A Stochastic Adaptive Radial Basis Function Algorithm for Costly Black-Box Optimization

In this paper, we present a stochastic adaptive algorithm using radial basis function models for global optimization of costly black-box functions. The exploration radii in local searches are generated adaptively. Each iteration point is selected from some randomly generated trial points according t...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Operations Research Society of China (Internet) Vol. 6; no. 4; pp. 587 - 609
Main Authors Zhou, Zhe, Bai, Fu-Sheng
Format Journal Article
LanguageEnglish
Published Beijing Operations Research Society of China 01.12.2018
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2194-668X
2194-6698
DOI10.1007/s40305-018-0204-8

Cover

Abstract In this paper, we present a stochastic adaptive algorithm using radial basis function models for global optimization of costly black-box functions. The exploration radii in local searches are generated adaptively. Each iteration point is selected from some randomly generated trial points according to certain criteria. A restarting strategy is adopted to build the restarting version of the algorithm. The performance of the presented algorithm and its restarting version are tested on 13 standard numerical examples. The numerical results suggest that the algorithm and its restarting version are very effective.
AbstractList In this paper, we present a stochastic adaptive algorithm using radial basis function models for global optimization of costly black-box functions. The exploration radii in local searches are generated adaptively. Each iteration point is selected from some randomly generated trial points according to certain criteria. A restarting strategy is adopted to build the restarting version of the algorithm. The performance of the presented algorithm and its restarting version are tested on 13 standard numerical examples. The numerical results suggest that the algorithm and its restarting version are very effective.
Author Zhou, Zhe
Bai, Fu-Sheng
Author_xml – sequence: 1
  givenname: Zhe
  surname: Zhou
  fullname: Zhou, Zhe
  organization: School of Mathematical Sciences, Chongqing Normal University
– sequence: 2
  givenname: Fu-Sheng
  surname: Bai
  fullname: Bai, Fu-Sheng
  email: fsbai@cqnu.edu.cn
  organization: School of Mathematical Sciences, Chongqing Normal University
BookMark eNp1kE1LAzEQhoNUsNb-AG8Bz6tJdrNNjttiVSgU_EBvIZtN2uh2U5NUrL_elBU9eZqBed6Z4TkFg851GoBzjC4xQpOrUKAc0QxhliGCiowdgSHBvMjKkrPBb89eTsA4BFsjShilJcJD8FzBh-jUWoZoFawauY32Q8N72VjZwqkMNsD5rlPRug5W7cp5G9cbaJyHMxdiu4fTVqq3bOo-4TJlN_ZLHtgzcGxkG_T4p47A0_z6cXabLZY3d7NqkSlSspgpTDilUjNdy5w1pmasURgrjrVh6UNFTRoXhPNJbZChqCCK04lpSsNwnjf5CFz0e7feve90iOLV7XyXTgrCc8ILllOaKNxTyrsQvDZi6-1G-r3ASBwUil6hSArFQaFgKUP6TEhst9L-b_P_oW9RTXVP
Cites_doi 10.1017/CBO9780511543241
10.1007/3-540-45712-7_35
10.1007/s10898-017-0599-5
10.1007/s10898-006-9040-1
10.1137/120902434
10.1137/070691814
10.1023/A:1011584207202
10.1007/s10898-005-2454-3
10.1287/ijoc.1060.0182
10.1080/0305215X.2012.687731
10.1016/S0378-3758(00)00105-1
10.1023/A:1008306431147
10.1007/s10898-004-0570-0
10.1080/02286203.2009.11442507
10.1007/978-3-0348-8696-3_14
10.1007/s10898-015-0270-y
10.1007/BF01096734
10.1002/0471722138
10.1007/978-1-4612-1478-6
10.1023/A:1011255519438
10.1007/s10898-012-9940-1
10.1007/s10898-007-9256-8
10.1016/j.cor.2010.09.013
10.1145/355744.355745
ContentType Journal Article
Copyright Operations Research Society of China, Periodicals Agency of Shanghai University, Science Press, and Springer-Verlag GmbH Germany, part of Springer Nature 2018
Operations Research Society of China, Periodicals Agency of Shanghai University, Science Press, and Springer-Verlag GmbH Germany, part of Springer Nature 2018.
Copyright_xml – notice: Operations Research Society of China, Periodicals Agency of Shanghai University, Science Press, and Springer-Verlag GmbH Germany, part of Springer Nature 2018
– notice: Operations Research Society of China, Periodicals Agency of Shanghai University, Science Press, and Springer-Verlag GmbH Germany, part of Springer Nature 2018.
DBID AAYXX
CITATION
3V.
7RO
7XB
8AI
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
AXJJW
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FREBS
FRNLG
HCIFZ
K60
K6~
L6V
M7S
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
DOI 10.1007/s40305-018-0204-8
DatabaseName CrossRef
ProQuest Central (Corporate)
Asian Business Database
ProQuest Central (purchase pre-March 2016)
Asian Business Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Asian & European Business Collection
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central
Asian & European business collection
Business Premium Collection (Alumni)
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ProQuest Engineering Collection
Engineering Database (Proquest)
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Asian Business & Reference
Asian & European Business Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Asian & European Business Collection (Alumni)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Asian Business and Reference (Alumni Edition)
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Business Premium Collection
Engineering Database
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 2194-6698
EndPage 609
ExternalDocumentID 10_1007_s40305_018_0204_8
GroupedDBID -EM
0R~
30V
4.4
406
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABUWG
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADRFC
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ASPBG
AUKKA
AVWKF
AVXWI
AXJJW
AXYYD
AZFZN
BAPOH
BENPR
BEZIV
BGLVJ
BGNMA
CCPQU
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
HCIFZ
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I0C
IKXTQ
IWAJR
J-C
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
M7S
NPVJJ
NQJWS
NU0
O9-
O93
O9J
PQBIZ
PQBZA
PQQKQ
PT4
PTHSS
RLLFE
ROL
RSV
SCL
SHX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
3V.
7RO
7XB
8AI
8FE
8FG
8FK
K60
K6~
L6V
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c268t-c12955ae8eba38dfb88dc11c91ef8560c5f55a42997bf0f5042c957fd6f8133d3
IEDL.DBID AGYKE
ISSN 2194-668X
IngestDate Wed Aug 13 09:46:45 EDT 2025
Wed Oct 01 04:27:29 EDT 2025
Fri Feb 21 02:27:33 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Radial basis function
Global optimization
90C56
Stochastic algorithm
90C26
90C59
Costly black-box optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c268t-c12955ae8eba38dfb88dc11c91ef8560c5f55a42997bf0f5042c957fd6f8133d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2932948355
PQPubID 2043982
PageCount 23
ParticipantIDs proquest_journals_2932948355
crossref_primary_10_1007_s40305_018_0204_8
springer_journals_10_1007_s40305_018_0204_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20181200
2018-12-00
20181201
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 20181200
PublicationDecade 2010
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
– name: Heidelberg
PublicationTitle Journal of the Operations Research Society of China (Internet)
PublicationTitleAbbrev J. Oper. Res. Soc. China
PublicationYear 2018
Publisher Operations Research Society of China
Springer Nature B.V
Publisher_xml – name: Operations Research Society of China
– name: Springer Nature B.V
References WildSMRegisRGShoemakerCAORBIT: optimization by radial basis function interpolation in trust-regionsSIAM J. Sci. Comput.200830631973219245238510.1137/070691814
BoxGEPDraperNREmpirical Model-Building and Response Surfaces1987New YorkWiley0614.62104
BuhmannMDRadial Basis Functions2003CambridgeCambridge University Press10.1017/CBO9780511543241
DixonLCWSzegöGDixonLCWSzegöGThe global optimization problem: an introductionTowards Global Optimization 21978AmsterdamNorth-Holland115
BjörkmanMHolmströmKGlobal optimization of costly nonconvex functions using radial basis functionsOptim. Eng.200014373397191732710.1023/A:1011584207202
RegisRGStochastic radial basis function algorithms for large-scale optimization involving expensive black-box objective and constraint functionsComput. Oper. Res.2011385837853273527110.1016/j.cor.2010.09.013
OeuvrayRBierlaireMBOOSTERS: a derivative-free algorithm based on radial basis functionsInt. J. Model. Simul.2009291263610.1080/02286203.2009.11442507
Oeuvray, R.: Trust-region methods based on radial basis functions with application to biomedical imaging. Ph.D. thesis, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne (2005)
RegisRGShoemakerCAA quasi-multistart framework for global optimization of expensive functions using response surface methodsJ. Global Optim.20135617191753307833010.1007/s10898-012-9940-1
GutmannH-MA radial basis function method for global optimizationJ. Global Optim.2001193201227183321710.1023/A:1011255519438
PowellMJDLightWThe theory of radial basis function approximation in 1990Advances in Numerical Analysis1990OxfordOxford University Press105210
McKayMBeckmanRConoverWA Comparison of three methods for selecting values of input variables in the analysis of output from a computer codeTechnometrics1979212392465332520415.62011
WildSMShoemakerCAGlobal convergence of radial basis function trust-region algorithms for derivative-free optimizationSIAM Rev.2013552349371304992410.1137/120902434
RegisRShoemakerCAA stochastic radial basis function method for the global optimization of expensive functionsINFORMS J. Comput.200719497509236400710.1287/ijoc.1060.0182
HedayatASSloaneNJAStufkenJOrthogonal Arrays: Theory and Applications1999New YorkSpringer10.1007/978-1-4612-1478-6
JonesDRSchonlauMWelchWJEfficient global optimization of expensive black-box functionsJ. Global Optim.1998134455492167346010.1023/A:1008306431147
RegisRGShoemakerCAImproved strategies for radial basis function methods for global optimizationJ. Global Optim.2007371113135228456210.1007/s10898-006-9040-1
FriedmanJHBentelyJFinkelRAAn algorithm for finding best matches in logarithmic expected timeACM Trans. Math. Softw.1977320922610.1145/355744.355745
AkhtarTShoemakerCAMulti objective optimization of computationally expensive multi-modal functions with RBF surrogates and multi-rule selectionJ. Global Optim.20166411732343797110.1007/s10898-015-0270-y
HolmströmKAn adaptive radial basis algorithm for expensive black-box global optimizationJ. Global Optim.2008413447464242447810.1007/s10898-007-9256-8
RegisRGShoemakerCACombining radial basis function surrogates dynamic coordinate search in high dimensional expensive black-box optimizationEng. Optim.2013455529555304644610.1080/0305215X.2012.687731
PowellMJDMüllerMBuhmannMMacheDFeltenMRecent research at Cambridge on radial basis functionsNew Developments in Approximation Theory, International Series of Numerical Mathematics1999BaselBirkhauser Verlag21523210.1007/978-3-0348-8696-3_14
KhuriAICornellJAResponse Surfaces1987New YorkMarcel Dekker Inc.0632.62069
SchoenFA wide class of test functions for global optimizationJ. Global Optim.19933133137126384210.1007/BF01096734
RegisRGShoemakerCAConstrained global optimization of expensive black box functions using radial basis functionsJ. Global Optim.200531153171214217110.1007/s10898-004-0570-0
SpallJCIntroduction to Stochastic Search and Optimization2003HobokenWiley10.1002/0471722138
HuangDAllenTTNotzWIZengNGlobal optimization of stochastic black-box systems via sequential kriging meta-modelsJ. Global Optim.2006343441466222228310.1007/s10898-005-2454-3
MyersRHMontgomeryDCResponse Surface Methodology: Process and Product Optimization Using Designed Experiments1995New YorkWiley1161.62392
ZhouZBaiFAn adaptive framework for expensive black-box global optimization based on radial basis function interpolationJ. Global Optim.2018704757781378048110.1007/s10898-017-0599-5
EmmerichMGiotisAÖzdemirMBäckTGiannakoglouKMereloJJAdamidisPBeyerHGMetamodel-assisted evolution strategiesParallel Problem Solving from Nature VII2002BerlinSpringer36137010.1007/3-540-45712-7_35
YeKQLiWSudjiantoAAlgorithmic construction of optimal symmetric latin hypercube designsJ. Stat. Plan. Inference2000901145159179158610.1016/S0378-3758(00)00105-1
M McKay (204_CR25) 1979; 21
RG Regis (204_CR21) 2013; 56
JC Spall (204_CR29) 2003
DR Jones (204_CR6) 1998; 13
JH Friedman (204_CR24) 1977; 3
R Oeuvray (204_CR23) 2009; 29
RH Myers (204_CR3) 1995
LCW Dixon (204_CR30) 1978
F Schoen (204_CR31) 1993; 3
MD Buhmann (204_CR7) 2003
Z Zhou (204_CR18) 2018; 70
T Akhtar (204_CR15) 2016; 64
AS Hedayat (204_CR26) 1999
D Huang (204_CR5) 2006; 34
KQ Ye (204_CR27) 2000; 90
GEP Box (204_CR1) 1987
R Regis (204_CR16) 2007; 19
204_CR22
M Emmerich (204_CR4) 2002
RG Regis (204_CR28) 2011; 38
SM Wild (204_CR13) 2008; 30
RG Regis (204_CR17) 2013; 45
MJD Powell (204_CR19) 1999
AI Khuri (204_CR2) 1987
RG Regis (204_CR11) 2007; 37
RG Regis (204_CR12) 2005; 31
H-M Gutmann (204_CR9) 2001; 19
MJD Powell (204_CR8) 1990
K Holmström (204_CR10) 2008; 41
M Björkman (204_CR20) 2000; 1
SM Wild (204_CR14) 2013; 55
References_xml – reference: BuhmannMDRadial Basis Functions2003CambridgeCambridge University Press10.1017/CBO9780511543241
– reference: MyersRHMontgomeryDCResponse Surface Methodology: Process and Product Optimization Using Designed Experiments1995New YorkWiley1161.62392
– reference: RegisRGShoemakerCAImproved strategies for radial basis function methods for global optimizationJ. Global Optim.2007371113135228456210.1007/s10898-006-9040-1
– reference: SchoenFA wide class of test functions for global optimizationJ. Global Optim.19933133137126384210.1007/BF01096734
– reference: GutmannH-MA radial basis function method for global optimizationJ. Global Optim.2001193201227183321710.1023/A:1011255519438
– reference: WildSMShoemakerCAGlobal convergence of radial basis function trust-region algorithms for derivative-free optimizationSIAM Rev.2013552349371304992410.1137/120902434
– reference: PowellMJDLightWThe theory of radial basis function approximation in 1990Advances in Numerical Analysis1990OxfordOxford University Press105210
– reference: FriedmanJHBentelyJFinkelRAAn algorithm for finding best matches in logarithmic expected timeACM Trans. Math. Softw.1977320922610.1145/355744.355745
– reference: KhuriAICornellJAResponse Surfaces1987New YorkMarcel Dekker Inc.0632.62069
– reference: SpallJCIntroduction to Stochastic Search and Optimization2003HobokenWiley10.1002/0471722138
– reference: RegisRGShoemakerCAA quasi-multistart framework for global optimization of expensive functions using response surface methodsJ. Global Optim.20135617191753307833010.1007/s10898-012-9940-1
– reference: Oeuvray, R.: Trust-region methods based on radial basis functions with application to biomedical imaging. Ph.D. thesis, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne (2005)
– reference: ZhouZBaiFAn adaptive framework for expensive black-box global optimization based on radial basis function interpolationJ. Global Optim.2018704757781378048110.1007/s10898-017-0599-5
– reference: WildSMRegisRGShoemakerCAORBIT: optimization by radial basis function interpolation in trust-regionsSIAM J. Sci. Comput.200830631973219245238510.1137/070691814
– reference: HuangDAllenTTNotzWIZengNGlobal optimization of stochastic black-box systems via sequential kriging meta-modelsJ. Global Optim.2006343441466222228310.1007/s10898-005-2454-3
– reference: McKayMBeckmanRConoverWA Comparison of three methods for selecting values of input variables in the analysis of output from a computer codeTechnometrics1979212392465332520415.62011
– reference: JonesDRSchonlauMWelchWJEfficient global optimization of expensive black-box functionsJ. Global Optim.1998134455492167346010.1023/A:1008306431147
– reference: YeKQLiWSudjiantoAAlgorithmic construction of optimal symmetric latin hypercube designsJ. Stat. Plan. Inference2000901145159179158610.1016/S0378-3758(00)00105-1
– reference: EmmerichMGiotisAÖzdemirMBäckTGiannakoglouKMereloJJAdamidisPBeyerHGMetamodel-assisted evolution strategiesParallel Problem Solving from Nature VII2002BerlinSpringer36137010.1007/3-540-45712-7_35
– reference: HedayatASSloaneNJAStufkenJOrthogonal Arrays: Theory and Applications1999New YorkSpringer10.1007/978-1-4612-1478-6
– reference: DixonLCWSzegöGDixonLCWSzegöGThe global optimization problem: an introductionTowards Global Optimization 21978AmsterdamNorth-Holland115
– reference: HolmströmKAn adaptive radial basis algorithm for expensive black-box global optimizationJ. Global Optim.2008413447464242447810.1007/s10898-007-9256-8
– reference: BjörkmanMHolmströmKGlobal optimization of costly nonconvex functions using radial basis functionsOptim. Eng.200014373397191732710.1023/A:1011584207202
– reference: RegisRGStochastic radial basis function algorithms for large-scale optimization involving expensive black-box objective and constraint functionsComput. Oper. Res.2011385837853273527110.1016/j.cor.2010.09.013
– reference: PowellMJDMüllerMBuhmannMMacheDFeltenMRecent research at Cambridge on radial basis functionsNew Developments in Approximation Theory, International Series of Numerical Mathematics1999BaselBirkhauser Verlag21523210.1007/978-3-0348-8696-3_14
– reference: RegisRGShoemakerCACombining radial basis function surrogates dynamic coordinate search in high dimensional expensive black-box optimizationEng. Optim.2013455529555304644610.1080/0305215X.2012.687731
– reference: BoxGEPDraperNREmpirical Model-Building and Response Surfaces1987New YorkWiley0614.62104
– reference: RegisRGShoemakerCAConstrained global optimization of expensive black box functions using radial basis functionsJ. Global Optim.200531153171214217110.1007/s10898-004-0570-0
– reference: AkhtarTShoemakerCAMulti objective optimization of computationally expensive multi-modal functions with RBF surrogates and multi-rule selectionJ. Global Optim.20166411732343797110.1007/s10898-015-0270-y
– reference: RegisRShoemakerCAA stochastic radial basis function method for the global optimization of expensive functionsINFORMS J. Comput.200719497509236400710.1287/ijoc.1060.0182
– reference: OeuvrayRBierlaireMBOOSTERS: a derivative-free algorithm based on radial basis functionsInt. J. Model. Simul.2009291263610.1080/02286203.2009.11442507
– volume-title: Radial Basis Functions
  year: 2003
  ident: 204_CR7
  doi: 10.1017/CBO9780511543241
– volume-title: Response Surface Methodology: Process and Product Optimization Using Designed Experiments
  year: 1995
  ident: 204_CR3
– start-page: 361
  volume-title: Parallel Problem Solving from Nature VII
  year: 2002
  ident: 204_CR4
  doi: 10.1007/3-540-45712-7_35
– volume: 70
  start-page: 757
  issue: 4
  year: 2018
  ident: 204_CR18
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-017-0599-5
– volume-title: Empirical Model-Building and Response Surfaces
  year: 1987
  ident: 204_CR1
– volume: 37
  start-page: 113
  issue: 1
  year: 2007
  ident: 204_CR11
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-006-9040-1
– volume: 55
  start-page: 349
  issue: 2
  year: 2013
  ident: 204_CR14
  publication-title: SIAM Rev.
  doi: 10.1137/120902434
– volume: 30
  start-page: 3197
  issue: 6
  year: 2008
  ident: 204_CR13
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/070691814
– volume: 1
  start-page: 373
  issue: 4
  year: 2000
  ident: 204_CR20
  publication-title: Optim. Eng.
  doi: 10.1023/A:1011584207202
– volume: 34
  start-page: 441
  issue: 3
  year: 2006
  ident: 204_CR5
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-005-2454-3
– volume: 19
  start-page: 497
  year: 2007
  ident: 204_CR16
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.1060.0182
– volume: 45
  start-page: 529
  issue: 5
  year: 2013
  ident: 204_CR17
  publication-title: Eng. Optim.
  doi: 10.1080/0305215X.2012.687731
– volume: 90
  start-page: 145
  issue: 1
  year: 2000
  ident: 204_CR27
  publication-title: J. Stat. Plan. Inference
  doi: 10.1016/S0378-3758(00)00105-1
– volume: 13
  start-page: 455
  issue: 4
  year: 1998
  ident: 204_CR6
  publication-title: J. Global Optim.
  doi: 10.1023/A:1008306431147
– volume: 31
  start-page: 153
  year: 2005
  ident: 204_CR12
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-004-0570-0
– volume: 21
  start-page: 239
  year: 1979
  ident: 204_CR25
  publication-title: Technometrics
– volume: 29
  start-page: 26
  issue: 1
  year: 2009
  ident: 204_CR23
  publication-title: Int. J. Model. Simul.
  doi: 10.1080/02286203.2009.11442507
– start-page: 215
  volume-title: New Developments in Approximation Theory, International Series of Numerical Mathematics
  year: 1999
  ident: 204_CR19
  doi: 10.1007/978-3-0348-8696-3_14
– ident: 204_CR22
– volume: 64
  start-page: 17
  issue: 1
  year: 2016
  ident: 204_CR15
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-015-0270-y
– volume: 3
  start-page: 133
  year: 1993
  ident: 204_CR31
  publication-title: J. Global Optim.
  doi: 10.1007/BF01096734
– start-page: 105
  volume-title: Advances in Numerical Analysis
  year: 1990
  ident: 204_CR8
– volume-title: Response Surfaces
  year: 1987
  ident: 204_CR2
– volume-title: Introduction to Stochastic Search and Optimization
  year: 2003
  ident: 204_CR29
  doi: 10.1002/0471722138
– start-page: 1
  volume-title: Towards Global Optimization 2
  year: 1978
  ident: 204_CR30
– volume-title: Orthogonal Arrays: Theory and Applications
  year: 1999
  ident: 204_CR26
  doi: 10.1007/978-1-4612-1478-6
– volume: 19
  start-page: 201
  issue: 3
  year: 2001
  ident: 204_CR9
  publication-title: J. Global Optim.
  doi: 10.1023/A:1011255519438
– volume: 56
  start-page: 1719
  year: 2013
  ident: 204_CR21
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-012-9940-1
– volume: 41
  start-page: 447
  issue: 3
  year: 2008
  ident: 204_CR10
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-007-9256-8
– volume: 38
  start-page: 837
  issue: 5
  year: 2011
  ident: 204_CR28
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2010.09.013
– volume: 3
  start-page: 209
  year: 1977
  ident: 204_CR24
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/355744.355745
SSID ssib052855601
ssj0002962227
Score 2.0666072
Snippet In this paper, we present a stochastic adaptive algorithm using radial basis function models for global optimization of costly black-box functions. The...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 587
SubjectTerms Adaptive algorithms
Algorithms
Black boxes
Global optimization
Iterative methods
Management Science
Mathematics
Mathematics and Statistics
Operations Research
Optimization
Radial basis function
Restarting
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwED6V9gUepo2B6OgmP_A0ZNGktuM8oKmdWlWT1qGOir5Fjn8wpLYpNEjw33OXJSubBM9WLOWzffedz_cdwDs0-1YIr3iwScKFjzXXTjtuBn2d94UX3tHVwPVMTRfiaimXLZg1tTD0rLKxiZWhdoWlO_IP6JbiVCBfkBfb75y6RlF2tWmhYerWCu5jJTH2DDoxKWO1oTMazz7Nmx0mYy2lqhOtZKvjVFExKHWgw2ieK6WXTeqT6usEHQeMtjWnGlKuHzuvPSN9kkStfNPkEA5qUsmG97vgCFp-8xJe_CU1eAxfhuy2LOydIV1mNnRmS3aOzUmaYMVGZvdtxybo42id2HD1FX-9vFszpLTsstiVq9-suurjo-IXu8Fv13X95itYTMafL6e8bqrAbax0yS06eCmN1z43A-1CrrWzUWTTyAeN2FgZcJi8VJKHfpB4qG0qk-BU0BjPusFraG-KjX8DDMkK0h9KtRoj0pCnOG1kMQITITepUV04b9DKtvfaGdmDSnIFbYbQZgRtprvQa_DM6mO0y_aL3oX3Dcb74X9OdvL_yd7C85gWtXqV0oN2-eOnP0VuUeZn9Yb5AxkfyHg
  priority: 102
  providerName: ProQuest
Title A Stochastic Adaptive Radial Basis Function Algorithm for Costly Black-Box Optimization
URI https://link.springer.com/article/10.1007/s40305-018-0204-8
https://www.proquest.com/docview/2932948355
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2194-6698
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002962227
  issn: 2194-668X
  databaseCode: AFBBN
  dateStart: 20130301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2194-6698
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0002962227
  issn: 2194-668X
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 2194-6698
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002962227
  issn: 2194-668X
  databaseCode: AGYKE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB5BucBhgWUR3QXkA6dFRm1qu5NjiloQCHbFQ3RPkePYgCgNIkFa-PWM06Q8BAdOUeTEij2TmW88ns8AW2T2jRBWcWe6XS5sgBxTTLnutDBpCSts6pcGjo7V_rk4GMphVced17vd65RkaamnxW7C6yaFvsh9QSfHWZgr6bYaMBft_Tvs12okA5RSVdlUb5CDUPmKT3_MHIXsXCkc1vnNj_p966FeYOe7TGnpgAaLcFZ_-mTfyc3OQ5HsmKd3rI5fHNsSfKsAKYsmGrQMM3b8HRZe0RTS3dGU2zVfgYuInRaZudKe4ZlFqb7zFpOdeJKDEevp_DpnA_KWXuIsGl1m99fF1S0jcMx2s7wYPbJy0ZD3sv_sD717W1WC_oDzQf9sd59XxzNwEygsuCGoIKW2aBPdwdQliKlpt03Ytg5JAEY6avb-rpu4lpNkHkwouy5VDikyTjur0BhnY7sGjGAPASmftNVahC4Jqdu2oVhOuESHWjXhdy2S-G7CwhFP-ZbLuYtp7mI_dzE2Yb0WWlz9kHlMqCYIBcFN2YTtWgYvzZ929vNLT_-C-cALsdzusg6N4v7BbhBoKZJNmMXB3malqnTt9Y__njwDBm_iKw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V9gAcUHmJQCk-wAVkkd3Yjn2oUFIapbQNqLQit63XD4qUZgO7CPrn-ts6s90lgAS3ni3P4fN45huPZwbgOZp9J0RQPLp-n4uQaq699tz2ujrviiCCp6eBg4kaH4t3UzldgYu2Foa-VbY2sTbUvnD0Rv4a3VJqBPIF-WbxldPUKMqutiM0bDNawW_VLcaawo69cP4DQ7hya_ctnveLNB3tHG2PeTNlgLtU6Yo79HhS2qBDbnvax1xr75LEmSREjXzAyYjLZLb7eexGiVrujOxHr6LGAM_3UO4NWBM9YTD4WxvuTD4cthotUy2lahK75BtSo6j4lCbeJUZwpfS0TbVSPZ-g64fRveZUs8r1n85yyYD_StrWvnC0DncaEssGV1p3F1bC_B7c_q214X34NGAfq8KdWuoDzQbeLsiuskNqhTBjQ1t-KdkIfSrpBRvMPiPU1ekZQwrNtouymp2z-mmRD4uf7D3uPWvqRR_A8bXA-xBW58U8PAKG5AjpFqV2rRUm5gbFJg4jPhFza6zqwMsWrWxx1asj-9WVuYY2Q2gzgjbTHdho8cyaa1tmSyXrwKsW4-XyP4U9_r-wZ3BzfHSwn-3vTvaewK2UDrj-EbMBq9W37-Ep8poq32yUh8HJdevrJXjCBds
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RkKpyoA9asXRpfeipyLCbtR3nGB4LLYWitqjLKXX8AMTuZrXJSi2_nnEeS4vooeoxcmLJnsnMN56ZzwDv0OxrxqygTochZTaQVBppqOp1ZNphllnjjwaOT8ThGfs44IP6ntO8qXZvUpJVT4NnaRoX2xPjtueNb8zrKYbBkvrmTiofwRJGJiEq-lJ8cH6036gUDyTnos6seuMcRMJ3f_or5zB8p0LIQZPrfGjeP73VHQS9lzUtnVH_KfxollHVoFxvzYp0S9_cY3j8j3U-g5UaqJK40qznsGDHL2D5N_pCfDqec77mq_A9Jl-LTF8qz_xMYqMm3pKSL578YEh2VH6Vkz56Ua8JJB5eZNOr4nJEEDST3Swvhr9IeZhId7Kf5DN-O6o7RF_CWX__2-4hra9toDoQsqAaIQTnykqbqp40LpXS6G5XR13rJApDc4fD3g-Gqes4jmZDRzx0RjiJEbPpvYLFcTa2a0AQDiHA8slcpVjk0gin7WqM8ZhLVaREC9434kkmFTtHMudhLvcuwb1L_N4lsgXtRoBJ_aPmCaKdIGIIQ3kLNht53A3_dbL1f3r7LTw-3esnnz6cHL2GJ4GXZ1kR04bFYjqzG4hrivRNrbu34ejrbg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Stochastic+Adaptive+Radial+Basis+Function+Algorithm+for+Costly+Black-Box+Optimization&rft.jtitle=Journal+of+the+Operations+Research+Society+of+China+%28Internet%29&rft.au=Zhou%2C+Zhe&rft.au=Bai%2C+Fu-Sheng&rft.date=2018-12-01&rft.issn=2194-668X&rft.eissn=2194-6698&rft.volume=6&rft.issue=4&rft.spage=587&rft.epage=609&rft_id=info:doi/10.1007%2Fs40305-018-0204-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s40305_018_0204_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2194-668X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2194-668X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2194-668X&client=summon