Modifications of the Optimal Auxiliary Function Method to Fractional Order Fornberg-Whitham Equations

In this paper, we present a new modification of the newly developed semi-analytical method named the Optimal Auxilary Function Method (OAFM) for fractional-order equations using the Caputo operator, which is named FOAFM. The mathematical theory of FOAFM is presented and the effectiveness of this met...

Full description

Saved in:
Bibliographic Details
Published inComputer modeling in engineering & sciences Vol. 136; no. 1; pp. 277 - 291
Main Authors Ullah, Hakeem, Fiza, Mehreen, Khan, Ilyas, Allah A. Mosa, Abd, Islam, Saeed, Mohammed, Abdullah
Format Journal Article
LanguageEnglish
Published Henderson Tech Science Press 2023
Subjects
Online AccessGet full text
ISSN1526-1506
1526-1492
1526-1506
DOI10.32604/cmes.2023.022289

Cover

Abstract In this paper, we present a new modification of the newly developed semi-analytical method named the Optimal Auxilary Function Method (OAFM) for fractional-order equations using the Caputo operator, which is named FOAFM. The mathematical theory of FOAFM is presented and the effectiveness of this method is proven by using it with well-known Fornberg-Whitham Equations (FWE). The FOAFM results are compared with other method results along with their exact solutions with the help of tables and plots to prove the validity of FOAFM. A rapidly convergent series solution is obtained from FOAFM and is validated by comparison with other results. The analysis proves that our method is simply applicable, contains less computational work, and is rapidly convergent to the exact solution at the first iteration. A series solution to the problem is obtained with the help of FOAFM. The validity of FOAFM results is validated by comparing its results with the results available in the literature. It is observed that FOAFM is simply applicable, contains less computational work, and is fastly convergent. The convergence and stability are obtained with the help of optimal constants. FOAFM is very easy in applicability and provides excellent results at the first iteration for complex nonlinear initial/boundary value problems. FOAFM contains the optimal auxiliary constants through which we can control the convergence as FOAFM contains the auxiliary functions in which the optimal constants and the control convergence parameters exist to play an important role in getting the convergent solution which is obtained rigorously. The computational work in FOAFM is less when compared to other methods and even a low-specification computer can do the computational work easily.
AbstractList In this paper, we present a new modification of the newly developed semi-analytical method named the Optimal Auxilary Function Method (OAFM) for fractional-order equations using the Caputo operator, which is named FOAFM. The mathematical theory of FOAFM is presented and the effectiveness of this method is proven by using it with well-known Fornberg-Whitham Equations (FWE). The FOAFM results are compared with other method results along with their exact solutions with the help of tables and plots to prove the validity of FOAFM. A rapidly convergent series solution is obtained from FOAFM and is validated by comparison with other results. The analysis proves that our method is simply applicable, contains less computational work, and is rapidly convergent to the exact solution at the first iteration. A series solution to the problem is obtained with the help of FOAFM. The validity of FOAFM results is validated by comparing its results with the results available in the literature. It is observed that FOAFM is simply applicable, contains less computational work, and is fastly convergent. The convergence and stability are obtained with the help of optimal constants. FOAFM is very easy in applicability and provides excellent results at the first iteration for complex nonlinear initial/boundary value problems. FOAFM contains the optimal auxiliary constants through which we can control the convergence as FOAFM contains the auxiliary functions in which the optimal constants and the control convergence parameters exist to play an important role in getting the convergent solution which is obtained rigorously. The computational work in FOAFM is less when compared to other methods and even a low-specification computer can do the computational work easily.
Author Khan, Ilyas
Mohammed, Abdullah
Ullah, Hakeem
Fiza, Mehreen
Islam, Saeed
Allah A. Mosa, Abd
Author_xml – sequence: 1
  givenname: Hakeem
  surname: Ullah
  fullname: Ullah, Hakeem
– sequence: 2
  givenname: Mehreen
  surname: Fiza
  fullname: Fiza, Mehreen
– sequence: 3
  givenname: Ilyas
  surname: Khan
  fullname: Khan, Ilyas
– sequence: 4
  givenname: Abd
  surname: Allah A. Mosa
  fullname: Allah A. Mosa, Abd
– sequence: 5
  givenname: Saeed
  surname: Islam
  fullname: Islam, Saeed
– sequence: 6
  givenname: Abdullah
  surname: Mohammed
  fullname: Mohammed, Abdullah
BookMark eNqNkE9PwkAUxDcGExH9AN428VzcP3S7eyQE1ATCReOxebSvtqR0y-42yre3UA8ePb3Jy8wk87slo8Y2SMgDZ1MpFJs9ZQf0U8GEnDIhhDZXZMxjoSIeMzX6o2_Irfd7xqSS2owJbmxeFVUGobKNp7agoUS6bUN1gJrOu--qrsCd6KprsrOFbjCUNqfB0pWDy6v3bV2Ojq6sa3boPqOPsgolHOjy2A29d-S6gNrj_e-dkPfV8m3xEq23z6-L-TrKhNIhShLIpYFkZ2ItkJkcwSADznPgKjGwK4yWhmmEQhRM9yuTGSihxUwKVHEmJ0QMvV3TwukL6jptXb_EnVLO0guo9AwqPYNKB1B96HEItc4eO_Qh3dvO9bN8n2CMCx73sCaED67MWe8dFv9o_gEhKHsg
Cites_doi 10.1016/j.physleta.2006.02.056
10.1016/j.aml.2008.03.019
10.1142/S0218348X22500839
10.1016/j.jcp.2005.05.017
10.2478/s11534-008-0061-x
10.1142/S0218126622500438
10.1016/j.cnsns.2009.05.004
10.22436/jnsa
10.9734/BJMCS/2014/8534
10.1140/epjp/i2018-11934-y
10.1155/2015/380104
10.32604/cmes.2022.018348
10.1063/1.531634
10.1155/2022/8876149
10.3934/math.2022439
10.1155/2014/106934
10.137/journal.pone.0120127
10.1007/s11012-010-9293-0
10.1016/S0898-1221(00)00161-9
10.5560/zna.2014-0037
10.1515/phys-2022-0015
10.1016/j.physleta.2006.09.105
10.3923/jas.2011.1416.1420
10.32604/cmes.2020.08490
10.1002/cmm4.1157
10.1016/j.jsv.2009.11.005
10.1016/j.icheatmasstransfer.2011.03.025
10.1016/j.rinp.2022.105216
10.1142/S0217979211059516
10.1155/2013/324869
10.1063/1.528578
10.1515/IJNSNS.2009.10.11-12.1383
10.1142/S0218348X22500098
10.1063/1.524550
10.1016/j.sigpro.2006.02.015
10.1016/j.camwa.2010.08.052
10.1088/0305-4470/37/31/R01
10.3390/en12050915
10.2298/TSCI110503070W
10.1155/2012/965367
ContentType Journal Article
Copyright 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ADTOC
UNPAY
DOI 10.32604/cmes.2023.022289
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Mathematics
EISSN 1526-1506
EndPage 291
ExternalDocumentID 10.32604/cmes.2023.022289
10_32604_cmes_2023_022289
GroupedDBID -~X
AAFWJ
AAYXX
ABJCF
ACIWK
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BENPR
BGLVJ
CCPQU
CITATION
EBS
EJD
F5P
IPNFZ
J9A
K7-
M7S
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PTHSS
PUEGO
RIG
RTS
7SC
7TB
8FD
8FE
8FG
ABUWG
ARAPS
AZQEC
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
KR7
L6V
L7M
L~C
L~D
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
ID FETCH-LOGICAL-c268t-77ad39a7b9582e09dea9e0a11da1679abf983908eaf2f0828974a6282432e65c3
IEDL.DBID BENPR
ISSN 1526-1506
1526-1492
IngestDate Tue Aug 19 16:28:34 EDT 2025
Sat Sep 06 07:32:05 EDT 2025
Wed Oct 01 04:21:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c268t-77ad39a7b9582e09dea9e0a11da1679abf983908eaf2f0828974a6282432e65c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3200121536?pq-origsite=%requestingapplication%&accountid=15518
PQID 3200121536
PQPubID 2048798
PageCount 15
ParticipantIDs unpaywall_primary_10_32604_cmes_2023_022289
proquest_journals_3200121536
crossref_primary_10_32604_cmes_2023_022289
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-00-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023-00-00
PublicationDecade 2020
PublicationPlace Henderson
PublicationPlace_xml – name: Henderson
PublicationTitle Computer modeling in engineering & sciences
PublicationYear 2023
Publisher Tech Science Press
Publisher_xml – name: Tech Science Press
References Drzain (ref11) 1989
Wang (ref47) 2022; 30
Metzler (ref7) 2004; 37
Abidi (ref40) 2011; 25
O’Malley (ref20) 1974
Chun (ref14) 2009; 10
Ullah (ref29) 2013; 2013
Liao (ref21) 1992
Abdel-Hamid (ref12) 2000; 40
Bluman (ref13) 1980; 21
Liu (ref42) 2020; 122
Gulalai (ref44) 2022; 7
Gupta (ref48) 2022; 31
Oldham (ref5) 1974
Herisanu (ref32) 2019; 12
ref43
Meerschaert (ref6) 2006; 211
Mastoi (ref50)
Podlubny (ref8) 1999
Chowdhury (ref15) 2011; 11
Ganji (ref17) 2006; 355
Hashemi (ref36) 2014; 69
Naseem (ref51) 2021; 3
Lu (ref35) 2011; 61
Bellman (ref18) 1964
Ullah (ref30) 2015
Yaghoobi (ref16) 2011; 38
(ref28) 2013; 2013
(ref31) 2015
Meral (ref3) 2010; 15
Sebaa (ref2) 2006; 86
Shoial (ref52) 2012; 1
Wang (ref46) 2022; 30
Abbasbandy (ref33) 2007; 361
Torrisi (ref10) 1996; 37
Aljahdaly (ref45) 2022; 2022
Schneider (ref9) 1989; 30
Cole (ref19) 1968
Ramadan (ref37) 2014; 4
Wang (ref39) 2016; 9
Marinca (ref26) 2010; 329
Ibrahim (ref41) 2022; 130
Ali (ref49) 2022; 33
Herişanu (ref25) 2008; 9
Ullah (ref27) 2014; 2014
Wang (ref53) 2012; 16
Merdan (ref38) 2012
Suárez (ref4) 2003
Fellah (ref1) 2002; 88
Marinca (ref24) 2009; 22
Marinca (ref22) 2008; 6
Herişanu (ref23) 2010; 45
Kumar (ref34) 2018; 133
References_xml – year: 1964
  ident: ref18
  publication-title: Perturbation techniques in mathematics, physics, and engineeing
– start-page: 337
  year: 2003
  ident: ref4
  article-title: Using fractional calculus for lateral and longitudinal control of autonomous vehicles
– volume: 355
  start-page: 337
  year: 2006
  ident: ref17
  article-title: The application of He’s homotopy perturbation method to nonlinear equations arising in heat transfer
  publication-title: Physics Letters A
  doi: 10.1016/j.physleta.2006.02.056
– volume: 22
  start-page: 245
  year: 2009
  ident: ref24
  article-title: An optimal homotopy asymptotic method applied to the steady flow of a fourth-grade fluid past a porous plate
  publication-title: Applied Mathematics Letters
  doi: 10.1016/j.aml.2008.03.019
– ident: ref43
– volume: 30
  start-page: 1
  year: 2022
  ident: ref47
  article-title: Fractal solitary wave solutions for fractal nonlinear dispersive boussinesq-like models
  publication-title: Fractals
  doi: 10.1142/S0218348X22500839
– volume: 211
  start-page: 249
  year: 2006
  ident: ref6
  article-title: Finite difference methods for two-dimensional fractional dispersion equation
  publication-title: Journal of Computational Physics
  doi: 10.1016/j.jcp.2005.05.017
– volume: 6
  start-page: 648
  year: 2008
  ident: ref22
  article-title: Optimal homotopy asymptotic method with application to thin film flow
  publication-title: Open Physics
  doi: 10.2478/s11534-008-0061-x
– volume: 31
  start-page: 2250043
  year: 2022
  ident: ref48
  article-title: Hardware efficient pseudo-random number generator using chen chaotic system on FPGA
  publication-title: Journal of Circuits, Systems and Computers
  doi: 10.1142/S0218126622500438
– volume: 15
  start-page: 939
  year: 2010
  ident: ref3
  article-title: Fractional calculus in viscoelasticity: An experimental study
  publication-title: Communications in Nonlinear Science and Numerical Simulation
  doi: 10.1016/j.cnsns.2009.05.004
– volume: 9
  start-page: 2419
  year: 2016
  ident: ref39
  article-title: Application of new iterative transform method and modified fractional homotopy analysis transform method for fractional fornberg-whitham equation
  publication-title: Journal of Nonlinear Sciences and Applications
  doi: 10.22436/jnsa
– volume: 4
  start-page: 1213
  year: 2014
  ident: ref37
  article-title: New iterative method for solving the fornberg-whitham equation and comparison with homotopy perturbation transform method
  publication-title: British Journal of Mathematics & Computer Science
  doi: 10.9734/BJMCS/2014/8534
– volume: 133
  start-page: 1
  year: 2018
  ident: ref34
  article-title: A new analysis of the fornberg-whitham equation pertaining to a fractional derivative with mittag-leffler-type kernel
  publication-title: The European Physical Journal Plus
  doi: 10.1140/epjp/i2018-11934-y
– year: 1992
  ident: ref21
  publication-title: The proposed homotopy analysis technique for the solution of nonlinear problems (Doctoral Dissertation, Ph.D. Thesis
– year: 2015
  ident: ref31
  publication-title: Mathematical Problems in Engineering
  doi: 10.1155/2015/380104
– volume: 130
  start-page: 221
  year: 2022
  ident: ref41
  article-title: Similarity analytic solutions of a 3D-fractal nanofluid uncoupled system optimized by a fractal symmetric tangent function
  publication-title: Computer Modeling in Engineering & Sciences
  doi: 10.32604/cmes.2022.018348
– volume: 37
  start-page: 4758
  year: 1996
  ident: ref10
  article-title: A group analysis approach for a nonlinear differential system arising in diffusion phenomena
  publication-title: Journal of Mathematical Physics
  doi: 10.1063/1.531634
– volume: 2022
  year: 2022
  ident: ref45
  article-title: A comparative analysis of the fractional-order coupled Korteweg–de Vries equations with the Mittag–Leffler law
  publication-title: Journal of Mathematics
  doi: 10.1155/2022/8876149
– volume: 7
  start-page: 7847
  year: 2022
  ident: ref44
  article-title: Nonlinear analysis of a nonlinear modified KdV equation under Atangana Baleanu Caputo derivative
  publication-title: AIMS Mathematics
  doi: 10.3934/math.2022439
– volume: 2014
  start-page: 1
  year: 2014
  ident: ref27
  article-title: An extension of the optimal homotopy asymptotic method to coupled schrödinger-KdV equation
  publication-title: International Journal of Differential Equations
  doi: 10.1155/2014/106934
– volume: 2013
  start-page: 1
  year: 2013
  ident: ref29
  publication-title: Mathematical Problem in Engineering
– year: 2015
  ident: ref30
  article-title: Formulation and application of optimal homotopy asymptotic method for coupled differential difference equations
  publication-title: PLoS One
  doi: 10.137/journal.pone.0120127
– volume: 45
  start-page: 847
  year: 2010
  ident: ref23
  article-title: Explicit analytical approximation to large-amplitude non-linear oscillations of a uniform cantilever beam carrying an intermediate lumped mass and rotary inertia
  publication-title: Meccanica
  doi: 10.1007/s11012-010-9293-0
– year: 1968
  ident: ref19
  publication-title: Perturbation methods in applied mathematics
– volume: 40
  start-page: 291
  year: 2000
  ident: ref12
  article-title: Exact solutions of some nonlinear evolution equations using symbolic computations
  publication-title: Computers & Mathematics with Applications
  doi: 10.1016/S0898-1221(00)00161-9
– year: 1974
  ident: ref20
  publication-title: Introduction to singular perturbation
– volume: 69
  start-page: 489
  year: 2014
  ident: ref36
  article-title: Group invariant solutions and conservation laws of the fornberg–whitham equation
  publication-title: Zeitschrift für Naturforschung A
  doi: 10.5560/zna.2014-0037
– ident: ref50
  article-title: Numerical solution for two dimensional partialdifferentialequations using SMs method
  doi: 10.1515/phys-2022-0015
– volume: 361
  start-page: 478
  year: 2007
  ident: ref33
  article-title: The application of homotopy analysis method to a generalized hirota-satsuama coupled KdV equations
  publication-title: Physics Letters A
  doi: 10.1016/j.physleta.2006.09.105
– year: 1999
  ident: ref8
  publication-title: Fractional differential equations
– volume: 11
  start-page: 1416
  year: 2011
  ident: ref15
  article-title: A comparison between the modified homotopy perturbation method and adomian decomposition method for solving nonlinear heat transfer equations
  publication-title: Journal of Applied Sciences
  doi: 10.3923/jas.2011.1416.1420
– volume: 122
  start-page: 33
  year: 2020
  ident: ref42
  article-title: Solving the optimal control problems of nonlinear duffing oscillators by using an iterative shape function method
  publication-title: Computer Modeling in Engineering & Sciences
  doi: 10.32604/cmes.2020.08490
– volume: 3
  start-page: e1157
  year: 2021
  ident: ref51
  article-title: Vectorial reduced DTM for fractional Cauchy riemann system of equations
  publication-title: Computational and Mathematical Methods
  doi: 10.1002/cmm4.1157
– volume: 329
  start-page: 1450
  year: 2010
  ident: ref26
  article-title: Determination of periodic solutions for the motion of a particle on a rotating parabola by means of the optimal homotopy asymptotic method
  publication-title: Journal of Sound and Vibration
  doi: 10.1016/j.jsv.2009.11.005
– volume: 38
  start-page: 815
  year: 2011
  ident: ref16
  article-title: The application of differential transformation method to nonlinear equations arising in heat transfer
  publication-title: International Communications in Heat and Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2011.03.025
– volume: 88
  start-page: 34
  year: 2002
  ident: ref1
  article-title: Application of fractional calculus to the sound waves propagation in rigid porous materials: Validation via ultrasonic measurements
  publication-title: Acta Acustica United with Acustica
– volume: 33
  start-page: 105216
  year: 2022
  ident: ref49
  article-title: Exact analytical wave solutions for space-time variable-order fractional modified equal width equation
  publication-title: Results in Physics
  doi: 10.1016/j.rinp.2022.105216
– volume: 25
  start-page: 4721
  year: 2011
  ident: ref40
  article-title: Numerical solutions for the nonlinear fornberg–whitham equation by he’s methods
  publication-title: International Journal of Modern Physics B
  doi: 10.1142/S0217979211059516
– volume: 9
  start-page: 229
  year: 2008
  ident: ref25
  article-title: A new analytical approach to nonlinear vibration of an electrical machine
  publication-title: Proceedings of the Romanian Academy, Series A. Mathematics, Physics, Technical Sciences, Information Science
– year: 1989
  ident: ref11
  publication-title: An introduction discussion the theory of solution and its diverse applications
– volume: 2013
  year: 2013
  ident: ref28
  article-title: Solution of boundary layer problems with heat transfer by optimal homotopy asymptotic method
  publication-title: Abstract and Applied Analysis
  doi: 10.1155/2013/324869
– volume: 30
  start-page: 134
  year: 1989
  ident: ref9
  article-title: Fractional diffusion and wave equations
  publication-title: Journal of Mathematical Physics
  doi: 10.1063/1.528578
– volume: 10
  start-page: 1383
  year: 2009
  ident: ref14
  article-title: Fourier-series-based variational iteration method for a reliable treatment of heat equations with variable coefficients
  publication-title: International Journal of Nonlinear Sciences and Numerical Simulation
  doi: 10.1515/IJNSNS.2009.10.11-12.1383
– volume: 30
  start-page: 2250009
  year: 2022
  ident: ref46
  article-title: Novel approach for fractal nonlinear oscillators with discontinuities by Fourier series
  publication-title: Fractals
  doi: 10.1142/S0218348X22500098
– volume: 21
  start-page: 1019
  year: 1980
  ident: ref13
  publication-title: Journal of Mathematical Physics
  doi: 10.1063/1.524550
– volume: 86
  start-page: 2668
  year: 2006
  ident: ref2
  article-title: Application of fractional calculus to ultrasonic wave propagation in human cancellous bone
  publication-title: Signal Processing
  doi: 10.1016/j.sigpro.2006.02.015
– volume: 1
  start-page: 114
  year: 2012
  ident: ref52
  article-title: Reduced DTM for time fractional parabolic PDEs
  publication-title: International Journal of Modern Applied Physics
– year: 1974
  ident: ref5
  publication-title: The fractional calculus
– volume: 61
  start-page: 2010
  year: 2011
  ident: ref35
  article-title: An analytical approach to the fornberg–whitham type equations by using the variational iteration method
  publication-title: Computers & Mathematics with Applications
  doi: 10.1016/j.camwa.2010.08.052
– volume: 37
  start-page: R161
  year: 2004
  ident: ref7
  article-title: The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics
  publication-title: Journal of Physics A: Mathematical and General
  doi: 10.1088/0305-4470/37/31/R01
– volume: 12
  year: 2019
  ident: ref32
  article-title: Dynamic response of a permanent magnet synchronous generator to a wind gust
  publication-title: Energies
  doi: 10.3390/en12050915
– volume: 16
  start-page: 339
  year: 2012
  ident: ref53
  article-title: Fractional model for heat conduction in polar bear hairs
  publication-title: Thermal Science
  doi: 10.2298/TSCI110503070W
– start-page: 965367
  year: 2012
  ident: ref38
  article-title: Numerical simulation of fractional fornberg-whitham equation by differential transformation method
  publication-title: Abstract and Applied Analysis
  doi: 10.1155/2012/965367
SSID ssj0036389
Score 2.3407536
Snippet In this paper, we present a new modification of the newly developed semi-analytical method named the Optimal Auxilary Function Method (OAFM) for...
SourceID unpaywall
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 277
SubjectTerms Approximation
Boundary value problems
Calculus
Convergence
Exact solutions
Mathematical analysis
Mathematics
Methods
Numerical analysis
Operators (mathematics)
Partial differential equations
Porous materials
Science
Series (mathematics)
Viscoelasticity
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3BbtQwEB2V7aEnSksRi0rlAyeqZJPYMfaxqjaqKm1bqV2pHFDkxI6o2N0su1lBOfDtzMRJC70gDtziaGzJGcfzZux5A_DOCstFQelnJqXQTSUDVWh0VkRiSy60VYoSnCcX8mwqzm_T2y341OfCEBtRSPSlnQFoN2t6uR6dTsbX5Kvz0c31VU6tIOYyiB-aOUUz9JNmuLTVM9iWKUL1AWxPL65OPrYcqgl2FW3RZP-cRtKfeiKgicSonDti8054GLXj_Gm3HsHozmaxNPffzGz2m13KduFnPyN_HeVLuGmKsPzxhOzxv035BTzvEC078UtwD7bcYh92-2oRrNs8XoKb1JbuJfkQIasrhtiTXeKWNafum-93szuzumcZWloSYZO2uDVrapatfPoFyl0SVSjL6lV7MS2g-n6fzZyNv3rK8vUBTLPxzelZ0BV5CMpEqgbRvbFcmw-FTlXiIm2d0S4ycWwNnRCZotKI4SLlTJVUxLeHDpCR6CgKnjiZlvwVDBb1wr0GxhWuPOW4tCoVcRlpoqpHPCJdYoywdgjvexXmS8_lkaMP1Oo7J33n9Klzr-8hHPZKzrvfeo2iLQdeyuUQjh8U__fB3vyT9CEMmtXGvUW00xRH3Zr9BW2D-NQ
  priority: 102
  providerName: Unpaywall
Title Modifications of the Optimal Auxiliary Function Method to Fractional Order Fornberg-Whitham Equations
URI https://www.proquest.com/docview/3200121536
https://file.techscience.com/files/CMES/2023/TSP_CMES-136-1/TSP_CMES_22289/TSP_CMES_22289.pdf
UnpaywallVersion publishedVersion
Volume 136
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1526-1506
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036389
  issn: 1526-1506
  databaseCode: ADMLS
  dateStart: 20180301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: ProQuest Central (New) (NC LIVE)
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1526-1506
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0036389
  issn: 1526-1506
  databaseCode: BENPR
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV07T8MwED5BGYCBN6JQkAcmUCC1HWMPCAFqQEgtCFEJpsiJHYHUNqUPQf89vjyACaYMsazo7Nx9d_Z9H8Ch4YbxGNvPdIClm1R4MlYuWeHUJIwrIyU2OLc74rbL756D5znoVL0weK2y8om5ozZZgjXyU0Zz-rGAiYvhu4eqUXi6Wklo6FJawZznFGPzsECRGasGC1etzsNj5ZsZxuecQZUK9zmKFuecDsL4_DTpW-TvpuwEkyDUff8dqX7g5-J0MNSzD93r_YpE4RqslBCSXBZrvg5zdrABq5U8Ayn_1g1Ybn9Tso43wbYzg9eCigodyVLiXpJ75zH6ONn08633pkczErpAh0NIO9eWJpOMhKOi-8GNu0emThJmo_xemIfyeq-6T1rvBWP4eAu6Yevp-tYrNRa8hAo5ceBaG6b0WawCSa2vjNXK-rrZNBoPaHScKgehfGl1SlOku3P5hxYuT-OMWhEkbBtqg2xgd4Aw6RZeWiaMDHgz8RUyxTs4ICzVmhtTh6PKntGwoNKIXAqSGz9C40do_Kgwfh0alcWj8q8aRz97oA7H36vw_2S7f0-2B0s4uCisNKA2GU3tvoMak_gA5mV4c1DuIvfsdh4uX74ADgnTrA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9lA4tFBAbCngA1xAoVnbMfahqgpstKXNFqFW6i11YkdU2t1s96Gyf47f1pk82p7g1HOckTyZzHwz9nwD8N5JJ2RG7Wc2otJNoQKdGUxWJHe5kMZpTQ3OyUD1z-SP8-h8Bf62vTB0rbL1iZWjdmVONfJdwSv6sUio_clVQFOj6HS1HaFhm9EKbq-iGGsaO4788hpTuNne4Xf83h84j3un3_pBM2UgyLnSc4SX1gljv2Qm0tyHxnlrfGi7XWfpiMJmhUEQEWpvC14Q4RsicKswU5GCexXlAuU-gjWJG8Pkb-1rb_DzVxsLBOGBirGVK9y-4fW5KkKmUO7mI0984Vx8pqSL5szfj4x3cHd9MZ7Y5bUdDu9FvvgpbDSQlR3UNvYMVvx4CzbbcRCs8Q5b8CS5pYCdPQeflI6uIdUVQVYWDB-yE_RQIxK2-HM5vLTTJYsxsNISllSzrNm8ZPG07rbAdSfEDMriclrdQwtonN9vO2K9q5qhfPYCzh5E2y9hdVyO_StgQqOhaS-U05Hs5qEhZnqEH8pza6VzHfjY6jOd1NQdKaY8lfJTUn5Kyk9r5Xdgp9V42vzFs_TO5jrw6fYr_F_Y9r-FvYP1_mlynB4fDo5ew2N6sS7q7MDqfLrwbxDmzLO3jS0xuHho870BvMQNWw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3BbtQwEB2V7aEnSksRi0rlAyeqZJPYMfaxqjaqKm1bqV2pHFDkxI6o2N0su1lBOfDtzMRJC70gDtziaGzJGcfzZux5A_DOCstFQelnJqXQTSUDVWh0VkRiSy60VYoSnCcX8mwqzm_T2y341OfCEBtRSPSlnQFoN2t6uR6dTsbX5Kvz0c31VU6tIOYyiB-aOUUz9JNmuLTVM9iWKUL1AWxPL65OPrYcqgl2FW3RZP-cRtKfeiKgicSonDti8054GLXj_Gm3HsHozmaxNPffzGz2m13KduFnPyN_HeVLuGmKsPzxhOzxv035BTzvEC078UtwD7bcYh92-2oRrNs8XoKb1JbuJfkQIasrhtiTXeKWNafum-93szuzumcZWloSYZO2uDVrapatfPoFyl0SVSjL6lV7MS2g-n6fzZyNv3rK8vUBTLPxzelZ0BV5CMpEqgbRvbFcmw-FTlXiIm2d0S4ycWwNnRCZotKI4SLlTJVUxLeHDpCR6CgKnjiZlvwVDBb1wr0GxhWuPOW4tCoVcRlpoqpHPCJdYoywdgjvexXmS8_lkaMP1Oo7J33n9Klzr-8hHPZKzrvfeo2iLQdeyuUQjh8U__fB3vyT9CEMmtXGvUW00xRH3Zr9BW2D-NQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modifications+of+the+Optimal+Auxiliary+Function+Method+to+Fractional+Order+Fornberg-Whitham+Equations&rft.jtitle=Computer+modeling+in+engineering+%26+sciences&rft.au=Ullah%2C+Hakeem&rft.au=Fiza%2C+Mehreen&rft.au=Khan%2C+Ilyas&rft.au=Allah+A.+Mosa%2C+Abd&rft.date=2023&rft.issn=1526-1506&rft.volume=136&rft.issue=1&rft.spage=277&rft.epage=291&rft_id=info:doi/10.32604%2Fcmes.2023.022289&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmes_2023_022289
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1526-1506&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1526-1506&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1526-1506&client=summon