A Systematic Review: Classification of Lung Diseases from Chest X-Ray Images Using Deep Learning Algorithms
The purpose of this survey is to provide a comprehensive review of the most recent publications on lung disease classification from chest X-ray images using deep learning algorithms. Methods: This research aims to present several common chest radiography datasets and to introduce briefly the general...
Saved in:
| Published in | SN computer science Vol. 5; no. 4; p. 405 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Singapore
Springer Nature Singapore
06.04.2024
Springer Nature B.V Springer |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2661-8907 2662-995X 2661-8907 |
| DOI | 10.1007/s42979-024-02751-2 |
Cover
| Abstract | The purpose of this survey is to provide a comprehensive review of the most recent publications on lung disease classification from chest X-ray images using deep learning algorithms. Methods: This research aims to present several common chest radiography datasets and to introduce briefly the general image preprocessing procedures that are applied to chest X-ray images. Then, the classification of specific and multiple lung diseases is described, focusing on the method and dataset used in the selected studies, the evaluation measures and the results. In addition, the problems and future direction of lung diseases classification are discussed to provide an important research base for researchers in the future. As the most common examination tool, Chest X-ray (CXR) is crucial in the medical field for disease diagnosis. Thus, the classification of chest diseases based on chest X-ray has gained significant attention from researchers. In recent years, deep learning methods have been used and have emerged as powerful techniques in medical imaging fields. One hundred ten articles published from 2016 to 2023 were reviewed and summarized, confirming that this particular research area is very important and has great potential for future research. |
|---|---|
| AbstractList | The purpose of this survey is to provide a comprehensive review of the most recent publications on lung disease classification from chest X-ray images using deep learning algorithms. Methods: This research aims to present several common chest radiography datasets and to introduce briefly the general image preprocessing procedures that are applied to chest X-ray images. Then, the classification of specific and multiple lung diseases is described, focusing on the method and dataset used in the selected studies, the evaluation measures and the results. In addition, the problems and future direction of lung diseases classification are discussed to provide an important research base for researchers in the future. As the most common examination tool, Chest X-ray (CXR) is crucial in the medical field for disease diagnosis. Thus, the classification of chest diseases based on chest X-ray has gained significant attention from researchers. In recent years, deep learning methods have been used and have emerged as powerful techniques in medical imaging fields. One hundred ten articles published from 2016 to 2023 were reviewed and summarized, confirming that this particular research area is very important and has great potential for future research. |
| ArticleNumber | 405 |
| Author | Chauvet, Pierre Oueidat, Mohamad Hage Chehade, Aya Abdallah, Nassib Marion, Jean-Marie Hatt, Mathieu |
| Author_xml | – sequence: 1 givenname: Aya orcidid: 0000-0001-9642-565X surname: Hage Chehade fullname: Hage Chehade, Aya email: aya.hagechehade@etud.univ-angers.fr organization: LARIS, Univ Angers – sequence: 2 givenname: Nassib surname: Abdallah fullname: Abdallah, Nassib organization: LARIS, Univ Angers, Imaging and Brain, INSERM UMR 1253, Univ Tours – sequence: 3 givenname: Jean-Marie surname: Marion fullname: Marion, Jean-Marie organization: LARIS, Univ Angers – sequence: 4 givenname: Mathieu surname: Hatt fullname: Hatt, Mathieu organization: LaTIM, INSERM UMR 1101, Univ Brest – sequence: 5 givenname: Mohamad surname: Oueidat fullname: Oueidat, Mohamad organization: Faculty of Technology, Lebanese University – sequence: 6 givenname: Pierre surname: Chauvet fullname: Chauvet, Pierre organization: LARIS, Univ Angers |
| BackLink | https://univ-angers.hal.science/hal-04606818$$DView record in HAL |
| BookMark | eNp9kU9v1DAQxS1UJErpF-BkiROHwPhvYm6rBdpKkZAKlbhZrney65LEi50t2m9fp0GAOPRg2X76vZmx30tyMsYRCXnN4B0DqN9nyU1tKuCyrFqxij8jp1xrVjUG6pN_zi_Iec53AMAVSKnVKfmxol-PecLBTcHTa7wP-OsDXfcu59AFX9Q40tjR9jBu6ceQ0WXMtEtxoOsd5ol-r67dkV4Nblv0mxxmDHFPW3RpnG-rfhtTmHZDfkWed67PeP57PyM3nz99W19W7ZeLq_WqrTzXDa9QKwNgNp1Ao9imq6VshMTbDr1GtjHG8FuDsqmhqNo1rnPee62U2IDzkokz8napu3O93acwuHS00QV7uWrtrIHUoBvW3M_sm4Xdp_jzUB5k7-IhjWU8K0AIo0AoUSi-UD7FnBN2f8oysHMGdsnAlgzsYwaWF1Pzn8mH6fFDp-RC_7RVLNZc-oxbTH-nesL1AG_rm-o |
| CitedBy_id | crossref_primary_10_1016_j_cmpb_2024_108518 |
| Cites_doi | 10.1038/s41597-019-0322-0 10.1007/s10489-020-01829-7 10.1016/j.compbiomed.2021.104319 10.1007/s13246-020-00865-4 10.3233/XST-211082 10.1007/978-3-319-91008-6_63 10.1016/j.chaos.2020.109944 10.1016/j.cmpb.2020.105581 10.1080/07391102.2020.1767212 10.1117/12.2216198 10.1007/978-3-319-93000-8_62 10.1109/TSMCA.2009.2029559 10.1109/ICASSP.2018.8461430 10.1007/s12652-021-03306-6 10.1109/ACCESS.2019.2916849 10.1016/j.patrec.2020.04.016 10.1016/j.media.2016.08.004 10.3390/app10093233 10.1016/j.patrec.2019.11.040 10.1007/978-3-030-00889-5_30 10.1109/ACCESS.2020.2989273 10.1007/s13246-020-00888-x 10.3978/j.issn.2223-4292.2014.11.20 10.1109/CVPR.2018.00865 10.1109/EIT48999.2020.9208232 10.13005/bpj/1905 10.1016/j.imed.2023.06.001 10.1109/ICCCNT45670.2019.8944762 10.1111/coin.12241 10.1016/j.compbiomed.2021.104348 10.1109/ACCESS.2023.3270774 10.3238/arztebl.2014.0179 10.1109/ICVEE50212.2020 10.1016/j.chaos.2020.110495 10.1007/s11042-019-08260-2 10.1007/978-3-030-32226 10.1371/journal.pmed.1002686 10.1016/j.compbiomed.2020.103792 10.48550/arXiv.1705.09850 10.11591/ijai.v8.i4.pp429-435 10.1007/s00500-020-05424-3 10.3390/diagnostics10090649 10.3390/app11062751 10.1016/j.imu.2020.100360 10.1016/j.artmed.2020.101881 10.1016/j.compbiomed.2023.106683 10.1145/3233547.3233573 10.1109/IWSSIP48289 10.1007/s00330-012-2550-y 10.1016/j.imu.2020.100405 10.1007/s11548-022-02684-2 10.1016/j.neucom.2020.03.127 10.1016/j.compmedimag.2019.05.005 10.1016/j.bspc.2023.104667 10.3390/app12042080 10.1016/j.neucom.2021.03.034 10.1007/s12539-023-00562-2 10.1145/2347736.2347755 10.1609/aaai.v33i01.3301590 10.3390/jimaging6120131 10.1007/978-3-030-13469-3_88 10.1016/j.ijleo.2019.02.054 10.1109/SIPROCESS.2016.7888251 10.1117/12.2217209 10.1109/TMI.2018.2806086 10.1007/978-3-030-00919-9_29 10.1097/RLI.0000000000000341 10.1109/CVPR52729.2023.00983 10.1016/j.bspc.2022.103977 10.1109/ACCESS.2020.3031384 10.1109/JBHI.2019.2952597 10.1109/CVPR.2017.369 10.1016/j.compmedimag.2021.102008 10.1109/ICASSP.2019.8682952 10.48550/arXiv.1710.10501 10.1007/978-3-030-00919-9_45 10.1016/j.tube.2022.102234 10.1016/j.patrec.2020.09.010 10.1109/Confluence47617.2020.9057809 10.7717/peerj-cs.541/supp-1 10.7717/peerj-cs.495 10.1088/1742-6596/1490/1/012020 10.1007/s11042-019-07984-5 10.3390/app9194130 10.1016/j.patrec.2018.10.027 10.3390/s22031211 10.1016/j.aej.2022.10.053 10.1016/j.bspc.2019.04.031 10.48550/arXiv.1807.03058 10.1038/s41598-019-42294-8 10.48550/arXiv.1807.07247 10.1109/BMEiCON.2018.8609997 10.2214/ajr.174.1.1740071 10.1109/EMBC 10.3390/fi13010008 10.1016/j.compeleceng.2019.08.004 10.1117/12.2293971 10.1109/ACCESS.2020.3041867 10.48550/arXiv.1804.07839 10.1109/ISCID.2019.10111 10.1117/12.2521652 10.1007/s13246-022-01139-x 10.1109/WiSPNET.2016 10.1088/1742-6596/1848/1/012030 10.48550/arXiv.1711.05225 10.1148/radiol.2017162326 10.1109/ICIRCA48905 10.1016/j.procs.2023.01.018 10.1016/j.compbiomed.2023.106646 10.1016/j.bbe.2021.01.002 10.1016/j.compmedimag.2016.11.004 10.1007/s12559-020-09787-5 10.1109/TCBB.2022.3190265 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI 1XC |
| DOI | 10.1007/s42979-024-02751-2 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection (ProQuest) ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Hyper Article en Ligne (HAL) |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2661-8907 |
| ExternalDocumentID | oai:HAL:hal-04606818v1 10_1007_s42979_024_02751_2 |
| GeographicLocations | United States--US |
| GeographicLocations_xml | – name: United States--US |
| GroupedDBID | 0R~ 406 AACDK AAHNG AAJBT AASML AATNV AAUYE ABAKF ABECU ABHQN ABJNI ABMQK ABTEG ABTKH ABWNU ACAOD ACDTI ACHSB ACOKC ACPIV ACZOJ ADKNI ADTPH ADYFF AEFQL AEMSY AESKC AFBBN AFQWF AGMZJ AGQEE AGRTI AIGIU AILAN AJZVZ ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF BAPOH BSONS DPUIP EBLON EBS FIGPU FNLPD GGCAI GNWQR IKXTQ IWAJR JZLTJ LLZTM NPVJJ NQJWS OK1 PT4 ROL RSV SJYHP SNE SOJ SRMVM SSLCW UOJIU UTJUX ZMTXR 2JN AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFHIU AFKRA AFOHR AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA BENPR BGLVJ CCPQU CITATION HCIFZ K7- PHGZM PHGZT PQGLB PUEGO 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI 1XC |
| ID | FETCH-LOGICAL-c2682-e659009df3e951df744834ebfec6e1d9992b9e487034e6a8afaccc6553d0ac413 |
| IEDL.DBID | BENPR |
| ISSN | 2661-8907 2662-995X |
| IngestDate | Sat Oct 18 23:41:49 EDT 2025 Fri Jul 25 21:13:47 EDT 2025 Thu Apr 24 23:10:31 EDT 2025 Wed Oct 01 00:37:48 EDT 2025 Fri Feb 21 02:40:59 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | COVID-19 Deep learning Pneumonia Tuberculosis Preprocessing Multi-label classification Chest X-ray images Lung diseases Multi-class classification Systematic review Pulmonary nodule |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2682-e659009df3e951df744834ebfec6e1d9992b9e487034e6a8afaccc6553d0ac413 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9642-565X 0000-0002-3843-5179 |
| PQID | 3033950353 |
| PQPubID | 6623307 |
| ParticipantIDs | hal_primary_oai_HAL_hal_04606818v1 proquest_journals_3033950353 crossref_primary_10_1007_s42979_024_02751_2 crossref_citationtrail_10_1007_s42979_024_02751_2 springer_journals_10_1007_s42979_024_02751_2 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20240406 |
| PublicationDateYYYYMMDD | 2024-04-06 |
| PublicationDate_xml | – month: 4 year: 2024 text: 20240406 day: 6 |
| PublicationDecade | 2020 |
| PublicationPlace | Singapore |
| PublicationPlace_xml | – name: Singapore – name: Kolkata |
| PublicationTitle | SN computer science |
| PublicationTitleAbbrev | SN COMPUT. SCI |
| PublicationYear | 2024 |
| Publisher | Springer Nature Singapore Springer Nature B.V Springer |
| Publisher_xml | – name: Springer Nature Singapore – name: Springer Nature B.V – name: Springer |
| References | Yan C, Yao J, Li R, Xu Z, Huang J (2018) Weakly supervised deep learning for thoracic disease classification and localization on chest x-rays. In: Proceedings of the 2018 ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics, pp. 103–110. https://doi.org/10.1145/3233547.3233573 Hage ChehadeAAbdallahNMarionJ-MOueidatMChauvetPLung and colon cancer classification using medical imaging: a feature engineering approachPhys Eng Sci Med202245372974610.1007/s13246-022-01139-x Rajaraman S, Candemir S, Xue Z, Alderson PO, Kohli M, Abuya J, Thoma GR, Antani S (2018) A novel stacked generalization of models for improved tb detection in chest radiographs. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 718–721. https://doi.org/10.1109/EMBC. 2018.8512337 Teixeira V, Braz L, Pedrini H, Dias Z 2020) Dualanet: dual lesion attention network for thoracic disease classification in chest x-rays. In: 2020 International Conference on Systems, Signals and Image Processing (IWSSIP), pp. 69–74 (https://doi.org/10.1109/IWSSIP48289. 2020.9145037 Shen Y, Gao M (2018) Dynamic routing on deep neural network for thoracic disease classification and sensitive area localization. In: International Workshop on Machine Learning in Medical Imaging, pp. 389–397. https://doi.org/10.1007/978-3-030-00919-9_45 XuJLiHLiXMs-anet: deep learning for automated multi-label thoracic disease detection and classificationPeerJ Comput Sci2021754110.7717/peerj-cs.541/supp-1 SirazitdinovIKholiavchenkoMMustafaevTYixuanYKuleevRIbragimovBDeep neural network ensemble for pneumonia localization from a large-scale chest x-ray databaseComput Electr Eng20197838839910.1016/j.compeleceng.2019.08.004 SahinMEDeep learning-based approach for detecting covid-19 in chest x-raysBiomed Signal Process Control20227810.1016/j.bspc.2022.103977 HijaziMHAHwaSKTBadeAYaakobRJeffreeMSEnsemble deep learning for tuberculosis detection using chest x-ray and canny edge detected imagesIAES Int J Artif Intell20198442943510.11591/ijai.v8.i4.pp429-435 MunadiKMuchtarKMaulinaNPradhanBImage enhancement for tuberculosis detection using deep learningIEEE Access2020821789721790710.1109/ACCESS.2020.3041867 MannMBadoniRPSoniHAl-ShehriMKaushikACWeiD-QUtilization of deep convolutional neural networks for accurate chest x-ray diagnosis and disease detectionInterdiscip Sci Comput Life Sci202310.1007/s12539-023-00562-2 CiceroMBilbilyAColakEDowdellTGrayBPerampaladasKBarfettJTraining and validating a deep convolutional neural network for computer-aided detection and classification of abnormalities on frontal chest radiographsInvest Radiol201752528128710.1097/RLI.0000000000000341 KhanERehmanMZUAhmedFAlfouzanFAAlzahraniNMAhmadJChest x-ray classification for the detection of covid19 using deep learning techniquesSensors2022223121110.3390/s22031211 RajpurkarPDeep learning for chest radiograph diagnosis: a retrospective comparison of the chexnext algorithm to practicing radiologistsPLoS Med20181511100268610.1371/journal.pmed.1002686 DaiWDongNWangZLiangXZhangHXingEStructure correcting adversarial network for organ segmentation in chest x-raysDeep Learn Med Image Analy Multimod Learn Clin Decis Support201810.1007/978-3-030-00889-5_30 HoodaRMittalASofatSAutomated tb classification using ensemble of deep architecturesMultimed Tools Appl20197822315153153210.1007/s11042-019-07984-5 World Health Organization. Tuberculosis - 14 October 2021. (Accessed on 14 Jan 2023) Savitha S, Naveen N (2016) Algorithm for pre-processing chest-x-ray using multi-level enhancement operation. In: 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), pp. 2182–2186. https://doi.org/10.1109/WiSPNET.2016. 7566529 TakemiyaRKidoSHiranoYMabuSDetection of pulmonary nodules on chest x-ray images using r-cnnInt Forum Med Imaging Asia20191105014715210.1117/12.2521652 JaegerSCandemirSAntaniSWángY-XJLuP-XThomaGTwo public chest x-ray dataset for computer-aided screening of pulmonary diseasesQuant Imaging Med Surg20144647547710.3978/j.issn.2223-4292.2014.11.20 YangWChenYLiuYZhongLQinGLuZFengQChenWCascade of multi-scale convolutional neural networks for bone suppression of chest radiographs in gradient domainMed Image Anal20173542143310.1016/j.media.2016.08.004 JoshiRCYadavSPathakVKMalhotraHSKhokharHVSPariharAKohliNHimanshuDGargRKBhattMLBA deep learning-based covid-19 automatic diagnostic framework using chest x-ray imagesBiocybern Biomed Eng202141123925410.1016/j.bbe.2021.01.002 El AsnaouiKChawkiYUsing x-ray images and deep learning for automated detection of coronavirus diseaseJ Biomol Struct Dyn202139103615362610.1080/07391102.2020.1767212 Forum of International Respiratory Societies. The Global Impact of Respiratory Disease – Second Edition. Sheffield, European Respiratory Society, (2017) (Accessed on 14 Jan 2023) MendozaJPedriniHDetection and classification of lung nodules in chest x-ray images using deep convolutional neural networksComput Intell2020362370401415655610.1111/coin.12241 AcharyaAKSatapathyRA deep learning based approach towards the automatic diagnosis of pneumonia from chest radio-graphsBiomed Pharmacol J202013144945510.13005/bpj/1905 YangMTanakaHIshidaTPerformance improvement in multilabel thoracic abnormality classification of chest x-rays with noisy labelsInt J Comput Assist Radiol Surg202210.1007/s11548-022-02684-2 LakhaniPSundaramBDeep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networksRadiology2017284257458210.1148/radiol.2017162326 AlbahliSYarGNAHAi-driven deep convolutional neural networks for chest x-ray pathology identificationJ X-Ray Sci Technol202230236537610.3233/XST-211082 RubinJSanghaviDZhaoCLeeKQadirAXu-WilsonMLarge scale automated reading of frontal and lateral chest x-rays using dual convolutional neural networksarXiv preprint201810.48550/arXiv.1804.07839 SeiffertCKhoshgoftaarTMVan HulseJNapolitanoARusboost: A hybrid approach to alleviating class imbalanceIEEE Trans Syst, Man, and cybern-Part A: Syst Hum200940118519710.1109/TSMCA.2009.2029559 WangCElazabAWuJHuQLung nodule classification using deep feature fusion in chest radiographyComput Med Imaging Graph201757101810.1016/j.compmedimag.2016.11.004 RajpurkarPIrvinJZhuKYangBMehtaHDuanTDingDBagulALanglotzCShpanskayaKChexnet: radiologist-level pneumonia detection on chest x-rays with deep learningarXiv preprint201710.48550/arXiv.1711.05225 GuendelSGrbicSGeorgescuBLiuSMaierAComaniciuDLearning to recognize abnormalities in chest x-rays with locationaware dense networksIberoam Congr Pattern Recogn201810.1007/978-3-030-13469-3_88 ChenBLiJGuoXLuGDualchexnet dual asymmetric feature learning for thoracic disease classification in chest x-raysBiomed Signal Process Control20195310155410.1016/j.bspc.2019.04.031 CandemirSJaegerSLinWXueZAntaniSThomaGAutomatic heart localization and radiographic index computation in chest x-raysMed Imaging Comput-Aided Diagn2016978530230910.1117/12.2217209 Bush I (2016) Lung nodule detection and classification. Rep Stanford Comput Sci HwangSKimH-EJeongJKimH-JA novel approach for tuberculosis screening based on deep convolutional neural networksMed Imaging Comput-aided Diagn2016978575075710.1117/12.2216198 Al-WaisyASAl-FahdawiSMohammedMAAbdulkareemKHMostafaSAMaashiMSArifMGarcia-ZapirainBCovidchexnet: hybrid deep learning framework for identifying covid-19 virus in chest x-rays imagesSoft Comput20232752657267210.1007/s00500-020-05424-3 AllaouziIAhmedMBA novel approach for multi-label chest xray classification of common thorax diseasesIEEE Access20197642796428810.1109/ACCESS.2019.2916849 WangHXiaYChestnet: a deep neural network for classification of thoracic diseases on chest radiographyarXiv preprint201810.48550/arXiv.1807.03058 Salehinejad H, Valaee S, Dowdell T, Colak E, Barfett J (2018) Generalization of deep neural networks for chest pathology classification in xrays using generative adversarial networks. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 990–994. https://doi.org/10.1109/ICASSP.2018.8461430 VeluchamyMSubramaniBImage contrast and color enhancement using adaptive gamma correction and histogram equalizationOptik201918332933710.1016/j.ijleo.2019.02.054 JohnsonAEWPollardTJBerkowitzSJGreenbaumNRLungrenMPDengC-YMarkRGHorngSMimic-cxr, a de-identified publicly available database of chest radiographs with free-text reportsSci Data201910.1038/s41597-019-0322-0 SouidASakliNSakliHClassification and predictions of lung diseases from chest x-rays using mobilenet v2Appl Sci2021116275110.3390/app11062751 World Health Organization. WHO Director-General’s opening remarks at the media briefing on COVID-19 - 11 march 2020. (Accessed on 20 Jan 2023) ApostolopoulosIDMpesianaTACovid-19: automatic detection from x-ray images utilizing transfer learning with convolutional neural networksPhys Eng Sci Med202043263564010.1007/s13246-020-00865-4 ShiblyKHDeySKIslamMT-URahmanMMCovid faster r– cnn: A novel framework to diagnose novel coronavirus disease (covid-19) in x-ray imagesInform Med Unlocked20202010.1016/j.imu.2020.100405 Militante SV, Dionisio NV, Sibbaluca BG (2020) Pneumonia and covid19 detection using convolutional neural networks. In: 2020 Third International Conference on Vocational Education and Electrical Engineering (ICVEE), pp. 1–6. https://doi.org/10.1109/ICVEE50212.2020. 9243290 SharmaSGuleriaKA deep learning based model for the detection of pneumonia from chest x-ray images using vgg-16 and neural networksProced Comput Sci202321835736610.1016/j.procs.2023.01.018 IrvinJRajpurkarPKoMYuYCiurea-IlcusSChuteCMarklundHHaghgooBBallRShpanskayaKChexpert: a large chest radiograph dataset with uncertainty labels and expert comparisonProceed AAAI Conf Artif Intell20193359059710.1609/aaai.v33i01.3301590 World Health Organization. Naming the coronavirus disease (COVID19) and the virus that causes it, (2020). (Accessed on 20 jan 2023) ChenSHanYLinJZhaoXKo M Rahimzadeh (2751_CR49) 2020; 19 M Yang (2751_CR115) 2022 M Mamalakis (2751_CR47) 2021; 94 P Rajpurkar (2751_CR6) 2018; 15 AK Acharya (2751_CR90) 2020; 13 2751_CR73 2751_CR76 S Jaeger (2751_CR8) 2014; 4 2751_CR78 I Goodfellow (2751_CR54) 2014; 27 AI Khan (2751_CR97) 2020; 196 T Welte (2751_CR3) 2014; 111 J Shiraishi (2751_CR10) 2000; 174 N Kumar (2751_CR52) 2023; 14 IM Baltruschat (2751_CR50) 2019; 9 Q Guan (2751_CR86) 2020; 130 P Rajpurkar (2751_CR5) 2017 Y Yang (2751_CR91) 2022 M Mann (2751_CR117) 2023 F Li (2751_CR44) 2012; 22 A Madani (2751_CR56) 2018; 10574 2751_CR65 S Albahli (2751_CR113) 2021; 7 L Yao (2751_CR105) 2017 M Veluchamy (2751_CR23) 2019; 183 2751_CR68 Z Ge (2751_CR84) 2020; 79 DM Ibrahim (2751_CR69) 2021; 132 P Domingos (2751_CR125) 2012; 55 J Irvin (2751_CR12) 2019; 33 MHA Hijazi (2751_CR22) 2019; 8 J Rubin (2751_CR103) 2018 A Iqbal (2751_CR42) 2023; 84 A Hage Chehade (2751_CR31) 2022; 45 B Chen (2751_CR38) 2020; 135 I Sirazitdinov (2751_CR53) 2019; 78 GMM Alshmrani (2751_CR102) 2023; 64 STH Kieu (2751_CR7) 2020; 6 P Lakhani (2751_CR63) 2017; 284 E Hussain (2751_CR98) 2021; 142 2751_CR51 MT Islam (2751_CR59) 2017 A Iqbal (2751_CR27) 2022; 136 2751_CR55 VTQ Huy (2751_CR89) 2023 S Hwang (2751_CR87) 2016; 9785 TKK Ho (2751_CR109) 2019; 9 E Khan (2751_CR101) 2022; 22 V Sharma (2751_CR43) 2023 AA AbdElhamid (2751_CR28) 2022; 12 S Sharma (2751_CR92) 2023; 218 K Munadi (2751_CR24) 2020; 8 C Wang (2751_CR33) 2017; 57 J Xu (2751_CR16) 2021; 7 ID Apostolopoulos (2751_CR72) 2020; 43 P Afshar (2751_CR96) 2020; 138 2751_CR46 S Mo (2751_CR82) 2019; 2 R Hooda (2751_CR60) 2019; 78 AA Novikov (2751_CR34) 2018; 37 J Mendoza (2751_CR39) 2020; 36 W Yang (2751_CR45) 2017; 35 S Albahli (2751_CR58) 2022; 30 RC Joshi (2751_CR48) 2021; 41 T Rahman (2751_CR25) 2021; 132 2751_CR119 AEW Johnson (2751_CR13) 2019 H Panwar (2751_CR67) 2020; 138 AU Ibrahim (2751_CR70) 2021 KH Shibly (2751_CR66) 2020; 20 2751_CR118 ME Sahin (2751_CR99) 2022; 78 2751_CR111 2751_CR112 T Rahman (2751_CR40) 2020; 8 B Chen (2751_CR83) 2019; 24 AS Al-Waisy (2751_CR29) 2023; 27 W Dai (2751_CR35) 2018 D Das (2751_CR95) 2020; 43 I Allaouzi (2751_CR104) 2019; 7 2751_CR108 2751_CR106 2751_CR107 2751_CR20 FM Salman (2751_CR94) 2020; 4 2751_CR21 A Souid (2751_CR74) 2021; 11 T Rahman (2751_CR79) 2020; 10 Q Guan (2751_CR85) 2020; 131 S Candemir (2751_CR32) 2016; 9785 H Liu (2751_CR36) 2019; 75 2751_CR2 2751_CR1 HH Pham (2751_CR62) 2021; 437 A Abbas (2751_CR64) 2021; 51 2751_CR9 2751_CR11 S Guendel (2751_CR15) 2018 NM Elshennawy (2751_CR75) 2020; 10 K El Asnaoui (2751_CR26) 2021; 39 2751_CR14 T Ozturk (2751_CR100) 2020; 121 2751_CR17 2751_CR18 C Seiffert (2751_CR121) 2009; 40 2751_CR19 A Abbas (2751_CR61) 2020; 8 J Zhao (2751_CR114) 2021; 1848 R Takemiya (2751_CR93) 2019; 11050 S Chen (2751_CR37) 2020; 107 Y Jin (2751_CR116) 2023; 157 2751_CR80 Y Tang (2751_CR77) 2018 2751_CR124 Z Ge (2751_CR81) 2018 Y Xu (2751_CR41) 2021; 443 2751_CR122 2751_CR123 2751_CR120 FJM Shamrat (2751_CR30) 2023; 155 M Cicero (2751_CR71) 2017; 52 LA Andika (2751_CR88) 2020; 1490 B Chen (2751_CR110) 2019; 53 H Wang (2751_CR4) 2018 S Kora Venu (2751_CR57) 2020; 13 |
| References_xml | – reference: RahmanTKhandakarAQiblaweyYTahirAKiranyazSKashemSBAIslamMTAl MaadeedSZughaierSMKhanMSExploring the effect of image enhancement techniques on covid-19 detection using chest x-ray imagesComput Biol Med202113210431910.1016/j.compbiomed.2021.104319 – reference: YangYMeiGPiccialliFA deep learning approach considering image background for pneumonia identification using explainable ai (xai)IEEE/ACM Trans Comput Biol Bioinf202210.1109/TCBB.2022.3190265 – reference: IqbalAUsmanMAhmedZAn efficient deep learning-based framework for tuberculosis detection using chest x-ray imagesTuberculosis202213610.1016/j.tube.2022.102234 – reference: Sharma H, Jain JS, Bansal P, Gupta S (2020) Feature extraction and classification of chest x-ray images using cnn to detect pneumonia. In: 2020 10th International Conference on Cloud Computing, Data Science & Engineering (Confluence), pp. 227–231. 10. 1109/Confluence47617.2020.9057809 – reference: Rohilla A, Hooda R, Mittal A (2017) Tb detection in chest radiograph using deep learning architecture. ICETETSM-17, 136–147 – reference: Al Mamlook RE, Chen S, Bzizi HF (2020) Investigation of the performance of machine learning classifiers for pneumonia detection in chest x-ray images. In: 2020 IEEE International Conference on Electro Information Technology (EIT), pp. 098–104. https://doi.org/10.1109/EIT48999.2020.9208232 – reference: HoodaRMittalASofatSAutomated tb classification using ensemble of deep architecturesMultimed Tools Appl20197822315153153210.1007/s11042-019-07984-5 – reference: VeluchamyMSubramaniBImage contrast and color enhancement using adaptive gamma correction and histogram equalizationOptik201918332933710.1016/j.ijleo.2019.02.054 – reference: RajpurkarPIrvinJZhuKYangBMehtaHDuanTDingDBagulALanglotzCShpanskayaKChexnet: radiologist-level pneumonia detection on chest x-rays with deep learningarXiv preprint201710.48550/arXiv.1711.05225 – reference: Phung H, Dao Q, Tran A (2023) Wavelet diffusion models are fast and scalable image generators. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10199–10208 – reference: Chest x-ray images (pneumonia), (2019). [Online] Available: https://www.kaggle.com/datasets/paultimothymooney/chest-xraypneumonia (2019) – reference: SeiffertCKhoshgoftaarTMVan HulseJNapolitanoARusboost: A hybrid approach to alleviating class imbalanceIEEE Trans Syst, Man, and cybern-Part A: Syst Hum200940118519710.1109/TSMCA.2009.2029559 – reference: CiceroMBilbilyAColakEDowdellTGrayBPerampaladasKBarfettJTraining and validating a deep convolutional neural network for computer-aided detection and classification of abnormalities on frontal chest radiographsInvest Radiol201752528128710.1097/RLI.0000000000000341 – reference: ChenBLiJLuGZhangDLesion location attention guided network for multi-label thoracic disease classification in chest x-raysIEEE J Biomed Health Inform20192472016202710.1109/JBHI.2019.2952597 – reference: RajpurkarPDeep learning for chest radiograph diagnosis: a retrospective comparison of the chexnext algorithm to practicing radiologistsPLoS Med20181511100268610.1371/journal.pmed.1002686 – reference: World Health Organization. Pneumonia in children - 11 November 2022. (Accessed on 10 Jan 2023) – reference: AllaouziIAhmedMBA novel approach for multi-label chest xray classification of common thorax diseasesIEEE Access20197642796428810.1109/ACCESS.2019.2916849 – reference: IbrahimAUOzsozMSerteSAl-TurjmanFYakoiPSPneumonia classification using deep learning from chest x-ray images during covid-19Cogn Comput202110.1007/s12559-020-09787-5 – reference: HijaziMHAHwaSKTBadeAYaakobRJeffreeMSEnsemble deep learning for tuberculosis detection using chest x-ray and canny edge detected imagesIAES Int J Artif Intell20198442943510.11591/ijai.v8.i4.pp429-435 – reference: YaoLPoblenzEDaguntsDCovingtonBBernardDLymanKLearning to diagnose from scratch by exploiting dependencies among labelsArXiv preprint201710.48550/arXiv.1710.10501 – reference: Savitha S, Naveen N (2016) Algorithm for pre-processing chest-x-ray using multi-level enhancement operation. In: 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), pp. 2182–2186. https://doi.org/10.1109/WiSPNET.2016. 7566529 – reference: HwangSKimH-EJeongJKimH-JA novel approach for tuberculosis screening based on deep convolutional neural networksMed Imaging Comput-aided Diagn2016978575075710.1117/12.2216198 – reference: GuendelSGrbicSGeorgescuBLiuSMaierAComaniciuDLearning to recognize abnormalities in chest x-rays with locationaware dense networksIberoam Congr Pattern Recogn201810.1007/978-3-030-13469-3_88 – reference: SharmaSGuleriaKA deep learning based model for the detection of pneumonia from chest x-ray images using vgg-16 and neural networksProced Comput Sci202321835736610.1016/j.procs.2023.01.018 – reference: AlbahliSYarGNAHAi-driven deep convolutional neural networks for chest x-ray pathology identificationJ X-Ray Sci Technol202230236537610.3233/XST-211082 – reference: WelteTImaging in the diagnosis of lung disease: more sophisticated methods require greater interdisciplinary collaborationDtsch Arztebl Int20141111117910.3238/arztebl.2014.0179 – reference: AbbasAAbdelsameaMMGaberMMDetrac: Transfer learning of class decomposed medical images in convolutional neural networksIEEE Access20208749017491310.1109/ACCESS.2020.2989273 – reference: MannMBadoniRPSoniHAl-ShehriMKaushikACWeiD-QUtilization of deep convolutional neural networks for accurate chest x-ray diagnosis and disease detectionInterdiscip Sci Comput Life Sci202310.1007/s12539-023-00562-2 – reference: AlshmraniGMMNiQJiangRPervaizHElshennawyNMA deep learning architecture for multi-class lung diseases classification using chest x-ray (cxr) imagesAlex Eng J20236492393510.1016/j.aej.2022.10.053 – reference: JoshiRCYadavSPathakVKMalhotraHSKhokharHVSPariharAKohliNHimanshuDGargRKBhattMLBA deep learning-based covid-19 automatic diagnostic framework using chest x-ray imagesBiocybern Biomed Eng202141123925410.1016/j.bbe.2021.01.002 – reference: Xu X, Wang Y, Yang G, Hu Y (2016) Image enhancement method based on fractional wavelet transform. In: 2016 IEEE International Conference on Signal and Image Processing (ICSIP), pp. 194–197. https://doi.org/10.1109/SIPROCESS.2016.7888251 – reference: Hage ChehadeAAbdallahNMarionJ-MOueidatMChauvetPLung and colon cancer classification using medical imaging: a feature engineering approachPhys Eng Sci Med202245372974610.1007/s13246-022-01139-x – reference: GuanQMulti-label chest x-ray image classification via categorywise residual attention learningPattern Recogn Lett202013025926610.1016/j.patrec.2018.10.027 – reference: PhamHHLeTTTranDQNgoDTNguyenHQInterpreting chest x-rays via cnns that exploit hierarchical disease dependencies and uncertainty labelsNeurocomputing202143718619410.1016/j.neucom.2020.03.127 – reference: SalmanFMAbu-NaserSSAlajramiEAbu-NasserBSAlashqarBACovid-19 detection using artificial intelligenceInt J Acad Eng Res (IJAER)202041825 – reference: Militante SV, Dionisio NV, Sibbaluca BG (2020) Pneumonia and covid19 detection using convolutional neural networks. In: 2020 Third International Conference on Vocational Education and Electrical Engineering (ICVEE), pp. 1–6. https://doi.org/10.1109/ICVEE50212.2020. 9243290 – reference: MendozaJPedriniHDetection and classification of lung nodules in chest x-ray images using deep convolutional neural networksComput Intell2020362370401415655610.1111/coin.12241 – reference: Forum of International Respiratory Societies. The Global Impact of Respiratory Disease – Second Edition. Sheffield, European Respiratory Society, (2017) (Accessed on 14 Jan 2023) – reference: RubinJSanghaviDZhaoCLeeKQadirAXu-WilsonMLarge scale automated reading of frontal and lateral chest x-rays using dual convolutional neural networksarXiv preprint201810.48550/arXiv.1804.07839 – reference: XuYLamH-KJiaGManet: A two-stage deep learning method for classification of covid-19 from chest x-ray imagesNeurocomputing20214439610510.1016/j.neucom.2021.03.034 – reference: JaegerSCandemirSAntaniSWángY-XJLuP-XThomaGTwo public chest x-ray dataset for computer-aided screening of pulmonary diseasesQuant Imaging Med Surg20144647547710.3978/j.issn.2223-4292.2014.11.20 – reference: IqbalAUsmanMAhmedZTuberculosis chest x-ray detection using cnn-based hybrid segmentation and classification approachBiomed Signal Process Control20238410466710.1016/j.bspc.2023.104667 – reference: SirazitdinovIKholiavchenkoMMustafaevTYixuanYKuleevRIbragimovBDeep neural network ensemble for pneumonia localization from a large-scale chest x-ray databaseComput Electr Eng20197838839910.1016/j.compeleceng.2019.08.004 – reference: XuJLiHLiXMs-anet: deep learning for automated multi-label thoracic disease detection and classificationPeerJ Comput Sci2021754110.7717/peerj-cs.541/supp-1 – reference: MadaniAMoradiMKarargyrisASyeda-MahmoodTChest xray generation and data augmentation for cardiovascular abnormality classificationMed Imaging: Image Process20181057441542010.1117/12.2293971 – reference: LiFEngelmannRPesceLArmatoSGMacMahonHImproved detection of focal pneumonia by chest radiography with bone suppression imagingEur Radiol201222122729273510.1007/s00330-012-2550-y – reference: SharmaVGuptaSKShuklaKKDeep learning models for tuberculosis detection and infected region visualization in chest xray imagesIntell Med202310.1016/j.imed.2023.06.001 – reference: World Health Organization. WHO Director-General’s opening remarks at the media briefing on COVID-19 - 11 march 2020. (Accessed on 20 Jan 2023) – reference: YangMTanakaHIshidaTPerformance improvement in multilabel thoracic abnormality classification of chest x-rays with noisy labelsInt J Comput Assist Radiol Surg202210.1007/s11548-022-02684-2 – reference: AlbahliSRaufHTAlgosaibiABalasVEAi-driven deep cnn approach for multi-label pathology classification using chest xraysPeerJ Comput Sci2021749510.7717/peerj-cs.495 – reference: TakemiyaRKidoSHiranoYMabuSDetection of pulmonary nodules on chest x-ray images using r-cnnInt Forum Med Imaging Asia20191105014715210.1117/12.2521652 – reference: Ma Y, Zhou Q, Chen X, Lu H, Zhao Y (2019) Multi-attention network for thoracic disease classification and localization. In: ICASSP 20192019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1378–1382. 10.1109/ ICASSP.2019.8682952. IEEE – reference: HussainEHasanMRahmanMALeeITamannaTParvezMZCorodet: A deep learning based classification for covid-19 detection using chest x-ray imagesChaos Solitons Fractals2021142420213410.1016/j.chaos.2020.110495 – reference: GeZMahapatraDSedaiSGarnaviRChakravortyRChest x-rays classification: a multi-label and fine-grained problemarXiv preprint201810.48550/arXiv.1807.07247 – reference: KumarNGuptaMGuptaDTiwariSNovel deep transfer learning model for covid-19 patient detection using x-ray chest imagesJ Ambient Intell Humaniz Comput202314146947810.1007/s12652-021-03306-6 – reference: GeZMahapatraDChangXChenZChiLLuHImproving multi-label chest x-ray disease diagnosis by exploiting disease and health labels dependenciesMultimed Tools Appl20207921148891490210.1007/s11042-019-08260-2 – reference: ApostolopoulosIDMpesianaTACovid-19: automatic detection from x-ray images utilizing transfer learning with convolutional neural networksPhys Eng Sci Med202043263564010.1007/s13246-020-00865-4 – reference: Al-WaisyASAl-FahdawiSMohammedMAAbdulkareemKHMostafaSAMaashiMSArifMGarcia-ZapirainBCovidchexnet: hybrid deep learning framework for identifying covid-19 virus in chest x-rays imagesSoft Comput20232752657267210.1007/s00500-020-05424-3 – reference: PanwarHGuptaPSiddiquiMKMorales-MenendezRSinghVApplication of deep learning for fast detection of covid-19 in x-rays using ncovnetChaos Solitons Fractals2020138109944411000110.1016/j.chaos.2020.109944 – reference: OzturkTTaloMYildirimEABalogluUBYildirimOAcharyaURAutomated detection of covid-19 cases using deep neural networks with x-ray imagesComput Biol Med202012110.1016/j.compbiomed.2020.103792 – reference: Bush I (2016) Lung nodule detection and classification. Rep Stanford Comput Sci – reference: Salehinejad H, Valaee S, Dowdell T, Colak E, Barfett J (2018) Generalization of deep neural networks for chest pathology classification in xrays using generative adversarial networks. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 990–994. https://doi.org/10.1109/ICASSP.2018.8461430 – reference: Sethi R, Mehrotra M, Sethi D (2020) Deep learning based diagnosis recommendation for covid-19 using chest x-rays images. In: 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA), pp. 1–4. https://doi.org/10.1109/ICIRCA48905. 2020.9183278 – reference: JinYLuHZhuWHuoWDeep learning based classification of multi-label chest x-ray images via dual-weighted metric lossComput Biol Med202315710.1016/j.compbiomed.2023.106683 – reference: SouidASakliNSakliHClassification and predictions of lung diseases from chest x-rays using mobilenet v2Appl Sci2021116275110.3390/app11062751 – reference: DaiWDongNWangZLiangXZhangHXingEStructure correcting adversarial network for organ segmentation in chest x-raysDeep Learn Med Image Analy Multimod Learn Clin Decis Support201810.1007/978-3-030-00889-5_30 – reference: ChenSHanYLinJZhaoXKongPPulmonary nodule detection on chest radiographs using balanced convolutional neural network and classic candidate detectionArtif Intell Med202010710.1016/j.artmed.2020.101881 – reference: SahinMEDeep learning-based approach for detecting covid-19 in chest x-raysBiomed Signal Process Control20227810.1016/j.bspc.2022.103977 – reference: ChenBLiJGuoXLuGDualchexnet dual asymmetric feature learning for thoracic disease classification in chest x-raysBiomed Signal Process Control20195310155410.1016/j.bspc.2019.04.031 – reference: JohnsonAEWPollardTJBerkowitzSJGreenbaumNRLungrenMPDengC-YMarkRGHorngSMimic-cxr, a de-identified publicly available database of chest radiographs with free-text reportsSci Data201910.1038/s41597-019-0322-0 – reference: RahmanTKhandakarAKadirMAIslamKRIslamKFMazharRHamidTIslamMTKashemSMahbubZBReliable tuberculosis detection using chest x-ray with deep learning, segmentation and visualizationIEEE Access2020819158619160110.1109/ACCESS.2020.3031384 – reference: RahmanTChowdhuryMEKhandakarAIslamKRIslamKFMahbubZBKadirMAKashemSTransfer learning with deep convolutional neural network (cnn) for pneumonia detection using chest x-rayAppl Sci2020109323310.3390/app10093233 – reference: NovikovAALenisDMajorDHladvkaJWimmerMBühlerKFully convolutional architectures for multiclass segmentation in chest radiographsIEEE Trans Med Imaging20183781865187610.1109/TMI.2018.2806086 – reference: Rajaraman S, Candemir S, Xue Z, Alderson PO, Kohli M, Abuya J, Thoma GR, Antani S (2018) A novel stacked generalization of models for improved tb detection in chest radiographs. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 718–721. https://doi.org/10.1109/EMBC. 2018.8512337 – reference: MoSCaiMDeep learning based multi-label chest x-ray classification with entropy weighting lossInt Symp Comput Intell Design (ISCID)2019212412710.1109/ISCID.2019.10111 – reference: AndikaLAPratiwiHHandajaniSSConvolutional neural network modeling for classification of pulmonary tuberculosis diseaseJ Phys Conf Ser2020149001202010.1088/1742-6596/1490/1/012020 – reference: LakhaniPSundaramBDeep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networksRadiology2017284257458210.1148/radiol.2017162326 – reference: MunadiKMuchtarKMaulinaNPradhanBImage enhancement for tuberculosis detection using deep learningIEEE Access2020821789721790710.1109/ACCESS.2020.3041867 – reference: ChenBZhangZLinJChenYLuGTwo-stream collaborative network for multi-label chest x-ray image classification with lung segmentationPattern Recogn Lett202013522122710.1016/j.patrec.2020.04.016 – reference: Ma C, Wang H, Hoi SC (2019) Multi-label thoracic disease image classification with cross-attention networks. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 730–738. https://doi.org/10.1007/978-3-030-32226–7_ 81 – reference: IbrahimDMElshennawyNMSarhanAMDeep-chest: Multiclassification deep learning model for diagnosing covid-19, pneumonia, and lung cancer chest diseasesComput Biol Med202113210.1016/j.compbiomed.2021.104348 – reference: Li Z, Wang C, Han M, Xue Y, Wei W, Li L-J, Fei-Fei L (2018) Thoracic disease identification and localization with limited supervision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8290–8299 – reference: DomingosPA few useful things to know about machine learningCommun ACM20125510788710.1145/2347736.2347755 – reference: Kora VenuSRavulaSEvaluation of deep convolutional generative adversarial networks for data augmentation of chest x-ray imagesFuture Internet2020131810.3390/fi13010008 – reference: KhanERehmanMZUAhmedFAlfouzanFAAlzahraniNMAhmadJChest x-ray classification for the detection of covid19 using deep learning techniquesSensors2022223121110.3390/s22031211 – reference: World Health Organization. Coronavirus Disease 2019 (COVID-19) Situation Report, Technical Report March, World Health Organization: Geneva, Switzerland, (2020) (Accessed on 20 Jan 2023) – reference: BaltruschatIMNickischHGrassMKnoppTSaalbachAComparison of deep learning approaches for multi-label chest x-ray classificationSci Rep20199111010.1038/s41598-019-42294-8 – reference: Teixeira V, Braz L, Pedrini H, Dias Z 2020) Dualanet: dual lesion attention network for thoracic disease classification in chest x-rays. In: 2020 International Conference on Systems, Signals and Image Processing (IWSSIP), pp. 69–74 (https://doi.org/10.1109/IWSSIP48289. 2020.9145037 – reference: Yan C, Yao J, Li R, Xu Z, Huang J (2018) Weakly supervised deep learning for thoracic disease classification and localization on chest x-rays. In: Proceedings of the 2018 ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics, pp. 103–110. https://doi.org/10.1145/3233547.3233573 – reference: CandemirSJaegerSLinWXueZAntaniSThomaGAutomatic heart localization and radiographic index computation in chest x-raysMed Imaging Comput-Aided Diagn2016978530230910.1117/12.2217209 – reference: AbbasAAbdelsameaMMGaberMMClassification of covid-19 in chest x-ray images using detrac deep convolutional neural networkAppl Intell20215185486410.1007/s10489-020-01829-7 – reference: Chaudhary A, Hazra A, Chaudhary P (2019) Diagnosis of chest diseases in x-ray images using deep convolutional neural network. In: 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), pp. 1–6. 10.1109/ ICCCNT45670.2019.8944762 – reference: Ausawalaithong W, Thirach A, Marukatat S, Wilaiprasitporn T (2018) Automatic lung cancer prediction from chest x-ray images using the deep learning approach. In: 2018 11th Biomedical Engineering International Conference (BMEiCON), pp. 1–5 (2018). 10. 1109/BMEiCON.2018.8609997 – reference: KieuSTHBadeAHijaziMHAKolivandHA survey of deep learning for lung disease detection on medical images: state-of-the-art, taxonomy, issues and future directionsJ Imaging202061213110.3390/jimaging6120131 – reference: ZhaoJLiMShiWMiaoYJiangZJiBA deep learning method for classification of chest x-ray imagesJ Phys Conf Ser2021184801203010.1088/1742-6596/1848/1/012030 – reference: LiuHWangLNanYJinFWangQPuJSdfn: segmentation-based deep fusion network for thoracic disease classification in chest x-ray imagesComput Med Imaging Graph201975667310.1016/j.compmedimag.2019.05.005 – reference: YangWChenYLiuYZhongLQinGLuZFengQChenWCascade of multi-scale convolutional neural networks for bone suppression of chest radiographs in gradient domainMed Image Anal20173542143310.1016/j.media.2016.08.004 – reference: AfsharPHeidarianSNaderkhaniFOikonomouAPlataniotisKNMohammadiACovid-caps: A capsule network-based framework for identification of covid-19 cases from x-ray imagesPattern Recogn Lett202013863864310.1016/j.patrec.2020.09.010 – reference: GoodfellowIPouget-AbadieJMirzaMXuBWarde-FarleyDOzairSCourvilleABengioYGenerative adversarial netsAdv Neural Inform Process Syst20142726722680 – reference: HoTKKGwakJMultiple feature integration for classification of thoracic disease in chest radiographyAppl Sci2019919413010.3390/app9194130 – reference: KhanAIShahJLBhatMMCoronet: A deep neural network for detection and diagnosis of covid-19 from chest x-ray imagesComput Methods Programs Biomed202019610558110.1016/j.cmpb.2020.105581 – reference: ElshennawyNMIbrahimDMDeep-pneumonia framework using deep learning models based on chest x-ray imagesDiagnostics202010964910.3390/diagnostics10090649 – reference: DasDSantoshKPalUTruncated inception net: Covid-19 outbreak screening using chest x-raysPhys Eng Sci Med202043391592510.1007/s13246-020-00888-x – reference: Wang X, Peng Y, Lu L, Lu Z, Bagheri M, Summers RM (2017) Chestxray8: Hospital-scale chest x-ray database and benchmarks on weaklysupervised classification and localization of common thorax diseases. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2097–2106. https://doi.org/10.1109/CVPR.2017.369 – reference: ShiraishiJKatsuragawaSIkezoeJMatsumotoTKobayashiTKomatsuK-IMatsuiMFujitaHKoderaYDoiKDevelopment of a digital image database for chest radiographs with and without a lung nodule: receiver operating characteristic analysis of radiologists’ detection of pulmonary nodulesAm J Roentgenol20001741717410.2214/ajr.174.1.1740071 – reference: El AsnaouiKChawkiYUsing x-ray images and deep learning for automated detection of coronavirus diseaseJ Biomol Struct Dyn202139103615362610.1080/07391102.2020.1767212 – reference: HuyVTQLinC-MAn improved densenet deep neural network model for tuberculosis detection using chest x-ray imagesIEEE Access202310.1109/ACCESS.2023.3270774 – reference: World Health Organization. Naming the coronavirus disease (COVID19) and the virus that causes it, (2020). (Accessed on 20 jan 2023) – reference: ShamratFJMAzamSKarimAAhmedKBuiFMDe BoerFHigh-precision multiclass classification of lung disease through customized mobilenetv2 from chest x-ray imagesComput Biol Med202315510.1016/j.compbiomed.2023.106646 – reference: Shen Y, Gao M (2018) Dynamic routing on deep neural network for thoracic disease classification and sensitive area localization. In: International Workshop on Machine Learning in Medical Imaging, pp. 389–397. https://doi.org/10.1007/978-3-030-00919-9_45 – reference: IslamMTAowalMAMinhazATAshrafKAbnormality detection and localization in chest x-rays using deep convolutional neural networksarXiv Preprint201710.48550/arXiv.1705.09850 – reference: TangYWangXHarrisonAPLuLXiaoJSummersRMAttention-guided curriculum learning for weakly supervised classification and localization of thoracic diseases on chest radiographsInt Workshop Mach Learn Med Imaging201810.1007/978-3-030-00919-9_29 – reference: WangHXiaYChestnet: a deep neural network for classification of thoracic diseases on chest radiographyarXiv preprint201810.48550/arXiv.1807.03058 – reference: MamalakisMSwiftAJVorselaarsBRaySWeeksSDingWClaytonRHMackenzieLSBanerjeeADenrescov-19: A deep transfer learning network for robust automatic classification of covid19, pneumonia, and tuberculosis from x-raysComput Med Imaging Graph20219410.1016/j.compmedimag.2021.102008 – reference: Gordienko Y, Gang P, Hui J, Zeng W, Kochura Y, Alienin O, Rokovyi O, Stirenko S (2018) Deep learning with lung segmentation and bone shadow exclusion techniques for chest x-ray analysis of lung cancer. In: Advances in Computer Science for Engineering and Education, International Conference on Computer Science, Engineering and Education Applications (ICCSEEA), pp. 638–647. 10. 1007/978–3–319–91008–6_63 – reference: AbdElhamidAAAbdElhalimEMohamedMAKhalifaFMulti-classification of chest x-rays for covid-19 diagnosis using deep learning algorithmsAppl Sci2022124208010.3390/app12042080 – reference: World Health Organization. Tuberculosis - 14 October 2021. (Accessed on 14 Jan 2023) – reference: Kumar P, Grewal M, Srivastava MM (2018) Boosted cascaded convnets for multilabel classification of thoracic diseases in chest radiographs. In: International Conference Image Analysis and Recognition, ICIAR 2018, Lecture Notes in Computer Science, pp. 546–552. https://doi.org/10.1007/978-3-319-93000-8_62 – reference: World Health Organization. Cancer - 3 February 2022. (accessed on 23 january 2023) – reference: RahimzadehMAttarAA modified deep convolutional neural network for detecting covid-19 and pneumonia from chest x-ray images based on the concatenation of xception and resnet50v2Inform Med Unlocked20201910.1016/j.imu.2020.100360 – reference: GuanQHuangYZhongZZhengZZhengLYangYThorax disease classification with attention guided convolutional neural networkPattern Recogn Lett2020131384510.1016/j.patrec.2019.11.040 – reference: IrvinJRajpurkarPKoMYuYCiurea-IlcusSChuteCMarklundHHaghgooBBallRShpanskayaKChexpert: a large chest radiograph dataset with uncertainty labels and expert comparisonProceed AAAI Conf Artif Intell20193359059710.1609/aaai.v33i01.3301590 – reference: WangCElazabAWuJHuQLung nodule classification using deep feature fusion in chest radiographyComput Med Imaging Graph201757101810.1016/j.compmedimag.2016.11.004 – reference: ShiblyKHDeySKIslamMT-URahmanMMCovid faster r– cnn: A novel framework to diagnose novel coronavirus disease (covid-19) in x-ray imagesInform Med Unlocked20202010.1016/j.imu.2020.100405 – reference: AcharyaAKSatapathyRA deep learning based approach towards the automatic diagnosis of pneumonia from chest radio-graphsBiomed Pharmacol J202013144945510.13005/bpj/1905 – year: 2019 ident: 2751_CR13 publication-title: Sci Data doi: 10.1038/s41597-019-0322-0 – volume: 51 start-page: 854 year: 2021 ident: 2751_CR64 publication-title: Appl Intell doi: 10.1007/s10489-020-01829-7 – volume: 132 start-page: 104319 year: 2021 ident: 2751_CR25 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2021.104319 – volume: 43 start-page: 635 issue: 2 year: 2020 ident: 2751_CR72 publication-title: Phys Eng Sci Med doi: 10.1007/s13246-020-00865-4 – volume: 30 start-page: 365 issue: 2 year: 2022 ident: 2751_CR58 publication-title: J X-Ray Sci Technol doi: 10.3233/XST-211082 – ident: 2751_CR46 doi: 10.1007/978-3-319-91008-6_63 – volume: 138 start-page: 109944 year: 2020 ident: 2751_CR67 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2020.109944 – volume: 196 start-page: 105581 year: 2020 ident: 2751_CR97 publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2020.105581 – ident: 2751_CR123 – volume: 27 start-page: 2672 year: 2014 ident: 2751_CR54 publication-title: Adv Neural Inform Process Syst – volume: 39 start-page: 3615 issue: 10 year: 2021 ident: 2751_CR26 publication-title: J Biomol Struct Dyn doi: 10.1080/07391102.2020.1767212 – volume: 9785 start-page: 750 year: 2016 ident: 2751_CR87 publication-title: Med Imaging Comput-aided Diagn doi: 10.1117/12.2216198 – ident: 2751_CR106 doi: 10.1007/978-3-319-93000-8_62 – volume: 40 start-page: 185 issue: 1 year: 2009 ident: 2751_CR121 publication-title: IEEE Trans Syst, Man, and cybern-Part A: Syst Hum doi: 10.1109/TSMCA.2009.2029559 – ident: 2751_CR76 – ident: 2751_CR55 doi: 10.1109/ICASSP.2018.8461430 – volume: 14 start-page: 469 issue: 1 year: 2023 ident: 2751_CR52 publication-title: J Ambient Intell Humaniz Comput doi: 10.1007/s12652-021-03306-6 – volume: 7 start-page: 64279 year: 2019 ident: 2751_CR104 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2916849 – volume: 135 start-page: 221 year: 2020 ident: 2751_CR38 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2020.04.016 – volume: 35 start-page: 421 year: 2017 ident: 2751_CR45 publication-title: Med Image Anal doi: 10.1016/j.media.2016.08.004 – volume: 10 start-page: 3233 issue: 9 year: 2020 ident: 2751_CR79 publication-title: Appl Sci doi: 10.3390/app10093233 – volume: 131 start-page: 38 year: 2020 ident: 2751_CR85 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2019.11.040 – year: 2018 ident: 2751_CR35 publication-title: Deep Learn Med Image Analy Multimod Learn Clin Decis Support doi: 10.1007/978-3-030-00889-5_30 – volume: 8 start-page: 74901 year: 2020 ident: 2751_CR61 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2989273 – volume: 43 start-page: 915 issue: 3 year: 2020 ident: 2751_CR95 publication-title: Phys Eng Sci Med doi: 10.1007/s13246-020-00888-x – volume: 4 start-page: 475 issue: 6 year: 2014 ident: 2751_CR8 publication-title: Quant Imaging Med Surg doi: 10.3978/j.issn.2223-4292.2014.11.20 – ident: 2751_CR78 doi: 10.1109/CVPR.2018.00865 – ident: 2751_CR18 doi: 10.1109/EIT48999.2020.9208232 – volume: 13 start-page: 449 issue: 1 year: 2020 ident: 2751_CR90 publication-title: Biomed Pharmacol J doi: 10.13005/bpj/1905 – year: 2023 ident: 2751_CR43 publication-title: Intell Med doi: 10.1016/j.imed.2023.06.001 – ident: 2751_CR17 doi: 10.1109/ICCCNT45670.2019.8944762 – volume: 36 start-page: 370 issue: 2 year: 2020 ident: 2751_CR39 publication-title: Comput Intell doi: 10.1111/coin.12241 – ident: 2751_CR9 – volume: 132 year: 2021 ident: 2751_CR69 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2021.104348 – ident: 2751_CR119 – ident: 2751_CR1 – year: 2023 ident: 2751_CR89 publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3270774 – volume: 111 start-page: 179 issue: 11 year: 2014 ident: 2751_CR3 publication-title: Dtsch Arztebl Int doi: 10.3238/arztebl.2014.0179 – ident: 2751_CR68 doi: 10.1109/ICVEE50212.2020 – volume: 142 year: 2021 ident: 2751_CR98 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2020.110495 – volume: 79 start-page: 14889 issue: 21 year: 2020 ident: 2751_CR84 publication-title: Multimed Tools Appl doi: 10.1007/s11042-019-08260-2 – ident: 2751_CR111 doi: 10.1007/978-3-030-32226 – volume: 15 start-page: 1002686 issue: 11 year: 2018 ident: 2751_CR6 publication-title: PLoS Med doi: 10.1371/journal.pmed.1002686 – volume: 121 year: 2020 ident: 2751_CR100 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2020.103792 – year: 2017 ident: 2751_CR59 publication-title: arXiv Preprint doi: 10.48550/arXiv.1705.09850 – volume: 8 start-page: 429 issue: 4 year: 2019 ident: 2751_CR22 publication-title: IAES Int J Artif Intell doi: 10.11591/ijai.v8.i4.pp429-435 – volume: 27 start-page: 2657 issue: 5 year: 2023 ident: 2751_CR29 publication-title: Soft Comput doi: 10.1007/s00500-020-05424-3 – ident: 2751_CR120 – volume: 10 start-page: 649 issue: 9 year: 2020 ident: 2751_CR75 publication-title: Diagnostics doi: 10.3390/diagnostics10090649 – volume: 11 start-page: 2751 issue: 6 year: 2021 ident: 2751_CR74 publication-title: Appl Sci doi: 10.3390/app11062751 – volume: 19 year: 2020 ident: 2751_CR49 publication-title: Inform Med Unlocked doi: 10.1016/j.imu.2020.100360 – volume: 107 year: 2020 ident: 2751_CR37 publication-title: Artif Intell Med doi: 10.1016/j.artmed.2020.101881 – volume: 157 year: 2023 ident: 2751_CR116 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2023.106683 – ident: 2751_CR107 doi: 10.1145/3233547.3233573 – ident: 2751_CR112 doi: 10.1109/IWSSIP48289 – volume: 22 start-page: 2729 issue: 12 year: 2012 ident: 2751_CR44 publication-title: Eur Radiol doi: 10.1007/s00330-012-2550-y – volume: 20 year: 2020 ident: 2751_CR66 publication-title: Inform Med Unlocked doi: 10.1016/j.imu.2020.100405 – year: 2022 ident: 2751_CR115 publication-title: Int J Comput Assist Radiol Surg doi: 10.1007/s11548-022-02684-2 – volume: 437 start-page: 186 year: 2021 ident: 2751_CR62 publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.03.127 – volume: 75 start-page: 66 year: 2019 ident: 2751_CR36 publication-title: Comput Med Imaging Graph doi: 10.1016/j.compmedimag.2019.05.005 – volume: 84 start-page: 104667 year: 2023 ident: 2751_CR42 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2023.104667 – volume: 12 start-page: 2080 issue: 4 year: 2022 ident: 2751_CR28 publication-title: Appl Sci doi: 10.3390/app12042080 – volume: 443 start-page: 96 year: 2021 ident: 2751_CR41 publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.03.034 – year: 2023 ident: 2751_CR117 publication-title: Interdiscip Sci Comput Life Sci doi: 10.1007/s12539-023-00562-2 – volume: 55 start-page: 78 issue: 10 year: 2012 ident: 2751_CR125 publication-title: Commun ACM doi: 10.1145/2347736.2347755 – volume: 33 start-page: 590 year: 2019 ident: 2751_CR12 publication-title: Proceed AAAI Conf Artif Intell doi: 10.1609/aaai.v33i01.3301590 – volume: 6 start-page: 131 issue: 12 year: 2020 ident: 2751_CR7 publication-title: J Imaging doi: 10.3390/jimaging6120131 – year: 2018 ident: 2751_CR15 publication-title: Iberoam Congr Pattern Recogn doi: 10.1007/978-3-030-13469-3_88 – volume: 183 start-page: 329 year: 2019 ident: 2751_CR23 publication-title: Optik doi: 10.1016/j.ijleo.2019.02.054 – ident: 2751_CR19 doi: 10.1109/SIPROCESS.2016.7888251 – volume: 9785 start-page: 302 year: 2016 ident: 2751_CR32 publication-title: Med Imaging Comput-Aided Diagn doi: 10.1117/12.2217209 – volume: 37 start-page: 1865 issue: 8 year: 2018 ident: 2751_CR34 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2018.2806086 – year: 2018 ident: 2751_CR77 publication-title: Int Workshop Mach Learn Med Imaging doi: 10.1007/978-3-030-00919-9_29 – volume: 52 start-page: 281 issue: 5 year: 2017 ident: 2751_CR71 publication-title: Invest Radiol doi: 10.1097/RLI.0000000000000341 – ident: 2751_CR124 doi: 10.1109/CVPR52729.2023.00983 – volume: 78 year: 2022 ident: 2751_CR99 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2022.103977 – volume: 8 start-page: 191586 year: 2020 ident: 2751_CR40 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3031384 – volume: 24 start-page: 2016 issue: 7 year: 2019 ident: 2751_CR83 publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2019.2952597 – ident: 2751_CR11 doi: 10.1109/CVPR.2017.369 – volume: 94 year: 2021 ident: 2751_CR47 publication-title: Comput Med Imaging Graph doi: 10.1016/j.compmedimag.2021.102008 – ident: 2751_CR122 – ident: 2751_CR14 doi: 10.1109/ICASSP.2019.8682952 – year: 2017 ident: 2751_CR105 publication-title: ArXiv preprint doi: 10.48550/arXiv.1710.10501 – ident: 2751_CR108 doi: 10.1007/978-3-030-00919-9_45 – volume: 136 year: 2022 ident: 2751_CR27 publication-title: Tuberculosis doi: 10.1016/j.tube.2022.102234 – volume: 138 start-page: 638 year: 2020 ident: 2751_CR96 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2020.09.010 – ident: 2751_CR51 doi: 10.1109/Confluence47617.2020.9057809 – volume: 7 start-page: 541 year: 2021 ident: 2751_CR16 publication-title: PeerJ Comput Sci doi: 10.7717/peerj-cs.541/supp-1 – volume: 7 start-page: 495 year: 2021 ident: 2751_CR113 publication-title: PeerJ Comput Sci doi: 10.7717/peerj-cs.495 – volume: 1490 start-page: 012020 year: 2020 ident: 2751_CR88 publication-title: J Phys Conf Ser doi: 10.1088/1742-6596/1490/1/012020 – volume: 4 start-page: 18 year: 2020 ident: 2751_CR94 publication-title: Int J Acad Eng Res (IJAER) – volume: 78 start-page: 31515 issue: 22 year: 2019 ident: 2751_CR60 publication-title: Multimed Tools Appl doi: 10.1007/s11042-019-07984-5 – volume: 9 start-page: 4130 issue: 19 year: 2019 ident: 2751_CR109 publication-title: Appl Sci doi: 10.3390/app9194130 – volume: 130 start-page: 259 year: 2020 ident: 2751_CR86 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2018.10.027 – volume: 22 start-page: 1211 issue: 3 year: 2022 ident: 2751_CR101 publication-title: Sensors doi: 10.3390/s22031211 – volume: 64 start-page: 923 year: 2023 ident: 2751_CR102 publication-title: Alex Eng J doi: 10.1016/j.aej.2022.10.053 – volume: 53 start-page: 101554 year: 2019 ident: 2751_CR110 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2019.04.031 – year: 2018 ident: 2751_CR4 publication-title: arXiv preprint doi: 10.48550/arXiv.1807.03058 – volume: 9 start-page: 1 issue: 1 year: 2019 ident: 2751_CR50 publication-title: Sci Rep doi: 10.1038/s41598-019-42294-8 – year: 2018 ident: 2751_CR81 publication-title: arXiv preprint doi: 10.48550/arXiv.1807.07247 – ident: 2751_CR80 doi: 10.1109/BMEiCON.2018.8609997 – volume: 174 start-page: 71 issue: 1 year: 2000 ident: 2751_CR10 publication-title: Am J Roentgenol doi: 10.2214/ajr.174.1.1740071 – ident: 2751_CR21 doi: 10.1109/EMBC – volume: 13 start-page: 8 issue: 1 year: 2020 ident: 2751_CR57 publication-title: Future Internet doi: 10.3390/fi13010008 – volume: 78 start-page: 388 year: 2019 ident: 2751_CR53 publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2019.08.004 – volume: 10574 start-page: 415 year: 2018 ident: 2751_CR56 publication-title: Med Imaging: Image Process doi: 10.1117/12.2293971 – volume: 8 start-page: 217897 year: 2020 ident: 2751_CR24 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3041867 – year: 2018 ident: 2751_CR103 publication-title: arXiv preprint doi: 10.48550/arXiv.1804.07839 – volume: 2 start-page: 124 year: 2019 ident: 2751_CR82 publication-title: Int Symp Comput Intell Design (ISCID) doi: 10.1109/ISCID.2019.10111 – volume: 11050 start-page: 147 year: 2019 ident: 2751_CR93 publication-title: Int Forum Med Imaging Asia doi: 10.1117/12.2521652 – ident: 2751_CR65 – volume: 45 start-page: 729 issue: 3 year: 2022 ident: 2751_CR31 publication-title: Phys Eng Sci Med doi: 10.1007/s13246-022-01139-x – ident: 2751_CR20 doi: 10.1109/WiSPNET.2016 – ident: 2751_CR118 – volume: 1848 start-page: 012030 year: 2021 ident: 2751_CR114 publication-title: J Phys Conf Ser doi: 10.1088/1742-6596/1848/1/012030 – ident: 2751_CR2 – year: 2017 ident: 2751_CR5 publication-title: arXiv preprint doi: 10.48550/arXiv.1711.05225 – volume: 284 start-page: 574 issue: 2 year: 2017 ident: 2751_CR63 publication-title: Radiology doi: 10.1148/radiol.2017162326 – ident: 2751_CR73 doi: 10.1109/ICIRCA48905 – volume: 218 start-page: 357 year: 2023 ident: 2751_CR92 publication-title: Proced Comput Sci doi: 10.1016/j.procs.2023.01.018 – volume: 155 year: 2023 ident: 2751_CR30 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2023.106646 – volume: 41 start-page: 239 issue: 1 year: 2021 ident: 2751_CR48 publication-title: Biocybern Biomed Eng doi: 10.1016/j.bbe.2021.01.002 – volume: 57 start-page: 10 year: 2017 ident: 2751_CR33 publication-title: Comput Med Imaging Graph doi: 10.1016/j.compmedimag.2016.11.004 – year: 2021 ident: 2751_CR70 publication-title: Cogn Comput doi: 10.1007/s12559-020-09787-5 – year: 2022 ident: 2751_CR91 publication-title: IEEE/ACM Trans Comput Biol Bioinf doi: 10.1109/TCBB.2022.3190265 |
| SSID | ssj0002504465 |
| Score | 2.2546892 |
| SecondaryResourceType | review_article |
| Snippet | The purpose of this survey is to provide a comprehensive review of the most recent publications on lung disease classification from chest X-ray images using... |
| SourceID | hal proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 405 |
| SubjectTerms | Algorithms Artificial intelligence Chest Classification Computer Imaging Computer Science Computer Systems Organization and Communication Networks COVID-19 Data Structures and Information Theory Datasets Deep learning Engineering Sciences Image classification Information Systems and Communication Service Lung cancer Lung diseases Machine learning Medical diagnosis Medical imaging Pattern Recognition and Graphics Performance evaluation Pneumonia Research methodology Review Article Software Engineering/Programming and Operating Systems Systematic review Tuberculosis Vision X-rays |
| Title | A Systematic Review: Classification of Lung Diseases from Chest X-Ray Images Using Deep Learning Algorithms |
| URI | https://link.springer.com/article/10.1007/s42979-024-02751-2 https://www.proquest.com/docview/3033950353 https://univ-angers.hal.science/hal-04606818 |
| Volume | 5 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2661-8907 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002504465 issn: 2661-8907 databaseCode: AFBBN dateStart: 20190625 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2661-8907 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0002504465 issn: 2661-8907 databaseCode: BENPR dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS-NAEB9s--KLnKhY9coivnnLNZvsNnsgR6r2eodXDj-gbyHZ3SicttXWA_97Z7ZJ_IATQh6STQIzuzOTmZ3fD-DAxnmGfjbgSvRyHmlT8MzkeNKRRhdhTRxTv_PvkRpeRb_GcrwCo6oXhrZVVjbRG2o7NZQj_4qmNtSyG8rw--yeE2sUVVcrCo2spFawRx5irAEtQchYTWj1T0d_zuusCwF2RZ5fEh2T4FrLcdlJ4_vp0Dj3NEe3RaVNGXDxxls1bmiv5KtA9F3t1LukwSdYK2NJliyVvw4rbrIBfxN2UaMzs2Xq_xvz3Je0K8grgk0LdoarnJ0syzNzRl0m7Ji4s9iYn2dP7OcdGpo58zsK2IlzM1YisV6z5PYaBbO4uZtvwtXg9PJ4yEtGBW6EwlDaKSIJ1bYIHUZWtuhFlEt0eeGMcoHFYFHk2uE_TBevqizOChSsUVKGtpsZ9Hdb0JxMJ24bmIww9AmlLqSzUexUrrvKxj0RBzgtbFS0Iagkl5oSbpxYL27TGijZSztFaade2qlow2H9zGwJtvHh6H1USD2QcLKHyVlK16jaqzAU-Re0Ya_SV1quznn6Mpfa8KXS4cvt_39y5-O37cKq8JMHD7UHzcXDo_uMMcsi70AjHvzoQCsZ9PujTjktnwE3DOfS |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED7txwO8TCCG6DaGhdgTWDSO7cZIEyrrppZ1FRqb1DeT2M4msbWFFKb9c_xtnF0nY0jb26QoD46TSHeXuy8-330Ab2xW5BhnEypZp6BcmZLmpsCT4gpDhDVZ5uudj0ayf8o_j8V4Cf7UtTB-W2XtE4OjtlPj18jfo6tNlWinIv04-0E9a5TPrtYUGnmkVrC7ocVYLOw4dNdX-AtX7Q56qO8dxg72T_b6NLIMUMMkwksnPXGmsmXqEG3YssP9-porSmekSywCKFYoh7i-jaMyz_ISX2akEKlt5wZjAD53GVZ5yhX-_K1-2h99OW5WeXyDMB74LDEQMqqUGMfKnVC_h8GgoyiGSZ9KFQllt6Lj8rnfm_kP8P0vVxtC4METWIvYlXQXxvYUltzkGXzvkq9NN2iySDV8IIFr0-9CCoon05IM0auQ3iIdVBFf1UL2PFcXGdPj_JoMLtGxVSTsYCA952Ykdn49I92LM1TE_PyyWofTB5Htc1iZTCfuBRDBEWqlQpXCWZ45Wai2tFmHZQmaoeVlC5JactrE9uaeZeNCN42Zg7Q1SlsHaWvWgrfNPbNFc497Z79GhTQTfV_ufneo_ZjPLkuEPr-TFmzV-tLRG1T6xnZb8K7W4c3lu1-5cf_TXsGj_snRUA8Ho8NNeMyCIeEht2Bl_vOXe4l4aV5sR6Mk8O2hv4O_WnQirw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Systematic+Review%3A+Classification+of+Lung+Diseases+from+Chest+X-Ray+Images+Using+Deep+Learning+Algorithms&rft.jtitle=SN+computer+science&rft.au=Hage+Chehade%2C+Aya&rft.au=Abdallah%2C+Nassib&rft.au=Marion%2C+Jean-Marie&rft.au=Hatt%2C+Mathieu&rft.date=2024-04-06&rft.pub=Springer+Nature+B.V&rft.issn=2662-995X&rft.eissn=2661-8907&rft.volume=5&rft.issue=4&rft.spage=405&rft_id=info:doi/10.1007%2Fs42979-024-02751-2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2661-8907&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2661-8907&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2661-8907&client=summon |