A Detection Algorithm for Two-Wheeled Vehicles in Complex Scenarios Based on Semi-Supervised Learning

With the rapid urbanization and exponential population growth in China, two-wheeled vehicles have become a popular mode of transportation, particularly for short-distance travel. However, due to a lack of safety awareness, traffic violations by two-wheeled vehicle riders have become a widespread con...

Full description

Saved in:
Bibliographic Details
Published inComputers, materials & continua Vol. 84; no. 1; pp. 1055 - 1071
Main Authors Zhong, Mingen, Yang, Kaibo, Xiao, Ziji, Tan, Jiawei, Fan, Kang, Deng, Zhiying, Zhou, Mengli
Format Journal Article
LanguageEnglish
Published Henderson Tech Science Press 2025
Subjects
Online AccessGet full text
ISSN1546-2226
1546-2218
1546-2226
DOI10.32604/cmc.2025.063383

Cover

Abstract With the rapid urbanization and exponential population growth in China, two-wheeled vehicles have become a popular mode of transportation, particularly for short-distance travel. However, due to a lack of safety awareness, traffic violations by two-wheeled vehicle riders have become a widespread concern, contributing to urban traffic risks. Currently, significant human and material resources are being allocated to monitor and intercept non-compliant riders to ensure safe driving behavior. To enhance the safety, efficiency, and cost-effectiveness of traffic monitoring, automated detection systems based on image processing algorithms can be employed to identify traffic violations from eye-level video footage. In this study, we propose a robust detection algorithm specifically designed for two-wheeled vehicles, which serves as a fundamental step toward intelligent traffic monitoring. Our approach integrates a novel convolutional and attention mechanism to improve detection accuracy and efficiency. Additionally, we introduce a semi-supervised training strategy that leverages a large number of unlabeled images to enhance the model’s learning capability by extracting valuable background information. This method enables the model to generalize effectively to diverse urban environments and varying lighting conditions. We evaluate our proposed algorithm on a custom-built dataset, and experimental results demonstrate its superior performance, achieving an average precision (AP) of 95% and a recall (R) of 90.6%. Furthermore, the model maintains a computational efficiency of only 25.7 GFLOPs while achieving a high processing speed of 249 FPS, making it highly suitable for deployment on edge devices. Compared to existing detection methods, our approach significantly enhances the accuracy and robustness of two-wheeled vehicle identification while ensuring real-time performance.
AbstractList With the rapid urbanization and exponential population growth in China, two-wheeled vehicles have become a popular mode of transportation, particularly for short-distance travel. However, due to a lack of safety awareness, traffic violations by two-wheeled vehicle riders have become a widespread concern, contributing to urban traffic risks. Currently, significant human and material resources are being allocated to monitor and intercept non-compliant riders to ensure safe driving behavior. To enhance the safety, efficiency, and cost-effectiveness of traffic monitoring, automated detection systems based on image processing algorithms can be employed to identify traffic violations from eye-level video footage. In this study, we propose a robust detection algorithm specifically designed for two-wheeled vehicles, which serves as a fundamental step toward intelligent traffic monitoring. Our approach integrates a novel convolutional and attention mechanism to improve detection accuracy and efficiency. Additionally, we introduce a semi-supervised training strategy that leverages a large number of unlabeled images to enhance the model’s learning capability by extracting valuable background information. This method enables the model to generalize effectively to diverse urban environments and varying lighting conditions. We evaluate our proposed algorithm on a custom-built dataset, and experimental results demonstrate its superior performance, achieving an average precision (AP) of 95% and a recall (R) of 90.6%. Furthermore, the model maintains a computational efficiency of only 25.7 GFLOPs while achieving a high processing speed of 249 FPS, making it highly suitable for deployment on edge devices. Compared to existing detection methods, our approach significantly enhances the accuracy and robustness of two-wheeled vehicle identification while ensuring real-time performance.
Author Deng, Zhiying
Tan, Jiawei
Fan, Kang
Zhou, Mengli
Yang, Kaibo
Xiao, Ziji
Zhong, Mingen
Author_xml – sequence: 1
  givenname: Mingen
  surname: Zhong
  fullname: Zhong, Mingen
– sequence: 2
  givenname: Kaibo
  surname: Yang
  fullname: Yang, Kaibo
– sequence: 3
  givenname: Ziji
  surname: Xiao
  fullname: Xiao, Ziji
– sequence: 4
  givenname: Jiawei
  surname: Tan
  fullname: Tan, Jiawei
– sequence: 5
  givenname: Kang
  surname: Fan
  fullname: Fan, Kang
– sequence: 6
  givenname: Zhiying
  surname: Deng
  fullname: Deng, Zhiying
– sequence: 7
  givenname: Mengli
  surname: Zhou
  fullname: Zhou, Mengli
BookMark eNqFkL1PwzAUxC0EEm1hZ7TEnOKvOMlYyqdUiaEFxsh1XlpXiR3shNL_npQwsDG909Pd6fQbo1PrLCB0RcmUM0nEja71lBEWT4nkPOUnaERjISPGmDz9o8_ROIQdIVzyjIwQzPAdtKBb4yyeVRvnTbutcek8Xu1d9L4FqKDAb7A1uoKAjcVzVzcVfOGlBqu8cQHfqtB7-oIl1CZadg34T3N8LUB5a-zmAp2Vqgpw-Xsn6PXhfjV_ihYvj8_z2SLSTKZtlK1lqmQiM5IkKisLJhUhRamPu5XOhFQpjxkATwsaF2tIEmAsYbGIaUYEAT5BdOjtbKMOe1VVeeNNrfwhpyT_4ZT3nPIjp3zg1Geuh0zj3UcHoc13rvO2n9kHaEpjJoToXWRwae9C8FD-X_wN3zV4Zw
ContentType Journal Article
Copyright 2025. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7SR
8BQ
8FD
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
JG9
JQ2
L7M
L~C
L~D
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOI 10.32604/cmc.2025.063383
DatabaseName CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
METADEX
Computer and Information Systems Abstracts Professional
ProQuest Central
Engineered Materials Abstracts
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1546-2226
EndPage 1071
ExternalDocumentID 10.32604/cmc.2025.063383
10_32604_cmc_2025_063383
GroupedDBID AAFWJ
AAYXX
ACIWK
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BENPR
CCPQU
CITATION
EBS
EJD
J9A
OK1
P2P
PHGZM
PHGZT
PIMPY
PUEGO
RTS
TUS
7SC
7SR
8BQ
8FD
ABUWG
AZQEC
DWQXO
JG9
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
ID FETCH-LOGICAL-c268t-9b68a6769077a9fd26a00dfc2226ac946a8352ee38d15dbe77e227254519040e3
IEDL.DBID UNPAY
ISSN 1546-2226
1546-2218
IngestDate Sun Sep 07 11:25:56 EDT 2025
Mon Jun 30 07:25:45 EDT 2025
Wed Oct 01 05:46:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c268t-9b68a6769077a9fd26a00dfc2226ac946a8352ee38d15dbe77e227254519040e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.32604/cmc.2025.063383
PQID 3218152444
PQPubID 2048737
PageCount 17
ParticipantIDs unpaywall_primary_10_32604_cmc_2025_063383
proquest_journals_3218152444
crossref_primary_10_32604_cmc_2025_063383
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-00-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025-00-00
PublicationDecade 2020
PublicationPlace Henderson
PublicationPlace_xml – name: Henderson
PublicationTitle Computers, materials & continua
PublicationYear 2025
Publisher Tech Science Press
Publisher_xml – name: Tech Science Press
SSID ssj0036390
Score 2.3348322
Snippet With the rapid urbanization and exponential population growth in China, two-wheeled vehicles have become a popular mode of transportation, particularly for...
SourceID unpaywall
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 1055
SubjectTerms Accuracy
Algorithms
Cost effectiveness
Efficiency
Image processing
Monitoring
Population growth
Real time
Semi-supervised learning
Traffic safety
Traffic violations
Urban environments
Vehicle identification
Vehicles
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JTsMwEB2VcoALO6Js8oELSIaS2E56QKhsqjhUiE3cIjueLlKbFpqq8PeMs7Bc4BpFI-U5M--NPZ4BODCWZC7pDB5aNFwEHU0uJcjdA2n8WFktMKu2aKvWk7h9kS8VaJd3YVxZZRkTs0BtR7HbIz_xHRdJIiNxPn7lbmqUO10tR2joYrSCPctajM3BvOc6Y1Vh_uK6fXdfxmaf-Di7IimF4h5ZzA8uScLUxUk8dC0NPXlMrO2H_m-i-lafC9NkrD9mejD4QUQ3K7BUKEjWzJd8FSqYrMFyOZ2BFc66DthkV5hmlVYJaw669DFpb8hIpLLH2YhTFCbGsewZe1llHOsnzBkZ4DvZwIRy6NGEXRDJWUYGHnDY5w_TsQst7lHRl7W7AU8314-XLV4MVeCxp8KUN4wKtatrrQeBbnSsp3S9bjsx6QSl44ZQ2mkyRD-0p9IaDAL0vIDSSJJ65PDob0I1GSW4BYy0YChVEHvW9RF0FSuiY5XxpUEpdGhqcFgiGI3z3hkR5RwZ2hGhHTm0oxztGuyWEEeFF02i7zWvwdEX7P_a2v7b1g4supfzfZRdqKZvU9wjZZGa_eJ3-QSGfsn6
  priority: 102
  providerName: ProQuest
Title A Detection Algorithm for Two-Wheeled Vehicles in Complex Scenarios Based on Semi-Supervised Learning
URI https://www.proquest.com/docview/3218152444
https://doi.org/10.32604/cmc.2025.063383
UnpaywallVersion publishedVersion
Volume 84
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1546-2226
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036390
  issn: 1546-2226
  databaseCode: ADMLS
  dateStart: 20150601
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1546-2226
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0036390
  issn: 1546-2226
  databaseCode: BENPR
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4UDp58GzFoevCiySKWtrscFx8xHogRMHjatNtBibAQ2I2PX-90KYrGRL1tNs1kM-3MfNN--5WQQ20Q5iLO8AID2uN-T2FIcQx3X-haLI3ikLMtmvKqw6-7ouv2O-y_MAvn9wgsqvwkHlqhQSYqWEuxm1omRSkQdRdIsdO8Ce9zOVQuPcbyrTz3zNyJ5I8mvlagT1i5kiVj9fqsBoOFCnO5NpM7mubChJZY8lTJUl2J377JNv7l49fJqoOZNJytiw2yBMkmWZtf4UBdRG8RCOk5pDkdK6Hh4GE06aePQ4pIlrafRx6maixLht7BY06fo_2EWiMDeEEbkGCjPZrSBlZCQ9FAC4Z9r5WNbf6xr5x468M26VxetM-uPHfzghczGaReXctAWfJr1fdVvWeYVNWq6cXWsyquc6kscAOoBeZUGA2-D4z52GsiHsSsALUdUkhGCewSioAxENKPmbFig5bWwntG6prQILgKdIkczWcjGs8ENiJsTHL_Rei_yPovmvmvRMrz6YpcqE1xJIIUgSiFl8jxxxT-amvvP4PLpJBOMthH_JHqA1JsXDRvbg_cEnwHbUvT_g
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5RONBLebRV09KyB3popS3pvuwcUBVeCo9GVQkVN3fXOwGkxAnEUeDP8ds66we0l3Liaskj-fPOfN_szs4AbDhPMpd0Bo89Oq6iviWXUuTukXYyNd4qLKotuqZzqg7P9Nkc3NV3YUJZZR0Ti0DtR2nYI9-UgYs0kZH6Nr7iYWpUOF2tR2jYarSC3ypajFUXO47wdkYp3GTrYJf-90ch9vd6Ox1eTRngqTBxzlvOxDYUejajyLb6XhjbbPp-SsRpbNpSxgaRgihj_1V7h1GEQkSUV5H2IQ9ASXafwYKSqkXJ38L2XvfHz5oLJPF_cSVTK8MFfUF5UEqSqak202FooSj0F1IJMpb_EuOD2l2cZmN7O7ODwV_Et78MLyrFytrlEluBOcxWYameBsGq4PASsM12MS8quzLWHpwTePnFkJEoZr3ZiFPUJ4bz7BdeFJV47DJjwcgAb8gGZpSzjyZsm0jVMzJwgsNLfjIdh1AWHlV9YM9fwemTwPsa5rNRhm-AkfaMtYlS4UPfwlAho_reOKkdamVj14BPNYLJuOzVkVCOU6CdENpJQDsp0W7AWg1xUnntJHlYYw34fA_7o7be_t_WOix2et-Pk-OD7tE7eB5eLPdw1mA-v57ie1I1uftQLR0Gv596tf4BTzkFYw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4UDp7EZ8Sg6cGLJotY2u5yxAchHogJYPC0abfDI8JCYAnqr3e6FEVjot42m2aymXZmvmm__UrImTYIcxFneIEB7XG_qzCkOIa7L3Q5kkZxSNkWDVlv8_uO6Lj9DvsvzNr5PQKLEr-MRlZokIki1lLspjZJVgpE3RmSbTceqk-pHCqXHmPpVp57Zu5E8kcTXyvQJ6zcmscT9bpQw-FahanllnJHs1SY0BJLnovzRBejt2-yjX_5-B2y7WAmrS7XxS7ZgHiP5FZXOFAX0fsEqvQWkpSOFdPqsDeeDpL-iCKSpa3F2MNUjWXJ0Efop_Q5OoipNTKEF7QBMTba4xm9xkpoKBpowmjgNecTm3_sKyfe2jsg7dpd66buuZsXvIjJIPEqWgbKkl9Lvq8qXcOkKpVMN7KeVVGFS2WBG0A5MFfCaPB9YMzHXhPxIGYFKB-STDyO4YhQBIyBkH7EjBUbtLQW3jVSl4UGwVWg8-R8NRvhZCmwEWJjkvovRP-F1n_h0n95UlhNV-hCbYYjEaQIRCk8Ty4-pvBXW8f_GVwgmWQ6hxPEH4k-dUvvHdUq0mQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Detection+Algorithm+for+Two-Wheeled+Vehicles+in+Complex+Scenarios+Based+on+Semi-Supervised+Learning&rft.jtitle=Computers%2C+materials+%26+continua&rft.au=Zhong%2C+Mingen&rft.au=Yang%2C+Kaibo&rft.au=Xiao%2C+Ziji&rft.au=Tan%2C+Jiawei&rft.date=2025&rft.issn=1546-2226&rft.eissn=1546-2226&rft.volume=84&rft.issue=1&rft.spage=1055&rft.epage=1071&rft_id=info:doi/10.32604%2Fcmc.2025.063383&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmc_2025_063383
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-2226&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-2226&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-2226&client=summon