume: 51
  start-page: 1335
  year: 2023
  ident: ref45
  article-title: An intelligent fault diagnosis algorithm for vehicle internal combustion engines based on instantaneous speed for a smart city
  publication-title: J Test Eval
  doi: 10.1520/JTE20220099
– start-page: 77
  year: 2020
  ident: ref129
  article-title: Explainable reinforcement learning: a survey
– volume: 238
  start-page: 1206
  year: 2024
  ident: ref62
  article-title: Fault detection of automobile suspension system using decision tree algorithms: a machine learning approach
  publication-title: Proc Inst Mech Eng Part E J Process Mech Eng
  doi: 10.1177/09544089231152698
– volume: 73
  start-page: 1
  year: 2022
  ident: ref122
  article-title: Recurrent autoencoder ensembles for brake operating unit anomaly detection on metro vehicles
  publication-title: Comput Mater Contin
– volume: 33
  start-page: 429
  year: 2020
  ident: ref4
  article-title: Digital twin-driven supervised machine learning for the development of artificial intelligence applications in manufacturing
  publication-title: Int J Comput Integr Manuf
  doi: 10.1080/0951192X.2020.1747642
– volume: 8
  start-page: 963
  year: 2023
  ident: ref57
  article-title: Anti-noise diesel engine misfire diagnosis using a multi-scale CNN-LSTM neural network with denoising module
  publication-title: CAAI Trans Intell Technol
  doi: 10.1049/cit2.12170
– start-page: 1
  year: 2020
  ident: ref174
  article-title: A review of convolutional neural networks
– volume: 224
  start-page: 120002
  year: 2023
  ident: ref196
  article-title: A fault diagnosis framework for autonomous vehicles with sensor self-diagnosis
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2023.120002
– start-page: 103
  year: 2022
  ident: ref213
  publication-title: Big data privacy and security in smart cities
  doi: 10.1007/978-3-031-04424-3_6
– volume: 2
  start-page: 160
  year: 2021
  ident: ref131
  article-title: Machine learning: algorithms, real-world applications and research directions
  publication-title: SN Comput Sci
  doi: 10.1007/s42979-021-00592-x
– volume: 10
  start-page: 497
  year: 2022
  ident: ref148
  article-title: A novel fault detection scheme based on mutual k-nearest neighbor method: application on the industrial processes with outliers
  publication-title: Processes
  doi: 10.3390/pr10030497
– volume: 118
  start-page: 105761
  year: 2020
  ident: ref193
  article-title: A novel smart meter data compression method via stacked convolutional sparse auto-encoder
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2019.105761
– volume: 128
  start-page: 100758
  year: 2022
  ident: ref11
  article-title: Advances in integrated system health management for mission-essential and safety-critical aerospace applications
  publication-title: Prog Aerosp Sci
  doi: 10.1016/j.paerosci.2021.100758
– volume: 27
  start-page: 77
  year: 2022
  ident: ref30
  article-title: A review of artificial intelligence and machine learning for incident detectors in road transport systems
  publication-title: Math Comput Appl
– start-page: 5630
  year: 2020
  ident: ref179
  article-title: Fault diagnosis based on one-dimensional deep convolution neural network
– volume: 23
  start-page: 114
  year: 2017
  ident: ref200
  article-title: Preventive maintenance (PM) planning: a review
  publication-title: J Qual Maint Eng
  doi: 10.1108/JQME-04-2016-0014
– volume: 2022
  start-page: 7606896
  year: 2022
  ident: ref52
  article-title: Misfire detection in dpark ignition engine using transfer learning
  publication-title: Comput Intell Neurosci
  doi: 10.1155/2022/7606896
– volume: 15
  start-page: 31
  year: 2022
  ident: ref33
  article-title: Machine learning and deep learning based methods toward Industry 4.0 predictive maintenance in induction motors: state of the art survey
  publication-title: J Ind Eng Manag
– volume: 20
  start-page: 61003
  year: 2020
  ident: ref216
  article-title: Determination of time-to-failure for automotive system components using machine learning
  publication-title: J Comput Inf Sci Eng
  doi: 10.1115/1.4046818
– volume: 14
  start-page: 651
  year: 2023
  ident: ref44
  article-title: Machine learning-aided remote monitoring of NOx emissions from heavy-duty diesel vehicles based on OBD data streams
  publication-title: Atmosphere
  doi: 10.3390/atmos14040651
– start-page: 301
  year: 2022
  ident: ref147
  publication-title: Machine learning for practical decision making: a multidisciplinary perspective with applications from healthcare, engineering and business analytics
  doi: 10.1007/978-3-031-16990-8_10
– volume: 7
  start-page: 8
  year: 2024
  ident: ref6
  article-title: Generative AI in E-maintenance: myth or reality?
  publication-title: Artif Intell
– volume: 233
  start-page: 3736
  year: 2019
  ident: ref217
  article-title: Application of fuzzy inference system for analysis of oil field data to optimize combustion engine maintenance
  publication-title: Proc Inst Mech Eng Part D J Automob Eng
  doi: 10.1177/0954407019833521
– volume: 8
  start-page: 80716
  year: 2020
  ident: ref151
  article-title: Unsupervised K-means clustering algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2988796
– volume: 56
  start-page: 539
  year: 2020
  ident: ref10
  article-title: Towards multi-model approaches to predictive maintenance: a systematic literature survey on diagnostics and prognostics
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2020.07.008
– year: 2020
  ident: ref78
  publication-title: Vehicle technology: technical foundations of current and future motor vehicles
  doi: 10.1515/9783110595703
– volume: 2020
  start-page: 8843759
  year: 2020
  ident: ref36
  article-title: A review of artificial intelligence methods for condition monitoring and fault diagnosis of rolling element bearings for induction motor
  publication-title: Shock Vib
– volume: 80
  start-page: 1105
  year: 2024
  ident: ref189
  article-title: Masked autoencoders as single object tracking learners
  publication-title: Comput Mater Contin
– volume: 67
  start-page: 9536
  year: 2019
  ident: ref124
  article-title: Dynamic state estimation for the advanced brake system of electric vehicles by using deep recurrent neural networks
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2019.2952807
– volume: 8
  start-page: 67
  year: 2019
  ident: ref146
  article-title: ck-NN: a clustered k-nearest neighbours approach for large-scale classification
  publication-title: Adv Distrib Comput Artif Intell J
– volume: 12
  start-page: 169
  year: 2024
  ident: ref21
  article-title: Machine learning approaches for in-vehicle failure prognosis in automobiles: a review
  publication-title: VFAST Trans Softw Eng
  doi: 10.21015/vtse.v12i1.1713
– volume: 46
  start-page: 861
  year: 2022
  ident: ref114
  article-title: Wavelet based real-time planetary gearbox health monitoring under non-stationary operation
  publication-title: Exp Tech
  doi: 10.1007/s40799-021-00518-5
– ident: ref15
  publication-title: Unsettled technology opportunities for vehicle health management and the role for health-ready components
– volume: 16
  start-page: 383
  year: 2022
  ident: ref126
  article-title: Vibration-based fault diagnosis study on a hydraulic brake system using fuzzy logic with histogram features
  publication-title: Struct Durab Heal Monit
  doi: 10.32604/sdhm.2022.011396
– volume: 68
  start-page: 6248
  year: 2020
  ident: ref144
  article-title: Fault diagnosis of an autonomous vehicle with an improved SVM algorithm subject to unbalanced datasets
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2020.2994868
– year: 2021
  ident: ref169
  article-title: A multilayer perceptron approach for condition monitoring of automobile suspension system through vibration signal
– volume: 11
  start-page: 78994
  year: 2023
  ident: ref222
  article-title: A review of trustworthy and explainable artificial intelligence (XAI)
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3294569
– start-page: 231
  year: 2020
  ident: ref96
  publication-title: Artificial intelligence for sustainable development: theory, practice and future applications
– volume: 10
  start-page: 3626
  year: 2022
  ident: ref23
  article-title: Blockchain and deep learning-based fault detection framework for electric vehicles
  publication-title: Mathematics
  doi: 10.3390/math10193626
– volume: 4
  start-page: 753
  year: 2021
  ident: ref90
  article-title: Application of machine learning technique for development of indirect tire pressure monitoring system
  publication-title: SAE Int J Adv Curr Pract Mobil
  doi: 10.4271/2021-26-0016
– volume: 53
  start-page: 3445
  year: 2021
  ident: ref110
  article-title: Anfis-based defect severity prediction on a multi-stage gearbox operating under fluctuating speeds
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-021-10557-z
– volume: 165
  start-page: 108336
  year: 2022
  ident: ref101
  article-title: An adaptive order-band energy ratio method for the fault diagnosis of planetary gearboxes
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2021.108336
– volume: 34
  start-page: 9709
  year: 2019
  ident: ref40
  article-title: A sensor fault diagnosis method for a lithium-ion battery pack in electric vehicles
  publication-title: IEEE Trans Power Electron
  doi: 10.1109/TPEL.2019.2893622
– volume: 124
  start-page: 319
  year: 2020
  ident: ref175
  article-title: Theory of deep convolutional neural networks: downsampling
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2020.01.018
– volume: 2
  start-page: 126
  year: 2019
  ident: ref198
  article-title: General overview of maintenance strategies-concepts and approaches
  publication-title: Multidiscip Asp Prod Eng
– volume: 7
  start-page: 10823
  year: 2019
  ident: ref223
  article-title: Artificial intelligence for vehicle-to-everything
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2891073
– volume: 21
  start-page: 7073
  year: 2021
  ident: ref83
  article-title: Analysis of the possibilities of tire-defect inspection based on unsupervised learning and deep learning
  publication-title: Sensors
  doi: 10.3390/s21217073
– volume: 8
  start-page: 384
  year: 2021
  ident: ref32
  article-title: Artificial intelligence-based technique for fault detection and diagnosis of EV motors: a review
  publication-title: IEEE Trans Transp Electrif
  doi: 10.1109/TTE.2021.3110318
– volume: 120
  start-page: 360
  year: 2022
  ident: ref34
  article-title: Intelligent diagnosis of mechanical faults of in-wheel motor based on improved artificial hydrocarbon networks
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2021.03.015
– volume: 30
  start-page: 1723
  year: 2022
  ident: ref70
  article-title: Takagi-sugeno fuzzy observer-based magnetorheological damper fault diagnosis using a support vector machine
  publication-title: IEEE Trans Control Syst Technol
  doi: 10.1109/TCST.2021.3123611
– volume: 23
  start-page: 5014
  year: 2023
  ident: ref221
  article-title: Toward interpretability in fault diagnosis for autonomous vehicles: interpretation of sensor data anomalies
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2023.3236838
– volume: 34
  start-page: 1189
  year: 2018
  ident: ref227
  article-title: VIAL: a unified process for visual interactive labeling
  publication-title: Vis Comput
  doi: 10.1007/s00371-018-1500-3
– volume: 24
  start-page: 298
  year: 2017
  ident: ref228
  article-title: Comparing visual-interactive labeling with active learning: an experimental study
  publication-title: IEEE Trans Vis Comput Graph
  doi: 10.1109/TVCG.2017.2744818
– volume: 107
  start-page: 871
  year: 2020
  ident: ref127
  article-title: An introduction to machine learning
  publication-title: Clin Pharmacol Ther
  doi: 10.1002/cpt.1796
– volume: 68
  start-page: 81
  year: 2017
  ident: ref235
  article-title: Cyber physical systems security: analysis, challenges and solutions
  publication-title: Comput Secur
  doi: 10.1016/j.cose.2017.04.005
– year: 2019
  ident: ref1
  publication-title: The culture of AI: everyday life and the digital revolution
  doi: 10.4324/9781315387185
– volume: 16
  start-page: 61
  year: 2014
  ident: ref97
  article-title: Gearbox faults identification using vibration signal analysis and artificial intelligence methods
  publication-title: Eksploat i Niezawodn
– year: 2016
  ident: ref16
  publication-title: Prognostics and health management of power electronics
– volume: 139
  start-page: 109
  year: 2018
  ident: ref42
  article-title: Autonomous data driven surveillance and rectification system using in-vehicle sensors for intelligent transportation systems (ITS)
  publication-title: Comput Netw
  doi: 10.1016/j.comnet.2018.04.008
– volume: 144
  start-page: 106861
  year: 2020
  ident: ref104
  article-title: Multisensor data fusion for gearbox fault diagnosis using 2-D convolutional neural network and motor current signature analysis
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2020.106861
– volume: 23
  start-page: 19727
  year: 2022
  ident: ref29
  article-title: A secure and intelligent framework for vehicle health monitoring exploiting big-data analytics
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2021.3138255
– volume: 34
  start-page: 212
  year: 2021
  ident: ref115
  article-title: Gear fault detection using machine learning techniques-a simulation–driven approach
  publication-title: Int J Eng
– volume: 2021
  start-page: 17
  year: 2021
  ident: ref230
  article-title: A new task offloading algorithm in edge computing
  publication-title: EURASIP J Wirel Commun Netw
  doi: 10.1186/s13638-021-01895-6
– volume: 1
  start-page: 12
  year: 2020
  ident: ref218
  article-title: Predictive maintenance of bus fleet by intelligent smart electronic board implementing artificial intelligence
  publication-title: IoT
  doi: 10.3390/iot1020012
– volume: 123
  start-page: 102685
  year: 2021
  ident: ref237
  article-title: Role of machine learning and deep learning in securing 5G-driven industrial IoT applications
  publication-title: Ad Hoc Netw
  doi: 10.1016/j.adhoc.2021.102685
– volume: 13
  start-page: 5202
  year: 2023
  ident: ref106
  article-title: A two-stage framework for time-frequency analysis and fault diagnosis of planetary gearboxes
  publication-title: Appl Sci
  doi: 10.3390/app13085202
– start-page: 101
  year: 2019
  ident: ref191
  publication-title: Deep learning: concepts and architectures
– start-page: 161
  year: 2019
  ident: ref201
  publication-title: Intelligent systems in production engineering and maintenance
– volume: 192
  start-page: 116233
  year: 2022
  ident: ref50
  article-title: Real-time abnormality detection and classification in diesel engine operations with convolutional neural network
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.116233
– start-page: 203
  year: 2021
  ident: ref166
  publication-title: Bio-inspired neurocomputing
  doi: 10.1007/978-981-15-5495-7_11
– year: 2022
  ident: ref66
  article-title: A machine learning proposal for condition monitoring of vehicle suspension
– start-page: 1
  year: 2022
  ident: ref53
  article-title: Feature selection in machine learning for knocking noise detection
– volume: 14
  start-page: 6599
  year: 2021
  ident: ref186
  article-title: A fault diagnosis design based on deep learning approach for electric vehicle applications
  publication-title: Energies
  doi: 10.3390/en14206599
– volume: 9
  start-page: 919
  year: 2021
  ident: ref180
  article-title: Application of deep learning in fault diagnosis of rotating machinery
  publication-title: Processes
  doi: 10.3390/pr9060919
– volume: 9
  start-page: 2226
  year: 2013
  ident: ref28
  article-title: From model, signal to knowledge: a data-driven perspective of fault detection and diagnosis
  publication-title: IEEE Trans Ind Inform
  doi: 10.1109/TII.2013.2243743
– volume: 2
  start-page: 27
  year: 2021
  ident: ref117
  article-title: A comparative study of different control methods for anti-lock braking system (ABS)
  publication-title: SVU-Int J Eng Sci Appl
– start-page: 647
  year: 2020
  ident: ref134
  article-title: Model establishment of decision tree algorithm and its application in vehicle fault prediction analysis
– volume: 4
  start-page: 15003
  year: 2022
  ident: ref178
  article-title: Research on fault diagnosis of automobile engines based on the deep learning 1D-CNN method
  publication-title: Eng Res Express
  doi: 10.1088/2631-8695/ac4834
– start-page: 1
  year: 2020
  ident: ref242
  article-title: Data visualization in internet of things: tools, methodologies, and challenges
SSID ssj0036389
Score 2.4533608
SecondaryResourceType review_article
Snippet Conventional fault diagnosis systems have constrained the automotive industry to damage vehicle maintenance and component longevity critically. Hence, there is...
SourceID unpaywall
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 951
SubjectTerms Algorithms
Artificial intelligence
Automobiles
Autonomous cars
Deep learning
Downtime
Electric vehicles
Fault diagnosis
Feasibility studies
Industrial applications
Industry 4.0
Machine learning
Maintainability
Maintenance
Subsystems
Vehicles
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT8MwDLZgHODCGzFeyoETKLAladYiITQeEyAxIQSIW5W0rkAa24AOBL-euGl5XOAe-fA5fsR2PgNsRgqVDazkUUClG6ubnEjVOaaRSK2JUkT64HzR1ac36vwuuBuDbvUXhsYqK59YOOp0kFCNfFcKTzcWqIPhE6etUdRdrVZomHK1QrpfUIyNw4QgZqwaTByedC-vKt8sKT4XDKpCc_c2EL7P6VKYhtpNHpH4u4XacUlBQ4jfkeo7_Zwc9Yfm_c30ej8iUWcWpssUkrW9zudgDPvzMFOtZ2CltS7APZ3wBBHs7AfzJj9-JhfHbvGeBLCOGfVyduxn7h5eWD5gV_haXsmHD2TtUV7M7L0iuzDEL0EkHbjH2sx3FhbhpnNyfXTKy8UKPBE6zDk6IJAalDZLdKakCkK0gVHWKgyxpRO0WWh11BTORBMZ6Ci0KpSJsVLbNNNyCWr9QR-XgUUhCunsutVEVM4fmEYLm61MhkGENlGqDlsViPHQ82fE7t1RIB4T4jEhHnvE67BWwRyXpvQSfyu-Dttf0P8vbOVvYaswRYd9NWUNavnzCNddfpHbjfLSfAJmRM6o
  priority: 102
  providerName: ProQuest
Title Artificial Intelligence-Driven Vehicle Fault Diagnosis to Revolutionize Automotive Maintenance: A Review
URI https://www.proquest.com/docview/3200123654
https://doi.org/10.32604/cmes.2024.056022
UnpaywallVersion publishedVersion
Volume 141
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1526-1506
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036389
  issn: 1526-1506
  databaseCode: ADMLS
  dateStart: 20180301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1526-1506
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0036389
  issn: 1526-1506
  databaseCode: BENPR
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3dT8IwEMAbhQefxM-IQdIHnzRD2NrS-YbCRBMIIWLwaVnHLRBxENgw8tfbrgPRmKhve7hclrte77a7_orQuU2ACCosw6bq141gFUNB1Q0Y2OZAePYAQB1wbrVZs0ce-rSfwqLVWZiN_r0sLMrkyn8FRdU2SUmmaplwtlGWUVl2Z1C21-7UnhMeqskMWemb62daZrqD-bOOrznos7DcicOp9_7mjccbOcbJ6emseYImVKMlL6U4EiV_-Q3c-KfX30O7aaWJa3pp7KMtCA9QbnWLA06D-hANlYTmSOD7DUCnUZ-pnRA_wVApwI4XjyNc16N5ozmOJrgLi3TljpaAa3GUjPYtALc8haFQLA-4xjWsGxBHqOc0Hm-bRnr_guGbjEcGyOwGqo8pAp8FxCKUg6AeEYIAhyrzQQRcMLtiykj2LcpsLgi3fE9YTAwCZh2jTDgJ4QRhm4NpyfCvVgCI3Da8chUq1cDi1AbhE5JHFyuPuFON2XDl50liQ1fZ0FU2dLUN86iw8pmbRtxcimocHZW6Ltd-_F3Z6b-kCygTzWI4k4VIJIpomzt3RZS9abQ73WK6ID8A-I7a4A
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NTxsxEB1RONALpV9qWmh9aC-tXBLb66yRUJU2REkhUYWg4ra1d2cFUkhSsgHBj-tvq2e9y8elPXFfz-Ht-M2Mx34D8N4oVC5ykpuIjm6cbnESVeeYGZE5azJEeuA8HOn-kfp-HB0vwZ_6LQxdq6w5sSTqbJrSGfmWFEFuLFJfZr85TY2i7mo9QsNWoxWynVJirHrYsYdXl76Em-8Muv5_fxCit3v4rc-rKQM8FTouOHoOR-rWuTzVuZIqitFFVjmnMMa2TtHlsdOmJby_pjLSJnYqlql1Urss19LbfQQrfqHxxd_K193Rj4M6FkjKB0rFVqG5r0VE6Kv6lKmpttIzJL1woT77JKQpxP3IeJvuri4mM3t1acfjO5Gvtw5rVcrKOsHHnsISTp7Bk3ocBKvY4Tmc0BdBkIIN7ih98u45USr7iSdkgPXsYlywbrjjdzpnxZQd4EW1BU6vkXUWRXlH8ALZ0JKeBYmC4DbrsNDJeAFHDwLxS1ieTCf4CpiJUUjPI-0WovL8Y5ttbLVzGUcGXapUAz7WICazoNeR-DqnRDwhxBNCPAmIN2Cjhjmptu48uXW0Bny6gf7_xl7_29g7WO0fDveT_cFo7w08poXhJGcDlovzBW763KZwbysHYvDroX32L23fDGE
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LT8JAEIA3CgdP4jNi0OzBk6ZIu4-23hqRoAnEGDF4arrtNBCxEGgx8uvd7RZEY6LeephMmpmdnWln9luEzlwKVDBBDJepXzeCm4aCqhsQuVYkAjcCUAecO13e7tG7PusXsGh1Fmatfy8Liwa9DF9BUbUtWpepWiacTVTmTJbdJVTude-955yHanFDVvrW6pk1uO5g_qzjaw76LCy3smQSvL8Fo9FajmlV9HTWLEcTqtGSl3qWinq4-AZu_NPr76DtotLEnl4au2gDkj1UWd7igIug3kcDJaE5Evh2DdBpNKdqJ8RPMFAKcCvIRilu6tG84QynY_wA82LlDheAvSzNR_vmgDuBwlAolgdcYQ_rBsQB6rVuHq_bRnH_ghFa3EkNkNkNVB9TxCGPKaHMAcECKgQFB2wegogdwV3TkpEcEsZdR1CHhIEgXEQxJ4eolIwTOELYdcAiMvxtE4DKbSNo2GDaMXGYCyKktIrOlx7xJxqz4cvPk9yGvrKhr2zoaxtWUW3pM7-IuJkU1Tg6JnVdrPz4u7Ljf0nXUCmdZnAiC5FUnBZL8AMXlthg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Intelligence-Driven+Vehicle+Fault+Diagnosis+to+Revolutionize+Automotive+Maintenance%3A+A+Review&rft.jtitle=Computer+modeling+in+engineering+%26+sciences&rft.au=Hossain%2C+Md+Naeem&rft.au=Rahman%2C+Md+Mustafizur&rft.au=Ramasamy%2C+Devarajan&rft.date=2024&rft.issn=1526-1506&rft.eissn=1526-1506&rft.volume=141&rft.issue=2&rft.spage=951&rft.epage=996&rft_id=info:doi/10.32604%2Fcmes.2024.056022&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmes_2024_056022
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1526-1506&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1526-1506&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1526-1506&client=summon