Affine Non‐Reductive GIT and moduli of representations of quivers with multiplicities

We give an explicit approach to quotienting affine varieties by linear actions of linear algebraic groups with graded unipotent radical, using results from projective Non‐Reductive GIT. Our quotients come with explicit projective completions, whose boundaries we interpret in terms of the original ac...

Full description

Saved in:
Bibliographic Details
Published inJournal of the London Mathematical Society Vol. 111; no. 3
Main Authors Hamilton, Eloise, Hoskins, Victoria, Jackson, Joshua
Format Journal Article
LanguageEnglish
Published 01.03.2025
Online AccessGet full text
ISSN0024-6107
1469-7750
1469-7750
DOI10.1112/jlms.70099

Cover

Abstract We give an explicit approach to quotienting affine varieties by linear actions of linear algebraic groups with graded unipotent radical, using results from projective Non‐Reductive GIT. Our quotients come with explicit projective completions, whose boundaries we interpret in terms of the original action. As an application, we construct moduli spaces of semistable representations of quivers with multiplicities subject to certain conditions, which always hold in the toric case for a generic stability condition.
AbstractList We give an explicit approach to quotienting affine varieties by linear actions of linear algebraic groups with graded unipotent radical, using results from projective Non‐Reductive GIT. Our quotients come with explicit projective completions, whose boundaries we interpret in terms of the original action. As an application, we construct moduli spaces of semistable representations of quivers with multiplicities subject to certain conditions, which always hold in the toric case for a generic stability condition.
Author Jackson, Joshua
Hoskins, Victoria
Hamilton, Eloise
Author_xml – sequence: 1
  givenname: Eloise
  surname: Hamilton
  fullname: Hamilton, Eloise
  organization: Newnham College
– sequence: 2
  givenname: Victoria
  surname: Hoskins
  fullname: Hoskins, Victoria
  organization: Radboud University, IMAPP
– sequence: 3
  givenname: Joshua
  orcidid: 0000-0003-1820-9016
  surname: Jackson
  fullname: Jackson, Joshua
  email: jjj26@cam.ac.uk
  organization: St John's College
BookMark eNp9kEFOwzAQRS1UJNrChhN4j1I8sZ3Ey6qCUlRAgiKWkRvbwpXjhDhp1R1H4IychIayZjWjmff_4o3QwFdeI3QJZAIA8fXGlWGSEiLECRoCS0SUppwM0JCQmEUJkPQMjULYEAIUSDxEb1NjrNf4sfLfn1_PWnVFa7cazxcrLL3CZaU6Z3FlcKPrRgftW9nayof-9NEd0CbgnW3fcdm51tbOFra1OpyjUyNd0Bd_c4xeb29Ws7to-TRfzKbLqIiTTERaUZ0pURQ0AcOYYIZLJoxihB_2pIi1ASko4wp4ltI0o3wtQUhO-9-a0DG6OvZ2vpb7nXQurxtbymafA8l7J3nvJP91cqDhSO-s0_t_yPx--fByzPwA5GZoVA
ContentType Journal Article
Copyright 2025 The Author(s). is copyright © London Mathematical Society.
Copyright_xml – notice: 2025 The Author(s). is copyright © London Mathematical Society.
DBID 24P
ADTOC
UNPAY
DOI 10.1112/jlms.70099
DatabaseName Wiley Online Library Open Access
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitleList
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1469-7750
EndPage n/a
ExternalDocumentID 10.1112/jlms.70099
JLMS70099
Genre researchArticle
GrantInformation_xml – fundername: Simons Foundation
– fundername: Isaac Newton Institute for Mathematical Sciences
– fundername: Heilbronn Institute for Mathematical Research
– fundername: EPSRC
  funderid: EP/R014604/1
GroupedDBID --Z
-DZ
-~X
.2P
.I3
0R~
1OB
1OC
1TH
24P
33P
4.4
5GY
5VS
6OB
6TJ
70D
AAGQS
AAHHS
AAHQN
AAIJN
AAJKP
AAMNL
AAMVS
AANLZ
AAOGV
AASGY
AASVR
AAUQX
AAXRX
AAYCA
AAYJJ
AAZKR
ABCUV
ABEFU
ABEJV
ABEUO
ABFSI
ABGNP
ABITZ
ABIXL
ABJNI
ABLJU
ABNGD
ABNKS
ABQLI
ABSMQ
ABVKB
ABXVV
ABZBJ
ACAHQ
ACCFJ
ACCZN
ACGFS
ACNCT
ACPOU
ACQPF
ACUKT
ACXBN
ACXQS
ADBBV
ADEOM
ADEYI
ADHZD
ADKYN
ADMGS
ADOCK
ADOZA
ADXAS
ADZMN
ADZXQ
AECKG
AEEZP
AEGPL
AEIGN
AEJOX
AEPUE
AEQDE
AETEA
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFIYH
AFKSM
AFWVQ
AFZJQ
AGHNM
AGKEF
AGQPQ
AGSYK
AGYGG
AHBTC
AHXPO
AI.
AIJHB
AITYG
AIURR
AIWBW
AJBDE
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALUQN
ALVPJ
AMVHM
AMYDB
ASAOO
ASPBG
ATDFG
AUFTA
AVWKF
AXUDD
AZFZN
BFHJK
BMNLL
BMXJE
BQUQU
CAG
CHEAL
COF
CS3
CXTWN
CZ4
DCZOG
DFGAJ
DILTD
DRFUL
DRSTM
D~K
E.L
EBS
EE~
EJD
F9B
FEDTE
FSPIC
H13
H5~
HAR
HGLYW
HVGLF
HW0
H~9
IOX
KOP
L7B
L98
LATKE
LEEKS
LOXES
LUTES
LYRES
M-Z
M49
MBTAY
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N9A
NGC
NHB
NU-
O0~
O9-
OHT
O~Y
P2P
P2W
PALCI
PB-
Q1.
Q5Y
RCA
RD5
RJQFR
ROL
ROZ
RW1
RXO
S10
SAMSI
SUPJJ
TJP
TN5
UMC
UPT
UQL
VH1
VOH
WH7
WIH
WIK
WOHZO
WXSBR
X7H
XJT
XKC
XOL
XSW
XXG
Y6R
YQT
YYP
ZCG
ZKB
ZY4
ZZTAW
~91
ABGDZ
ADTOC
ADXHL
LH4
UNPAY
ID FETCH-LOGICAL-c2689-ed3e8d9cc361f4494f5a49fd40594f6c2ef1a9345d158737835ba19a536c2eb03
IEDL.DBID UNPAY
ISSN 0024-6107
1469-7750
IngestDate Sun Sep 07 10:51:32 EDT 2025
Wed May 21 13:01:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Attribution
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2689-ed3e8d9cc361f4494f5a49fd40594f6c2ef1a9345d158737835ba19a536c2eb03
ORCID 0000-0003-1820-9016
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1112/jlms.70099
PageCount 51
ParticipantIDs unpaywall_primary_10_1112_jlms_70099
wiley_primary_10_1112_jlms_70099_JLMS70099
PublicationCentury 2000
PublicationDate March 2025
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: March 2025
PublicationDecade 2020
PublicationTitle Journal of the London Mathematical Society
PublicationYear 2025
References 1991; 113
2010
1978; 51
2023; 2023
1994; 45
2024; 30
2005
2004
2024
2004; 129
2017; 136
2011; 475
2003; 296
2014; 65
2010; 82
1985; 122
2004; 155
1989; 96
2017; 209
1990; 317
2023
2022
2021
1980; 56
1994; 34
2013; 177
2018
2017
2016
2024; 67
2024; 235
2018; 11
1978; 108
2010; 6
1998; 9
References_xml – volume: 209
  start-page: 61
  issue: 1
  year: 2017
  end-page: 158
  article-title: Quivers with relations for symmetrizable Cartan matrices I: Foundations
  publication-title: Invent. Math.
– volume: 113
  start-page: 189
  issue: 2
  year: 1991
  end-page: 201
  article-title: A reduction theorem for existence of good quotients
  publication-title: Amer. J. Math.
– volume: 65
  start-page: 1011
  issue: 3
  year: 2014
  end-page: 1047
  article-title: Stratifications associated to reductive group actions on affine spaces
  publication-title: Q. J. Math.
– year: 2005
– volume: 136
  year: 2017
– volume: 34
  year: 1994
– year: 2021
– year: 2024
– volume: 30
  start-page: 50
  issue: 2
  year: 2024
  article-title: Locally free representations of quivers over commutative Frobenius algebras
  publication-title: Selecta Math. (N.S.)
– volume: 235
  start-page: 1
  issue: 1
  year: 2024
  end-page: 79
  article-title: Moment maps and cohomology of non‐reductive quotients
  publication-title: Invent. Math.
– volume: 56
  start-page: 57
  issue: 1
  year: 1980
  end-page: 92
  article-title: Infinite root systems, representations of graphs and invariant theory
  publication-title: Invent. Math.
– volume: 96
  start-page: 349
  issue: 2
  year: 1989
  end-page: 383
  article-title: Stability and equivariant maps
  publication-title: Invent. Math.
– volume: 2023
  start-page: 105
  issue: 804
  year: 2023
  end-page: 154
  article-title: The integrality conjecture and the cohomology of preprojective stacks
  publication-title: J. Reine Angew. Math.
– year: 2016
– volume: 235
  start-page: 81
  issue: 1
  year: 2024
  end-page: 127
  article-title: Non‐reductive geometric invariant theory and hyperbolicity
  publication-title: Invent. Math.
– year: 2018
– volume: 6
  start-page: 43
  year: 2010
  article-title: Quiver varieties with multiplicities, Weyl groups of non‐symmetric Kac–Moody algebras, and Painlevé equations
  publication-title: SIGMA Symmetry Integrability Geom. Methods Appl.
– volume: 51
  year: 1978
– year: 2010
– volume: 317
  start-page: 585
  issue: 2
  year: 1990
  end-page: 598
  article-title: Semisimple representations of quivers
  publication-title: Trans. Amer. Math. Soc.
– volume: 108
  start-page: 299
  issue: 2
  year: 1978
  end-page: 316
  article-title: Instability in invariant theory
  publication-title: Ann. of Math. (2)
– volume: 122
  start-page: 41
  issue: 1
  year: 1985
  end-page: 85
  article-title: Partial desingularisations of quotients of nonsingular varieties and their Betti numbers
  publication-title: Ann. of Math. (2)
– volume: 45
  start-page: 515
  issue: 180
  year: 1994
  end-page: 530
  article-title: Moduli of representations of finite‐dimensional algebras
  publication-title: Q. J. Math.
– volume: 155
  start-page: 537
  issue: 3
  year: 2004
  end-page: 559
  article-title: Absolutely indecomposable representations and Kac–Moody Lie algebras
  publication-title: Invent. Math.
– volume: 67
  start-page: 577
  issue: 2
  year: 2024
  end-page: 616
  article-title: On the moduli of hypersurfaces in toric orbifolds
  publication-title: Proceedings of the Edinburgh Mathematical Society
– year: 2022
– year: 2004
– year: 2023
– volume: 82
  start-page: 376
  issue: 2
  year: 2010
  end-page: 394
  article-title: Cohomological properties of invariant quotients of affine spaces
  publication-title: J. Lond. Math. Soc. (2)
– volume: 177
  start-page: 1147
  issue: 3
  year: 2013
  end-page: 1168
  article-title: Positivity for kac polynomials and dt‐invariants of quivers
  publication-title: Ann. Math.
– volume: 129
  year: 2004
– year: 2017
– volume: 296
  year: 2003
– volume: 11
  start-page: 826
  issue: 3
  year: 2018
  end-page: 855
  article-title: Geometric invariant theory for graded unipotent groups and applications
  publication-title: J. Topol.
– volume: 475
  start-page: 327
  year: 2011
  end-page: 360
  article-title: Representations of quivers over the algebra of dual numbers
  publication-title: J. Algebra
– volume: 9
  start-page: 107
  issue: 1
  year: 1998
  end-page: 118
  article-title: Projective moduli for Hitchin pairs
  publication-title: Internat. J. Math.
SSID ssj0013102
Score 2.3828285
Snippet We give an explicit approach to quotienting affine varieties by linear actions of linear algebraic groups with graded unipotent radical, using results from...
SourceID unpaywall
wiley
SourceType Open Access Repository
Publisher
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1NS8MwGMfDnAfdQXzF-UYOOwnVpU2bBrwMcc7hhuiGu5WkSWDStdOtiDc_gp_RT2KSdhteBG-lTUp5kif958mTXwBoKK2BPE6UE1DtTdggbznFzAm5QMqPXUa5CQ30-kFniLsjf1QBV4u9MAUfYhlwM55hx2vj4IyXp5AgAw19SSazC2IUzhpYR1rImP7t4ofVGgJqlqxwrCdITVLCSXXty1XdGtjI0yn7eGdJ8luf2h9MextslcoQtoqm3AEVme6CWm-JVZ3tgeeWUvq7YT9Lvz-_Hg111YxW8PZuAFkq4CQTeTKGmYKWVbnYV5TOzK3X3KZgQBN5hWUe4Ti2QNV9MGzfDK47TnkyghO7QUgdKTwZChrHXoAUxhQrn2GqBDb0FRXErlSIUQ_7Avkh8Ux0hzNEme-ZZ7zpHYBqmqXyEEAZcB_LJiFMIMykq19K7WqiIjHhIamDxtJA0bQgYETFzMGNjB0ja8c6OLe2-6NI1L3vPdmro_8UPgabrjlz1-Z9nYDq_C2Xp1oIzPmZbe8fpbiwnw
  priority: 102
  providerName: Wiley-Blackwell
Title Affine Non‐Reductive GIT and moduli of representations of quivers with multiplicities
URI https://onlinelibrary.wiley.com/doi/abs/10.1112%2Fjlms.70099
https://doi.org/10.1112/jlms.70099
UnpaywallVersion publishedVersion
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PS8MwFMcfbh5kB3-Lio4gOwmda5u0zXEM5xxuDHWop5K0CUy7Tt2K6Mk_wb_Rv8Qk7cR5EG8lTUN4adJvXt77FKAmlQZyuS8tj6rZhDXyllPMrIDHtiSRwyjXroFe3-sMcfeW3C7B0TwX5uf5vZICJ_fJeFr3tY4pwbJHlN4uw_KwP2je5bEbWO19TE60mvFUSUXSKBikiw9XYCVLH9nrC0uSRRlqviPtNWjNe5CHjzzUsxmvR2-_4Ix_d3EdVgsZiZr5uG_Akkg3odL7ZrBOt-CmKaWSkKg_ST_fPy41olUvbejs_BqxNEbjSZwlIzSRyIAt50lI6VQXPWUmXgNpNy0qgg5HkaGvbsOwfXrd6ljFbxSsyPECaonYFUFMo8j1bIkxxZIwTGWMNapFepEjpM2oi0lsk8B3tSuIM5sy4up7vOHuQDmdpGIXkPA4waLh-yy2MROOapSao0fpRz4P_D2ofZs5fMxxGWG-zXBCbafQ2GkPjs0I_FEl7F70rszV_v_aPIDy7DkTh0oizHgVSg4eVIs35Qt2nLwp
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3PT4MwFMcbnYe5g_FnnD972MkEHVAoPS7Guc2xGN3ibqSFNplhMN2I8eaf4N_oXyKv4BYvJt4ItIS85pX3vn39FKGGymMgW1BluCz3JgLIW8EINzwRmcoJLc4ESAP-wO2MSG_sjMvaHNgLU_AhloIbeIaer8HBQZAuvRyooc_xdH5JIcRZRxvENV3IvSxyv1pEMJslLJzkGVKTlnTSvPfVqm8NVbNkxt_feBz_DlD1H6a9jbbK0BC3irHcQWsy2UU1f8lVne-hp5ZS-YfjQZp8fXw-AHYVpit82x1inkR4mkZZPMGpwhpW-bOxKJnDrZdM12BgkF5xWUg4CTVRdR-N2jfD645RHo1ghJbrMUNGtvQiFoa2aypCGFEOJ0xFBPAryg0tqUzObOJEpuNRG-QdwU3GHRueiaZ9gCpJmshDhKUrHCKblPLIJFxa-UuZXk5UNKTCo3XUWBoomBUIjKBIHawA7BhoO9bRhbbdH02CXt9_1FdH_2l8jqqdod8P-t3B3THatOAAXl0EdoIqi9dMnuZRwUKc6bH_BkBNtAs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1bT8IwFMcbxUTlwXiNeO0DTybTXbp1fSQqAgIhCpG3pV3bBAMDBWJ88yP4Gf0k7nQT4ouJb0vXLstpTvvv6emvCJV1qoE8QbUVsNSbCCBvBSPcCoV0tB-7nAkIDbTaQa1HGn2_n-fmwFmYjA-xCLiBZ5jxGhxcTaTOvRyooc_D0fSSgsRZRWvET6dCADuTznITwbFzWDhJV0g2zemkaeurZdsi2pgnE_7-xofD3wLVzDDVbbSVS0NcyfpyB62oZBcVWwuu6nQPPVW0Tn8ct8fJ18fnA2BXYbjCd_Uu5onEo7GcDwd4rLGBVf4cLEqmUPQyNzkYGEKvOE8kHMSGqLqPetXb7nXNyq9GsGI3CJmlpKdCyeLYCxxNCCPa54RpSQC_ooPYVdrhzCO-dPyQehDeEdxh3PfgnbC9A1RIxok6RFgFwifKppRLh3Dlph9lZjtR05iKkJZQeWGgaJIhMKJs6eBGYMfI2LGELozt_qgSNZqtR_N09J_K52i9c1ONmvX2_THadOH-XZMDdoIKs9e5Ok1FwUycma7_BloTs5o
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PS8MwFMcfuh1kB3-LikoQT0Ln2iZtcxzDOYcbohvOU0naBKZdp25F9OSf4N_oX2KSdsN5EG8lTUN4adJvXt77FOBEKg3kcl9aHlWzCWvkLaeYWQGPbUkih1GuXQOdrtfq4_aADJbgeJYL8_P8XkmBs4dkNKn6WscsQ9kjSm-XoNzvXtfv89gNrPY-JidazXiqpCKpFQzSxYcrsJKlT-ztlSXJogw135HmGjRmPcjDRx6r2ZRXo_dfcMa_u7gOq4WMRPV83DdgSaSbUOnMGayTLbirS6kkJOqO06-PzxuNaNVLG7q47CGWxmg0jrNkiMYSGbDlLAkpneii58zEayDtpkVF0OEwMvTVbeg3z3uNllX8RsGKHC-glohdEcQ0ilzPlhhTLAnDVMZYo1qkFzlC2oy6mMQ2CXxXu4I4sykjrr7Ha-4OlNJxKnYBCY8TLGq-z2IbM-GoRqk5epR-5PPA34OTuZnDpxyXEebbDCfUdgqNnfbg1IzAH1XC9lXn1lzt_6_NAyhNXzJxqCTClB8V78g3E867Ug
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Affine+Non%E2%80%90Reductive+GIT+and+moduli+of+representations+of+quivers+with+multiplicities&rft.jtitle=Journal+of+the+London+Mathematical+Society&rft.au=Hamilton%2C+Eloise&rft.au=Hoskins%2C+Victoria&rft.au=Jackson%2C+Joshua&rft.date=2025-03-01&rft.issn=0024-6107&rft.eissn=1469-7750&rft.volume=111&rft.issue=3&rft.epage=n%2Fa&rft_id=info:doi/10.1112%2Fjlms.70099&rft.externalDBID=10.1112%252Fjlms.70099&rft.externalDocID=JLMS70099
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-6107&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-6107&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-6107&client=summon