A Systematic Review: Classification of Lung Diseases from Chest X-Ray Images Using Deep Learning Algorithms

The purpose of this survey is to provide a comprehensive review of the most recent publications on lung disease classification from chest X-ray images using deep learning algorithms. Methods: This research aims to present several common chest radiography datasets and to introduce briefly the general...

Full description

Saved in:
Bibliographic Details
Published inSN computer science Vol. 5; no. 4; p. 405
Main Authors Hage Chehade, Aya, Abdallah, Nassib, Marion, Jean-Marie, Hatt, Mathieu, Oueidat, Mohamad, Chauvet, Pierre
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 06.04.2024
Springer Nature B.V
Springer
Subjects
Online AccessGet full text
ISSN2661-8907
2662-995X
2661-8907
DOI10.1007/s42979-024-02751-2

Cover

Abstract The purpose of this survey is to provide a comprehensive review of the most recent publications on lung disease classification from chest X-ray images using deep learning algorithms. Methods: This research aims to present several common chest radiography datasets and to introduce briefly the general image preprocessing procedures that are applied to chest X-ray images. Then, the classification of specific and multiple lung diseases is described, focusing on the method and dataset used in the selected studies, the evaluation measures and the results. In addition, the problems and future direction of lung diseases classification are discussed to provide an important research base for researchers in the future. As the most common examination tool, Chest X-ray (CXR) is crucial in the medical field for disease diagnosis. Thus, the classification of chest diseases based on chest X-ray has gained significant attention from researchers. In recent years, deep learning methods have been used and have emerged as powerful techniques in medical imaging fields. One hundred ten articles published from 2016 to 2023 were reviewed and summarized, confirming that this particular research area is very important and has great potential for future research.
AbstractList The purpose of this survey is to provide a comprehensive review of the most recent publications on lung disease classification from chest X-ray images using deep learning algorithms. Methods: This research aims to present several common chest radiography datasets and to introduce briefly the general image preprocessing procedures that are applied to chest X-ray images. Then, the classification of specific and multiple lung diseases is described, focusing on the method and dataset used in the selected studies, the evaluation measures and the results. In addition, the problems and future direction of lung diseases classification are discussed to provide an important research base for researchers in the future. As the most common examination tool, Chest X-ray (CXR) is crucial in the medical field for disease diagnosis. Thus, the classification of chest diseases based on chest X-ray has gained significant attention from researchers. In recent years, deep learning methods have been used and have emerged as powerful techniques in medical imaging fields. One hundred ten articles published from 2016 to 2023 were reviewed and summarized, confirming that this particular research area is very important and has great potential for future research.
ArticleNumber 405
Author Chauvet, Pierre
Oueidat, Mohamad
Hage Chehade, Aya
Abdallah, Nassib
Marion, Jean-Marie
Hatt, Mathieu
Author_xml – sequence: 1
  givenname: Aya
  orcidid: 0000-0001-9642-565X
  surname: Hage Chehade
  fullname: Hage Chehade, Aya
  email: aya.hagechehade@etud.univ-angers.fr
  organization: LARIS, Univ Angers
– sequence: 2
  givenname: Nassib
  surname: Abdallah
  fullname: Abdallah, Nassib
  organization: LARIS, Univ Angers, Imaging and Brain, INSERM UMR 1253, Univ Tours
– sequence: 3
  givenname: Jean-Marie
  surname: Marion
  fullname: Marion, Jean-Marie
  organization: LARIS, Univ Angers
– sequence: 4
  givenname: Mathieu
  surname: Hatt
  fullname: Hatt, Mathieu
  organization: LaTIM, INSERM UMR 1101, Univ Brest
– sequence: 5
  givenname: Mohamad
  surname: Oueidat
  fullname: Oueidat, Mohamad
  organization: Faculty of Technology, Lebanese University
– sequence: 6
  givenname: Pierre
  surname: Chauvet
  fullname: Chauvet, Pierre
  organization: LARIS, Univ Angers
BackLink https://univ-angers.hal.science/hal-04606818$$DView record in HAL
BookMark eNp9kU9v1DAQxS1UJErpF-BkiROHwPhvYm6rBdpKkZAKlbhZrney65LEi50t2m9fp0GAOPRg2X76vZmx30tyMsYRCXnN4B0DqN9nyU1tKuCyrFqxij8jp1xrVjUG6pN_zi_Iec53AMAVSKnVKfmxol-PecLBTcHTa7wP-OsDXfcu59AFX9Q40tjR9jBu6ceQ0WXMtEtxoOsd5ol-r67dkV4Nblv0mxxmDHFPW3RpnG-rfhtTmHZDfkWed67PeP57PyM3nz99W19W7ZeLq_WqrTzXDa9QKwNgNp1Ao9imq6VshMTbDr1GtjHG8FuDsqmhqNo1rnPee62U2IDzkokz8napu3O93acwuHS00QV7uWrtrIHUoBvW3M_sm4Xdp_jzUB5k7-IhjWU8K0AIo0AoUSi-UD7FnBN2f8oysHMGdsnAlgzsYwaWF1Pzn8mH6fFDp-RC_7RVLNZc-oxbTH-nesL1AG_rm-o
CitedBy_id crossref_primary_10_1016_j_cmpb_2024_108518
Cites_doi 10.1038/s41597-019-0322-0
10.1007/s10489-020-01829-7
10.1016/j.compbiomed.2021.104319
10.1007/s13246-020-00865-4
10.3233/XST-211082
10.1007/978-3-319-91008-6_63
10.1016/j.chaos.2020.109944
10.1016/j.cmpb.2020.105581
10.1080/07391102.2020.1767212
10.1117/12.2216198
10.1007/978-3-319-93000-8_62
10.1109/TSMCA.2009.2029559
10.1109/ICASSP.2018.8461430
10.1007/s12652-021-03306-6
10.1109/ACCESS.2019.2916849
10.1016/j.patrec.2020.04.016
10.1016/j.media.2016.08.004
10.3390/app10093233
10.1016/j.patrec.2019.11.040
10.1007/978-3-030-00889-5_30
10.1109/ACCESS.2020.2989273
10.1007/s13246-020-00888-x
10.3978/j.issn.2223-4292.2014.11.20
10.1109/CVPR.2018.00865
10.1109/EIT48999.2020.9208232
10.13005/bpj/1905
10.1016/j.imed.2023.06.001
10.1109/ICCCNT45670.2019.8944762
10.1111/coin.12241
10.1016/j.compbiomed.2021.104348
10.1109/ACCESS.2023.3270774
10.3238/arztebl.2014.0179
10.1109/ICVEE50212.2020
10.1016/j.chaos.2020.110495
10.1007/s11042-019-08260-2
10.1007/978-3-030-32226
10.1371/journal.pmed.1002686
10.1016/j.compbiomed.2020.103792
10.48550/arXiv.1705.09850
10.11591/ijai.v8.i4.pp429-435
10.1007/s00500-020-05424-3
10.3390/diagnostics10090649
10.3390/app11062751
10.1016/j.imu.2020.100360
10.1016/j.artmed.2020.101881
10.1016/j.compbiomed.2023.106683
10.1145/3233547.3233573
10.1109/IWSSIP48289
10.1007/s00330-012-2550-y
10.1016/j.imu.2020.100405
10.1007/s11548-022-02684-2
10.1016/j.neucom.2020.03.127
10.1016/j.compmedimag.2019.05.005
10.1016/j.bspc.2023.104667
10.3390/app12042080
10.1016/j.neucom.2021.03.034
10.1007/s12539-023-00562-2
10.1145/2347736.2347755
10.1609/aaai.v33i01.3301590
10.3390/jimaging6120131
10.1007/978-3-030-13469-3_88
10.1016/j.ijleo.2019.02.054
10.1109/SIPROCESS.2016.7888251
10.1117/12.2217209
10.1109/TMI.2018.2806086
10.1007/978-3-030-00919-9_29
10.1097/RLI.0000000000000341
10.1109/CVPR52729.2023.00983
10.1016/j.bspc.2022.103977
10.1109/ACCESS.2020.3031384
10.1109/JBHI.2019.2952597
10.1109/CVPR.2017.369
10.1016/j.compmedimag.2021.102008
10.1109/ICASSP.2019.8682952
10.48550/arXiv.1710.10501
10.1007/978-3-030-00919-9_45
10.1016/j.tube.2022.102234
10.1016/j.patrec.2020.09.010
10.1109/Confluence47617.2020.9057809
10.7717/peerj-cs.541/supp-1
10.7717/peerj-cs.495
10.1088/1742-6596/1490/1/012020
10.1007/s11042-019-07984-5
10.3390/app9194130
10.1016/j.patrec.2018.10.027
10.3390/s22031211
10.1016/j.aej.2022.10.053
10.1016/j.bspc.2019.04.031
10.48550/arXiv.1807.03058
10.1038/s41598-019-42294-8
10.48550/arXiv.1807.07247
10.1109/BMEiCON.2018.8609997
10.2214/ajr.174.1.1740071
10.1109/EMBC
10.3390/fi13010008
10.1016/j.compeleceng.2019.08.004
10.1117/12.2293971
10.1109/ACCESS.2020.3041867
10.48550/arXiv.1804.07839
10.1109/ISCID.2019.10111
10.1117/12.2521652
10.1007/s13246-022-01139-x
10.1109/WiSPNET.2016
10.1088/1742-6596/1848/1/012030
10.48550/arXiv.1711.05225
10.1148/radiol.2017162326
10.1109/ICIRCA48905
10.1016/j.procs.2023.01.018
10.1016/j.compbiomed.2023.106646
10.1016/j.bbe.2021.01.002
10.1016/j.compmedimag.2016.11.004
10.1007/s12559-020-09787-5
10.1109/TCBB.2022.3190265
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
1XC
DOI 10.1007/s42979-024-02751-2
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection (ProQuest)
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection


Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2661-8907
ExternalDocumentID oai:HAL:hal-04606818v1
10_1007_s42979_024_02751_2
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GroupedDBID 0R~
406
AACDK
AAHNG
AAJBT
AASML
AATNV
AAUYE
ABAKF
ABECU
ABHQN
ABJNI
ABMQK
ABTEG
ABTKH
ABWNU
ACAOD
ACDTI
ACHSB
ACOKC
ACPIV
ACZOJ
ADKNI
ADTPH
ADYFF
AEFQL
AEMSY
AESKC
AFBBN
AFQWF
AGMZJ
AGQEE
AGRTI
AIGIU
AILAN
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
BAPOH
BSONS
DPUIP
EBLON
EBS
FIGPU
FNLPD
GGCAI
GNWQR
IKXTQ
IWAJR
JZLTJ
LLZTM
NPVJJ
NQJWS
OK1
PT4
ROL
RSV
SJYHP
SNE
SOJ
SRMVM
SSLCW
UOJIU
UTJUX
ZMTXR
2JN
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFKRA
AFOHR
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
PHGZM
PHGZT
PQGLB
PUEGO
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
1XC
ID FETCH-LOGICAL-c2682-e659009df3e951df744834ebfec6e1d9992b9e487034e6a8afaccc6553d0ac413
IEDL.DBID BENPR
ISSN 2661-8907
2662-995X
IngestDate Sat Oct 18 23:41:49 EDT 2025
Fri Jul 25 21:13:47 EDT 2025
Thu Apr 24 23:10:31 EDT 2025
Wed Oct 01 00:37:48 EDT 2025
Fri Feb 21 02:40:59 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords COVID-19
Deep learning
Pneumonia
Tuberculosis
Preprocessing
Multi-label classification
Chest X-ray images
Lung diseases
Multi-class classification
Systematic review
Pulmonary nodule
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2682-e659009df3e951df744834ebfec6e1d9992b9e487034e6a8afaccc6553d0ac413
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9642-565X
0000-0002-3843-5179
PQID 3033950353
PQPubID 6623307
ParticipantIDs hal_primary_oai_HAL_hal_04606818v1
proquest_journals_3033950353
crossref_primary_10_1007_s42979_024_02751_2
crossref_citationtrail_10_1007_s42979_024_02751_2
springer_journals_10_1007_s42979_024_02751_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240406
PublicationDateYYYYMMDD 2024-04-06
PublicationDate_xml – month: 4
  year: 2024
  text: 20240406
  day: 6
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Kolkata
PublicationTitle SN computer science
PublicationTitleAbbrev SN COMPUT. SCI
PublicationYear 2024
Publisher Springer Nature Singapore
Springer Nature B.V
Springer
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
– name: Springer
References Yan C, Yao J, Li R, Xu Z, Huang J (2018) Weakly supervised deep learning for thoracic disease classification and localization on chest x-rays. In: Proceedings of the 2018 ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics, pp. 103–110. https://doi.org/10.1145/3233547.3233573
Hage ChehadeAAbdallahNMarionJ-MOueidatMChauvetPLung and colon cancer classification using medical imaging: a feature engineering approachPhys Eng Sci Med202245372974610.1007/s13246-022-01139-x
Rajaraman S, Candemir S, Xue Z, Alderson PO, Kohli M, Abuya J, Thoma GR, Antani S (2018) A novel stacked generalization of models for improved tb detection in chest radiographs. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 718–721. https://doi.org/10.1109/EMBC. 2018.8512337
Teixeira V, Braz L, Pedrini H, Dias Z 2020) Dualanet: dual lesion attention network for thoracic disease classification in chest x-rays. In: 2020 International Conference on Systems, Signals and Image Processing (IWSSIP), pp. 69–74 (https://doi.org/10.1109/IWSSIP48289. 2020.9145037
Shen Y, Gao M (2018) Dynamic routing on deep neural network for thoracic disease classification and sensitive area localization. In: International Workshop on Machine Learning in Medical Imaging, pp. 389–397. https://doi.org/10.1007/978-3-030-00919-9_45
XuJLiHLiXMs-anet: deep learning for automated multi-label thoracic disease detection and classificationPeerJ Comput Sci2021754110.7717/peerj-cs.541/supp-1
SirazitdinovIKholiavchenkoMMustafaevTYixuanYKuleevRIbragimovBDeep neural network ensemble for pneumonia localization from a large-scale chest x-ray databaseComput Electr Eng20197838839910.1016/j.compeleceng.2019.08.004
SahinMEDeep learning-based approach for detecting covid-19 in chest x-raysBiomed Signal Process Control20227810.1016/j.bspc.2022.103977
HijaziMHAHwaSKTBadeAYaakobRJeffreeMSEnsemble deep learning for tuberculosis detection using chest x-ray and canny edge detected imagesIAES Int J Artif Intell20198442943510.11591/ijai.v8.i4.pp429-435
MunadiKMuchtarKMaulinaNPradhanBImage enhancement for tuberculosis detection using deep learningIEEE Access2020821789721790710.1109/ACCESS.2020.3041867
MannMBadoniRPSoniHAl-ShehriMKaushikACWeiD-QUtilization of deep convolutional neural networks for accurate chest x-ray diagnosis and disease detectionInterdiscip Sci Comput Life Sci202310.1007/s12539-023-00562-2
CiceroMBilbilyAColakEDowdellTGrayBPerampaladasKBarfettJTraining and validating a deep convolutional neural network for computer-aided detection and classification of abnormalities on frontal chest radiographsInvest Radiol201752528128710.1097/RLI.0000000000000341
KhanERehmanMZUAhmedFAlfouzanFAAlzahraniNMAhmadJChest x-ray classification for the detection of covid19 using deep learning techniquesSensors2022223121110.3390/s22031211
RajpurkarPDeep learning for chest radiograph diagnosis: a retrospective comparison of the chexnext algorithm to practicing radiologistsPLoS Med20181511100268610.1371/journal.pmed.1002686
DaiWDongNWangZLiangXZhangHXingEStructure correcting adversarial network for organ segmentation in chest x-raysDeep Learn Med Image Analy Multimod Learn Clin Decis Support201810.1007/978-3-030-00889-5_30
HoodaRMittalASofatSAutomated tb classification using ensemble of deep architecturesMultimed Tools Appl20197822315153153210.1007/s11042-019-07984-5
World Health Organization. Tuberculosis - 14 October 2021. (Accessed on 14 Jan 2023)
Savitha S, Naveen N (2016) Algorithm for pre-processing chest-x-ray using multi-level enhancement operation. In: 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), pp. 2182–2186. https://doi.org/10.1109/WiSPNET.2016. 7566529
TakemiyaRKidoSHiranoYMabuSDetection of pulmonary nodules on chest x-ray images using r-cnnInt Forum Med Imaging Asia20191105014715210.1117/12.2521652
JaegerSCandemirSAntaniSWángY-XJLuP-XThomaGTwo public chest x-ray dataset for computer-aided screening of pulmonary diseasesQuant Imaging Med Surg20144647547710.3978/j.issn.2223-4292.2014.11.20
YangWChenYLiuYZhongLQinGLuZFengQChenWCascade of multi-scale convolutional neural networks for bone suppression of chest radiographs in gradient domainMed Image Anal20173542143310.1016/j.media.2016.08.004
JoshiRCYadavSPathakVKMalhotraHSKhokharHVSPariharAKohliNHimanshuDGargRKBhattMLBA deep learning-based covid-19 automatic diagnostic framework using chest x-ray imagesBiocybern Biomed Eng202141123925410.1016/j.bbe.2021.01.002
El AsnaouiKChawkiYUsing x-ray images and deep learning for automated detection of coronavirus diseaseJ Biomol Struct Dyn202139103615362610.1080/07391102.2020.1767212
Forum of International Respiratory Societies. The Global Impact of Respiratory Disease – Second Edition. Sheffield, European Respiratory Society, (2017) (Accessed on 14 Jan 2023)
MendozaJPedriniHDetection and classification of lung nodules in chest x-ray images using deep convolutional neural networksComput Intell2020362370401415655610.1111/coin.12241
AcharyaAKSatapathyRA deep learning based approach towards the automatic diagnosis of pneumonia from chest radio-graphsBiomed Pharmacol J202013144945510.13005/bpj/1905
YangMTanakaHIshidaTPerformance improvement in multilabel thoracic abnormality classification of chest x-rays with noisy labelsInt J Comput Assist Radiol Surg202210.1007/s11548-022-02684-2
LakhaniPSundaramBDeep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networksRadiology2017284257458210.1148/radiol.2017162326
AlbahliSYarGNAHAi-driven deep convolutional neural networks for chest x-ray pathology identificationJ X-Ray Sci Technol202230236537610.3233/XST-211082
RubinJSanghaviDZhaoCLeeKQadirAXu-WilsonMLarge scale automated reading of frontal and lateral chest x-rays using dual convolutional neural networksarXiv preprint201810.48550/arXiv.1804.07839
SeiffertCKhoshgoftaarTMVan HulseJNapolitanoARusboost: A hybrid approach to alleviating class imbalanceIEEE Trans Syst, Man, and cybern-Part A: Syst Hum200940118519710.1109/TSMCA.2009.2029559
WangCElazabAWuJHuQLung nodule classification using deep feature fusion in chest radiographyComput Med Imaging Graph201757101810.1016/j.compmedimag.2016.11.004
RajpurkarPIrvinJZhuKYangBMehtaHDuanTDingDBagulALanglotzCShpanskayaKChexnet: radiologist-level pneumonia detection on chest x-rays with deep learningarXiv preprint201710.48550/arXiv.1711.05225
GuendelSGrbicSGeorgescuBLiuSMaierAComaniciuDLearning to recognize abnormalities in chest x-rays with locationaware dense networksIberoam Congr Pattern Recogn201810.1007/978-3-030-13469-3_88
ChenBLiJGuoXLuGDualchexnet dual asymmetric feature learning for thoracic disease classification in chest x-raysBiomed Signal Process Control20195310155410.1016/j.bspc.2019.04.031
CandemirSJaegerSLinWXueZAntaniSThomaGAutomatic heart localization and radiographic index computation in chest x-raysMed Imaging Comput-Aided Diagn2016978530230910.1117/12.2217209
Bush I (2016) Lung nodule detection and classification. Rep Stanford Comput Sci
HwangSKimH-EJeongJKimH-JA novel approach for tuberculosis screening based on deep convolutional neural networksMed Imaging Comput-aided Diagn2016978575075710.1117/12.2216198
Al-WaisyASAl-FahdawiSMohammedMAAbdulkareemKHMostafaSAMaashiMSArifMGarcia-ZapirainBCovidchexnet: hybrid deep learning framework for identifying covid-19 virus in chest x-rays imagesSoft Comput20232752657267210.1007/s00500-020-05424-3
AllaouziIAhmedMBA novel approach for multi-label chest xray classification of common thorax diseasesIEEE Access20197642796428810.1109/ACCESS.2019.2916849
WangHXiaYChestnet: a deep neural network for classification of thoracic diseases on chest radiographyarXiv preprint201810.48550/arXiv.1807.03058
Salehinejad H, Valaee S, Dowdell T, Colak E, Barfett J (2018) Generalization of deep neural networks for chest pathology classification in xrays using generative adversarial networks. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 990–994. https://doi.org/10.1109/ICASSP.2018.8461430
VeluchamyMSubramaniBImage contrast and color enhancement using adaptive gamma correction and histogram equalizationOptik201918332933710.1016/j.ijleo.2019.02.054
JohnsonAEWPollardTJBerkowitzSJGreenbaumNRLungrenMPDengC-YMarkRGHorngSMimic-cxr, a de-identified publicly available database of chest radiographs with free-text reportsSci Data201910.1038/s41597-019-0322-0
SouidASakliNSakliHClassification and predictions of lung diseases from chest x-rays using mobilenet v2Appl Sci2021116275110.3390/app11062751
World Health Organization. WHO Director-General’s opening remarks at the media briefing on COVID-19 - 11 march 2020. (Accessed on 20 Jan 2023)
ApostolopoulosIDMpesianaTACovid-19: automatic detection from x-ray images utilizing transfer learning with convolutional neural networksPhys Eng Sci Med202043263564010.1007/s13246-020-00865-4
ShiblyKHDeySKIslamMT-URahmanMMCovid faster r– cnn: A novel framework to diagnose novel coronavirus disease (covid-19) in x-ray imagesInform Med Unlocked20202010.1016/j.imu.2020.100405
Militante SV, Dionisio NV, Sibbaluca BG (2020) Pneumonia and covid19 detection using convolutional neural networks. In: 2020 Third International Conference on Vocational Education and Electrical Engineering (ICVEE), pp. 1–6. https://doi.org/10.1109/ICVEE50212.2020. 9243290
SharmaSGuleriaKA deep learning based model for the detection of pneumonia from chest x-ray images using vgg-16 and neural networksProced Comput Sci202321835736610.1016/j.procs.2023.01.018
IrvinJRajpurkarPKoMYuYCiurea-IlcusSChuteCMarklundHHaghgooBBallRShpanskayaKChexpert: a large chest radiograph dataset with uncertainty labels and expert comparisonProceed AAAI Conf Artif Intell20193359059710.1609/aaai.v33i01.3301590
World Health Organization. Naming the coronavirus disease (COVID19) and the virus that causes it, (2020). (Accessed on 20 jan 2023)
ChenSHanYLinJZhaoXKo
M Rahimzadeh (2751_CR49) 2020; 19
M Yang (2751_CR115) 2022
M Mamalakis (2751_CR47) 2021; 94
P Rajpurkar (2751_CR6) 2018; 15
AK Acharya (2751_CR90) 2020; 13
2751_CR73
2751_CR76
S Jaeger (2751_CR8) 2014; 4
2751_CR78
I Goodfellow (2751_CR54) 2014; 27
AI Khan (2751_CR97) 2020; 196
T Welte (2751_CR3) 2014; 111
J Shiraishi (2751_CR10) 2000; 174
N Kumar (2751_CR52) 2023; 14
IM Baltruschat (2751_CR50) 2019; 9
Q Guan (2751_CR86) 2020; 130
P Rajpurkar (2751_CR5) 2017
Y Yang (2751_CR91) 2022
M Mann (2751_CR117) 2023
F Li (2751_CR44) 2012; 22
A Madani (2751_CR56) 2018; 10574
2751_CR65
S Albahli (2751_CR113) 2021; 7
L Yao (2751_CR105) 2017
M Veluchamy (2751_CR23) 2019; 183
2751_CR68
Z Ge (2751_CR84) 2020; 79
DM Ibrahim (2751_CR69) 2021; 132
P Domingos (2751_CR125) 2012; 55
J Irvin (2751_CR12) 2019; 33
MHA Hijazi (2751_CR22) 2019; 8
J Rubin (2751_CR103) 2018
A Iqbal (2751_CR42) 2023; 84
A Hage Chehade (2751_CR31) 2022; 45
B Chen (2751_CR38) 2020; 135
I Sirazitdinov (2751_CR53) 2019; 78
GMM Alshmrani (2751_CR102) 2023; 64
STH Kieu (2751_CR7) 2020; 6
P Lakhani (2751_CR63) 2017; 284
E Hussain (2751_CR98) 2021; 142
2751_CR51
MT Islam (2751_CR59) 2017
A Iqbal (2751_CR27) 2022; 136
2751_CR55
VTQ Huy (2751_CR89) 2023
S Hwang (2751_CR87) 2016; 9785
TKK Ho (2751_CR109) 2019; 9
E Khan (2751_CR101) 2022; 22
V Sharma (2751_CR43) 2023
AA AbdElhamid (2751_CR28) 2022; 12
S Sharma (2751_CR92) 2023; 218
K Munadi (2751_CR24) 2020; 8
C Wang (2751_CR33) 2017; 57
J Xu (2751_CR16) 2021; 7
ID Apostolopoulos (2751_CR72) 2020; 43
P Afshar (2751_CR96) 2020; 138
2751_CR46
S Mo (2751_CR82) 2019; 2
R Hooda (2751_CR60) 2019; 78
AA Novikov (2751_CR34) 2018; 37
J Mendoza (2751_CR39) 2020; 36
W Yang (2751_CR45) 2017; 35
S Albahli (2751_CR58) 2022; 30
RC Joshi (2751_CR48) 2021; 41
T Rahman (2751_CR25) 2021; 132
2751_CR119
AEW Johnson (2751_CR13) 2019
H Panwar (2751_CR67) 2020; 138
AU Ibrahim (2751_CR70) 2021
KH Shibly (2751_CR66) 2020; 20
2751_CR118
ME Sahin (2751_CR99) 2022; 78
2751_CR111
2751_CR112
T Rahman (2751_CR40) 2020; 8
B Chen (2751_CR83) 2019; 24
AS Al-Waisy (2751_CR29) 2023; 27
W Dai (2751_CR35) 2018
D Das (2751_CR95) 2020; 43
I Allaouzi (2751_CR104) 2019; 7
2751_CR108
2751_CR106
2751_CR107
2751_CR20
FM Salman (2751_CR94) 2020; 4
2751_CR21
A Souid (2751_CR74) 2021; 11
T Rahman (2751_CR79) 2020; 10
Q Guan (2751_CR85) 2020; 131
S Candemir (2751_CR32) 2016; 9785
H Liu (2751_CR36) 2019; 75
2751_CR2
2751_CR1
HH Pham (2751_CR62) 2021; 437
A Abbas (2751_CR64) 2021; 51
2751_CR9
2751_CR11
S Guendel (2751_CR15) 2018
NM Elshennawy (2751_CR75) 2020; 10
K El Asnaoui (2751_CR26) 2021; 39
2751_CR14
T Ozturk (2751_CR100) 2020; 121
2751_CR17
2751_CR18
C Seiffert (2751_CR121) 2009; 40
2751_CR19
A Abbas (2751_CR61) 2020; 8
J Zhao (2751_CR114) 2021; 1848
R Takemiya (2751_CR93) 2019; 11050
S Chen (2751_CR37) 2020; 107
Y Jin (2751_CR116) 2023; 157
2751_CR80
Y Tang (2751_CR77) 2018
2751_CR124
Z Ge (2751_CR81) 2018
Y Xu (2751_CR41) 2021; 443
2751_CR122
2751_CR123
2751_CR120
FJM Shamrat (2751_CR30) 2023; 155
M Cicero (2751_CR71) 2017; 52
LA Andika (2751_CR88) 2020; 1490
B Chen (2751_CR110) 2019; 53
H Wang (2751_CR4) 2018
S Kora Venu (2751_CR57) 2020; 13
References_xml – reference: RahmanTKhandakarAQiblaweyYTahirAKiranyazSKashemSBAIslamMTAl MaadeedSZughaierSMKhanMSExploring the effect of image enhancement techniques on covid-19 detection using chest x-ray imagesComput Biol Med202113210431910.1016/j.compbiomed.2021.104319
– reference: YangYMeiGPiccialliFA deep learning approach considering image background for pneumonia identification using explainable ai (xai)IEEE/ACM Trans Comput Biol Bioinf202210.1109/TCBB.2022.3190265
– reference: IqbalAUsmanMAhmedZAn efficient deep learning-based framework for tuberculosis detection using chest x-ray imagesTuberculosis202213610.1016/j.tube.2022.102234
– reference: Sharma H, Jain JS, Bansal P, Gupta S (2020) Feature extraction and classification of chest x-ray images using cnn to detect pneumonia. In: 2020 10th International Conference on Cloud Computing, Data Science & Engineering (Confluence), pp. 227–231. 10. 1109/Confluence47617.2020.9057809
– reference: Rohilla A, Hooda R, Mittal A (2017) Tb detection in chest radiograph using deep learning architecture. ICETETSM-17, 136–147
– reference: Al Mamlook RE, Chen S, Bzizi HF (2020) Investigation of the performance of machine learning classifiers for pneumonia detection in chest x-ray images. In: 2020 IEEE International Conference on Electro Information Technology (EIT), pp. 098–104. https://doi.org/10.1109/EIT48999.2020.9208232
– reference: HoodaRMittalASofatSAutomated tb classification using ensemble of deep architecturesMultimed Tools Appl20197822315153153210.1007/s11042-019-07984-5
– reference: VeluchamyMSubramaniBImage contrast and color enhancement using adaptive gamma correction and histogram equalizationOptik201918332933710.1016/j.ijleo.2019.02.054
– reference: RajpurkarPIrvinJZhuKYangBMehtaHDuanTDingDBagulALanglotzCShpanskayaKChexnet: radiologist-level pneumonia detection on chest x-rays with deep learningarXiv preprint201710.48550/arXiv.1711.05225
– reference: Phung H, Dao Q, Tran A (2023) Wavelet diffusion models are fast and scalable image generators. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10199–10208
– reference: Chest x-ray images (pneumonia), (2019). [Online] Available: https://www.kaggle.com/datasets/paultimothymooney/chest-xraypneumonia (2019)
– reference: SeiffertCKhoshgoftaarTMVan HulseJNapolitanoARusboost: A hybrid approach to alleviating class imbalanceIEEE Trans Syst, Man, and cybern-Part A: Syst Hum200940118519710.1109/TSMCA.2009.2029559
– reference: CiceroMBilbilyAColakEDowdellTGrayBPerampaladasKBarfettJTraining and validating a deep convolutional neural network for computer-aided detection and classification of abnormalities on frontal chest radiographsInvest Radiol201752528128710.1097/RLI.0000000000000341
– reference: ChenBLiJLuGZhangDLesion location attention guided network for multi-label thoracic disease classification in chest x-raysIEEE J Biomed Health Inform20192472016202710.1109/JBHI.2019.2952597
– reference: RajpurkarPDeep learning for chest radiograph diagnosis: a retrospective comparison of the chexnext algorithm to practicing radiologistsPLoS Med20181511100268610.1371/journal.pmed.1002686
– reference: World Health Organization. Pneumonia in children - 11 November 2022. (Accessed on 10 Jan 2023)
– reference: AllaouziIAhmedMBA novel approach for multi-label chest xray classification of common thorax diseasesIEEE Access20197642796428810.1109/ACCESS.2019.2916849
– reference: IbrahimAUOzsozMSerteSAl-TurjmanFYakoiPSPneumonia classification using deep learning from chest x-ray images during covid-19Cogn Comput202110.1007/s12559-020-09787-5
– reference: HijaziMHAHwaSKTBadeAYaakobRJeffreeMSEnsemble deep learning for tuberculosis detection using chest x-ray and canny edge detected imagesIAES Int J Artif Intell20198442943510.11591/ijai.v8.i4.pp429-435
– reference: YaoLPoblenzEDaguntsDCovingtonBBernardDLymanKLearning to diagnose from scratch by exploiting dependencies among labelsArXiv preprint201710.48550/arXiv.1710.10501
– reference: Savitha S, Naveen N (2016) Algorithm for pre-processing chest-x-ray using multi-level enhancement operation. In: 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), pp. 2182–2186. https://doi.org/10.1109/WiSPNET.2016. 7566529
– reference: HwangSKimH-EJeongJKimH-JA novel approach for tuberculosis screening based on deep convolutional neural networksMed Imaging Comput-aided Diagn2016978575075710.1117/12.2216198
– reference: GuendelSGrbicSGeorgescuBLiuSMaierAComaniciuDLearning to recognize abnormalities in chest x-rays with locationaware dense networksIberoam Congr Pattern Recogn201810.1007/978-3-030-13469-3_88
– reference: SharmaSGuleriaKA deep learning based model for the detection of pneumonia from chest x-ray images using vgg-16 and neural networksProced Comput Sci202321835736610.1016/j.procs.2023.01.018
– reference: AlbahliSYarGNAHAi-driven deep convolutional neural networks for chest x-ray pathology identificationJ X-Ray Sci Technol202230236537610.3233/XST-211082
– reference: WelteTImaging in the diagnosis of lung disease: more sophisticated methods require greater interdisciplinary collaborationDtsch Arztebl Int20141111117910.3238/arztebl.2014.0179
– reference: AbbasAAbdelsameaMMGaberMMDetrac: Transfer learning of class decomposed medical images in convolutional neural networksIEEE Access20208749017491310.1109/ACCESS.2020.2989273
– reference: MannMBadoniRPSoniHAl-ShehriMKaushikACWeiD-QUtilization of deep convolutional neural networks for accurate chest x-ray diagnosis and disease detectionInterdiscip Sci Comput Life Sci202310.1007/s12539-023-00562-2
– reference: AlshmraniGMMNiQJiangRPervaizHElshennawyNMA deep learning architecture for multi-class lung diseases classification using chest x-ray (cxr) imagesAlex Eng J20236492393510.1016/j.aej.2022.10.053
– reference: JoshiRCYadavSPathakVKMalhotraHSKhokharHVSPariharAKohliNHimanshuDGargRKBhattMLBA deep learning-based covid-19 automatic diagnostic framework using chest x-ray imagesBiocybern Biomed Eng202141123925410.1016/j.bbe.2021.01.002
– reference: Xu X, Wang Y, Yang G, Hu Y (2016) Image enhancement method based on fractional wavelet transform. In: 2016 IEEE International Conference on Signal and Image Processing (ICSIP), pp. 194–197. https://doi.org/10.1109/SIPROCESS.2016.7888251
– reference: Hage ChehadeAAbdallahNMarionJ-MOueidatMChauvetPLung and colon cancer classification using medical imaging: a feature engineering approachPhys Eng Sci Med202245372974610.1007/s13246-022-01139-x
– reference: GuanQMulti-label chest x-ray image classification via categorywise residual attention learningPattern Recogn Lett202013025926610.1016/j.patrec.2018.10.027
– reference: PhamHHLeTTTranDQNgoDTNguyenHQInterpreting chest x-rays via cnns that exploit hierarchical disease dependencies and uncertainty labelsNeurocomputing202143718619410.1016/j.neucom.2020.03.127
– reference: SalmanFMAbu-NaserSSAlajramiEAbu-NasserBSAlashqarBACovid-19 detection using artificial intelligenceInt J Acad Eng Res (IJAER)202041825
– reference: Militante SV, Dionisio NV, Sibbaluca BG (2020) Pneumonia and covid19 detection using convolutional neural networks. In: 2020 Third International Conference on Vocational Education and Electrical Engineering (ICVEE), pp. 1–6. https://doi.org/10.1109/ICVEE50212.2020. 9243290
– reference: MendozaJPedriniHDetection and classification of lung nodules in chest x-ray images using deep convolutional neural networksComput Intell2020362370401415655610.1111/coin.12241
– reference: Forum of International Respiratory Societies. The Global Impact of Respiratory Disease – Second Edition. Sheffield, European Respiratory Society, (2017) (Accessed on 14 Jan 2023)
– reference: RubinJSanghaviDZhaoCLeeKQadirAXu-WilsonMLarge scale automated reading of frontal and lateral chest x-rays using dual convolutional neural networksarXiv preprint201810.48550/arXiv.1804.07839
– reference: XuYLamH-KJiaGManet: A two-stage deep learning method for classification of covid-19 from chest x-ray imagesNeurocomputing20214439610510.1016/j.neucom.2021.03.034
– reference: JaegerSCandemirSAntaniSWángY-XJLuP-XThomaGTwo public chest x-ray dataset for computer-aided screening of pulmonary diseasesQuant Imaging Med Surg20144647547710.3978/j.issn.2223-4292.2014.11.20
– reference: IqbalAUsmanMAhmedZTuberculosis chest x-ray detection using cnn-based hybrid segmentation and classification approachBiomed Signal Process Control20238410466710.1016/j.bspc.2023.104667
– reference: SirazitdinovIKholiavchenkoMMustafaevTYixuanYKuleevRIbragimovBDeep neural network ensemble for pneumonia localization from a large-scale chest x-ray databaseComput Electr Eng20197838839910.1016/j.compeleceng.2019.08.004
– reference: XuJLiHLiXMs-anet: deep learning for automated multi-label thoracic disease detection and classificationPeerJ Comput Sci2021754110.7717/peerj-cs.541/supp-1
– reference: MadaniAMoradiMKarargyrisASyeda-MahmoodTChest xray generation and data augmentation for cardiovascular abnormality classificationMed Imaging: Image Process20181057441542010.1117/12.2293971
– reference: LiFEngelmannRPesceLArmatoSGMacMahonHImproved detection of focal pneumonia by chest radiography with bone suppression imagingEur Radiol201222122729273510.1007/s00330-012-2550-y
– reference: SharmaVGuptaSKShuklaKKDeep learning models for tuberculosis detection and infected region visualization in chest xray imagesIntell Med202310.1016/j.imed.2023.06.001
– reference: World Health Organization. WHO Director-General’s opening remarks at the media briefing on COVID-19 - 11 march 2020. (Accessed on 20 Jan 2023)
– reference: YangMTanakaHIshidaTPerformance improvement in multilabel thoracic abnormality classification of chest x-rays with noisy labelsInt J Comput Assist Radiol Surg202210.1007/s11548-022-02684-2
– reference: AlbahliSRaufHTAlgosaibiABalasVEAi-driven deep cnn approach for multi-label pathology classification using chest xraysPeerJ Comput Sci2021749510.7717/peerj-cs.495
– reference: TakemiyaRKidoSHiranoYMabuSDetection of pulmonary nodules on chest x-ray images using r-cnnInt Forum Med Imaging Asia20191105014715210.1117/12.2521652
– reference: Ma Y, Zhou Q, Chen X, Lu H, Zhao Y (2019) Multi-attention network for thoracic disease classification and localization. In: ICASSP 20192019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1378–1382. 10.1109/ ICASSP.2019.8682952. IEEE
– reference: HussainEHasanMRahmanMALeeITamannaTParvezMZCorodet: A deep learning based classification for covid-19 detection using chest x-ray imagesChaos Solitons Fractals2021142420213410.1016/j.chaos.2020.110495
– reference: GeZMahapatraDSedaiSGarnaviRChakravortyRChest x-rays classification: a multi-label and fine-grained problemarXiv preprint201810.48550/arXiv.1807.07247
– reference: KumarNGuptaMGuptaDTiwariSNovel deep transfer learning model for covid-19 patient detection using x-ray chest imagesJ Ambient Intell Humaniz Comput202314146947810.1007/s12652-021-03306-6
– reference: GeZMahapatraDChangXChenZChiLLuHImproving multi-label chest x-ray disease diagnosis by exploiting disease and health labels dependenciesMultimed Tools Appl20207921148891490210.1007/s11042-019-08260-2
– reference: ApostolopoulosIDMpesianaTACovid-19: automatic detection from x-ray images utilizing transfer learning with convolutional neural networksPhys Eng Sci Med202043263564010.1007/s13246-020-00865-4
– reference: Al-WaisyASAl-FahdawiSMohammedMAAbdulkareemKHMostafaSAMaashiMSArifMGarcia-ZapirainBCovidchexnet: hybrid deep learning framework for identifying covid-19 virus in chest x-rays imagesSoft Comput20232752657267210.1007/s00500-020-05424-3
– reference: PanwarHGuptaPSiddiquiMKMorales-MenendezRSinghVApplication of deep learning for fast detection of covid-19 in x-rays using ncovnetChaos Solitons Fractals2020138109944411000110.1016/j.chaos.2020.109944
– reference: OzturkTTaloMYildirimEABalogluUBYildirimOAcharyaURAutomated detection of covid-19 cases using deep neural networks with x-ray imagesComput Biol Med202012110.1016/j.compbiomed.2020.103792
– reference: Bush I (2016) Lung nodule detection and classification. Rep Stanford Comput Sci
– reference: Salehinejad H, Valaee S, Dowdell T, Colak E, Barfett J (2018) Generalization of deep neural networks for chest pathology classification in xrays using generative adversarial networks. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 990–994. https://doi.org/10.1109/ICASSP.2018.8461430
– reference: Sethi R, Mehrotra M, Sethi D (2020) Deep learning based diagnosis recommendation for covid-19 using chest x-rays images. In: 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA), pp. 1–4. https://doi.org/10.1109/ICIRCA48905. 2020.9183278
– reference: JinYLuHZhuWHuoWDeep learning based classification of multi-label chest x-ray images via dual-weighted metric lossComput Biol Med202315710.1016/j.compbiomed.2023.106683
– reference: SouidASakliNSakliHClassification and predictions of lung diseases from chest x-rays using mobilenet v2Appl Sci2021116275110.3390/app11062751
– reference: DaiWDongNWangZLiangXZhangHXingEStructure correcting adversarial network for organ segmentation in chest x-raysDeep Learn Med Image Analy Multimod Learn Clin Decis Support201810.1007/978-3-030-00889-5_30
– reference: ChenSHanYLinJZhaoXKongPPulmonary nodule detection on chest radiographs using balanced convolutional neural network and classic candidate detectionArtif Intell Med202010710.1016/j.artmed.2020.101881
– reference: SahinMEDeep learning-based approach for detecting covid-19 in chest x-raysBiomed Signal Process Control20227810.1016/j.bspc.2022.103977
– reference: ChenBLiJGuoXLuGDualchexnet dual asymmetric feature learning for thoracic disease classification in chest x-raysBiomed Signal Process Control20195310155410.1016/j.bspc.2019.04.031
– reference: JohnsonAEWPollardTJBerkowitzSJGreenbaumNRLungrenMPDengC-YMarkRGHorngSMimic-cxr, a de-identified publicly available database of chest radiographs with free-text reportsSci Data201910.1038/s41597-019-0322-0
– reference: RahmanTKhandakarAKadirMAIslamKRIslamKFMazharRHamidTIslamMTKashemSMahbubZBReliable tuberculosis detection using chest x-ray with deep learning, segmentation and visualizationIEEE Access2020819158619160110.1109/ACCESS.2020.3031384
– reference: RahmanTChowdhuryMEKhandakarAIslamKRIslamKFMahbubZBKadirMAKashemSTransfer learning with deep convolutional neural network (cnn) for pneumonia detection using chest x-rayAppl Sci2020109323310.3390/app10093233
– reference: NovikovAALenisDMajorDHladvkaJWimmerMBühlerKFully convolutional architectures for multiclass segmentation in chest radiographsIEEE Trans Med Imaging20183781865187610.1109/TMI.2018.2806086
– reference: Rajaraman S, Candemir S, Xue Z, Alderson PO, Kohli M, Abuya J, Thoma GR, Antani S (2018) A novel stacked generalization of models for improved tb detection in chest radiographs. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 718–721. https://doi.org/10.1109/EMBC. 2018.8512337
– reference: MoSCaiMDeep learning based multi-label chest x-ray classification with entropy weighting lossInt Symp Comput Intell Design (ISCID)2019212412710.1109/ISCID.2019.10111
– reference: AndikaLAPratiwiHHandajaniSSConvolutional neural network modeling for classification of pulmonary tuberculosis diseaseJ Phys Conf Ser2020149001202010.1088/1742-6596/1490/1/012020
– reference: LakhaniPSundaramBDeep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networksRadiology2017284257458210.1148/radiol.2017162326
– reference: MunadiKMuchtarKMaulinaNPradhanBImage enhancement for tuberculosis detection using deep learningIEEE Access2020821789721790710.1109/ACCESS.2020.3041867
– reference: ChenBZhangZLinJChenYLuGTwo-stream collaborative network for multi-label chest x-ray image classification with lung segmentationPattern Recogn Lett202013522122710.1016/j.patrec.2020.04.016
– reference: Ma C, Wang H, Hoi SC (2019) Multi-label thoracic disease image classification with cross-attention networks. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 730–738. https://doi.org/10.1007/978-3-030-32226–7_ 81
– reference: IbrahimDMElshennawyNMSarhanAMDeep-chest: Multiclassification deep learning model for diagnosing covid-19, pneumonia, and lung cancer chest diseasesComput Biol Med202113210.1016/j.compbiomed.2021.104348
– reference: Li Z, Wang C, Han M, Xue Y, Wei W, Li L-J, Fei-Fei L (2018) Thoracic disease identification and localization with limited supervision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8290–8299
– reference: DomingosPA few useful things to know about machine learningCommun ACM20125510788710.1145/2347736.2347755
– reference: Kora VenuSRavulaSEvaluation of deep convolutional generative adversarial networks for data augmentation of chest x-ray imagesFuture Internet2020131810.3390/fi13010008
– reference: KhanERehmanMZUAhmedFAlfouzanFAAlzahraniNMAhmadJChest x-ray classification for the detection of covid19 using deep learning techniquesSensors2022223121110.3390/s22031211
– reference: World Health Organization. Coronavirus Disease 2019 (COVID-19) Situation Report, Technical Report March, World Health Organization: Geneva, Switzerland, (2020) (Accessed on 20 Jan 2023)
– reference: BaltruschatIMNickischHGrassMKnoppTSaalbachAComparison of deep learning approaches for multi-label chest x-ray classificationSci Rep20199111010.1038/s41598-019-42294-8
– reference: Teixeira V, Braz L, Pedrini H, Dias Z 2020) Dualanet: dual lesion attention network for thoracic disease classification in chest x-rays. In: 2020 International Conference on Systems, Signals and Image Processing (IWSSIP), pp. 69–74 (https://doi.org/10.1109/IWSSIP48289. 2020.9145037
– reference: Yan C, Yao J, Li R, Xu Z, Huang J (2018) Weakly supervised deep learning for thoracic disease classification and localization on chest x-rays. In: Proceedings of the 2018 ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics, pp. 103–110. https://doi.org/10.1145/3233547.3233573
– reference: CandemirSJaegerSLinWXueZAntaniSThomaGAutomatic heart localization and radiographic index computation in chest x-raysMed Imaging Comput-Aided Diagn2016978530230910.1117/12.2217209
– reference: AbbasAAbdelsameaMMGaberMMClassification of covid-19 in chest x-ray images using detrac deep convolutional neural networkAppl Intell20215185486410.1007/s10489-020-01829-7
– reference: Chaudhary A, Hazra A, Chaudhary P (2019) Diagnosis of chest diseases in x-ray images using deep convolutional neural network. In: 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), pp. 1–6. 10.1109/ ICCCNT45670.2019.8944762
– reference: Ausawalaithong W, Thirach A, Marukatat S, Wilaiprasitporn T (2018) Automatic lung cancer prediction from chest x-ray images using the deep learning approach. In: 2018 11th Biomedical Engineering International Conference (BMEiCON), pp. 1–5 (2018). 10. 1109/BMEiCON.2018.8609997
– reference: KieuSTHBadeAHijaziMHAKolivandHA survey of deep learning for lung disease detection on medical images: state-of-the-art, taxonomy, issues and future directionsJ Imaging202061213110.3390/jimaging6120131
– reference: ZhaoJLiMShiWMiaoYJiangZJiBA deep learning method for classification of chest x-ray imagesJ Phys Conf Ser2021184801203010.1088/1742-6596/1848/1/012030
– reference: LiuHWangLNanYJinFWangQPuJSdfn: segmentation-based deep fusion network for thoracic disease classification in chest x-ray imagesComput Med Imaging Graph201975667310.1016/j.compmedimag.2019.05.005
– reference: YangWChenYLiuYZhongLQinGLuZFengQChenWCascade of multi-scale convolutional neural networks for bone suppression of chest radiographs in gradient domainMed Image Anal20173542143310.1016/j.media.2016.08.004
– reference: AfsharPHeidarianSNaderkhaniFOikonomouAPlataniotisKNMohammadiACovid-caps: A capsule network-based framework for identification of covid-19 cases from x-ray imagesPattern Recogn Lett202013863864310.1016/j.patrec.2020.09.010
– reference: GoodfellowIPouget-AbadieJMirzaMXuBWarde-FarleyDOzairSCourvilleABengioYGenerative adversarial netsAdv Neural Inform Process Syst20142726722680
– reference: HoTKKGwakJMultiple feature integration for classification of thoracic disease in chest radiographyAppl Sci2019919413010.3390/app9194130
– reference: KhanAIShahJLBhatMMCoronet: A deep neural network for detection and diagnosis of covid-19 from chest x-ray imagesComput Methods Programs Biomed202019610558110.1016/j.cmpb.2020.105581
– reference: ElshennawyNMIbrahimDMDeep-pneumonia framework using deep learning models based on chest x-ray imagesDiagnostics202010964910.3390/diagnostics10090649
– reference: DasDSantoshKPalUTruncated inception net: Covid-19 outbreak screening using chest x-raysPhys Eng Sci Med202043391592510.1007/s13246-020-00888-x
– reference: Wang X, Peng Y, Lu L, Lu Z, Bagheri M, Summers RM (2017) Chestxray8: Hospital-scale chest x-ray database and benchmarks on weaklysupervised classification and localization of common thorax diseases. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2097–2106. https://doi.org/10.1109/CVPR.2017.369
– reference: ShiraishiJKatsuragawaSIkezoeJMatsumotoTKobayashiTKomatsuK-IMatsuiMFujitaHKoderaYDoiKDevelopment of a digital image database for chest radiographs with and without a lung nodule: receiver operating characteristic analysis of radiologists’ detection of pulmonary nodulesAm J Roentgenol20001741717410.2214/ajr.174.1.1740071
– reference: El AsnaouiKChawkiYUsing x-ray images and deep learning for automated detection of coronavirus diseaseJ Biomol Struct Dyn202139103615362610.1080/07391102.2020.1767212
– reference: HuyVTQLinC-MAn improved densenet deep neural network model for tuberculosis detection using chest x-ray imagesIEEE Access202310.1109/ACCESS.2023.3270774
– reference: World Health Organization. Naming the coronavirus disease (COVID19) and the virus that causes it, (2020). (Accessed on 20 jan 2023)
– reference: ShamratFJMAzamSKarimAAhmedKBuiFMDe BoerFHigh-precision multiclass classification of lung disease through customized mobilenetv2 from chest x-ray imagesComput Biol Med202315510.1016/j.compbiomed.2023.106646
– reference: Shen Y, Gao M (2018) Dynamic routing on deep neural network for thoracic disease classification and sensitive area localization. In: International Workshop on Machine Learning in Medical Imaging, pp. 389–397. https://doi.org/10.1007/978-3-030-00919-9_45
– reference: IslamMTAowalMAMinhazATAshrafKAbnormality detection and localization in chest x-rays using deep convolutional neural networksarXiv Preprint201710.48550/arXiv.1705.09850
– reference: TangYWangXHarrisonAPLuLXiaoJSummersRMAttention-guided curriculum learning for weakly supervised classification and localization of thoracic diseases on chest radiographsInt Workshop Mach Learn Med Imaging201810.1007/978-3-030-00919-9_29
– reference: WangHXiaYChestnet: a deep neural network for classification of thoracic diseases on chest radiographyarXiv preprint201810.48550/arXiv.1807.03058
– reference: MamalakisMSwiftAJVorselaarsBRaySWeeksSDingWClaytonRHMackenzieLSBanerjeeADenrescov-19: A deep transfer learning network for robust automatic classification of covid19, pneumonia, and tuberculosis from x-raysComput Med Imaging Graph20219410.1016/j.compmedimag.2021.102008
– reference: Gordienko Y, Gang P, Hui J, Zeng W, Kochura Y, Alienin O, Rokovyi O, Stirenko S (2018) Deep learning with lung segmentation and bone shadow exclusion techniques for chest x-ray analysis of lung cancer. In: Advances in Computer Science for Engineering and Education, International Conference on Computer Science, Engineering and Education Applications (ICCSEEA), pp. 638–647. 10. 1007/978–3–319–91008–6_63
– reference: AbdElhamidAAAbdElhalimEMohamedMAKhalifaFMulti-classification of chest x-rays for covid-19 diagnosis using deep learning algorithmsAppl Sci2022124208010.3390/app12042080
– reference: World Health Organization. Tuberculosis - 14 October 2021. (Accessed on 14 Jan 2023)
– reference: Kumar P, Grewal M, Srivastava MM (2018) Boosted cascaded convnets for multilabel classification of thoracic diseases in chest radiographs. In: International Conference Image Analysis and Recognition, ICIAR 2018, Lecture Notes in Computer Science, pp. 546–552. https://doi.org/10.1007/978-3-319-93000-8_62
– reference: World Health Organization. Cancer - 3 February 2022. (accessed on 23 january 2023)
– reference: RahimzadehMAttarAA modified deep convolutional neural network for detecting covid-19 and pneumonia from chest x-ray images based on the concatenation of xception and resnet50v2Inform Med Unlocked20201910.1016/j.imu.2020.100360
– reference: GuanQHuangYZhongZZhengZZhengLYangYThorax disease classification with attention guided convolutional neural networkPattern Recogn Lett2020131384510.1016/j.patrec.2019.11.040
– reference: IrvinJRajpurkarPKoMYuYCiurea-IlcusSChuteCMarklundHHaghgooBBallRShpanskayaKChexpert: a large chest radiograph dataset with uncertainty labels and expert comparisonProceed AAAI Conf Artif Intell20193359059710.1609/aaai.v33i01.3301590
– reference: WangCElazabAWuJHuQLung nodule classification using deep feature fusion in chest radiographyComput Med Imaging Graph201757101810.1016/j.compmedimag.2016.11.004
– reference: ShiblyKHDeySKIslamMT-URahmanMMCovid faster r– cnn: A novel framework to diagnose novel coronavirus disease (covid-19) in x-ray imagesInform Med Unlocked20202010.1016/j.imu.2020.100405
– reference: AcharyaAKSatapathyRA deep learning based approach towards the automatic diagnosis of pneumonia from chest radio-graphsBiomed Pharmacol J202013144945510.13005/bpj/1905
– year: 2019
  ident: 2751_CR13
  publication-title: Sci Data
  doi: 10.1038/s41597-019-0322-0
– volume: 51
  start-page: 854
  year: 2021
  ident: 2751_CR64
  publication-title: Appl Intell
  doi: 10.1007/s10489-020-01829-7
– volume: 132
  start-page: 104319
  year: 2021
  ident: 2751_CR25
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2021.104319
– volume: 43
  start-page: 635
  issue: 2
  year: 2020
  ident: 2751_CR72
  publication-title: Phys Eng Sci Med
  doi: 10.1007/s13246-020-00865-4
– volume: 30
  start-page: 365
  issue: 2
  year: 2022
  ident: 2751_CR58
  publication-title: J X-Ray Sci Technol
  doi: 10.3233/XST-211082
– ident: 2751_CR46
  doi: 10.1007/978-3-319-91008-6_63
– volume: 138
  start-page: 109944
  year: 2020
  ident: 2751_CR67
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2020.109944
– volume: 196
  start-page: 105581
  year: 2020
  ident: 2751_CR97
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2020.105581
– ident: 2751_CR123
– volume: 27
  start-page: 2672
  year: 2014
  ident: 2751_CR54
  publication-title: Adv Neural Inform Process Syst
– volume: 39
  start-page: 3615
  issue: 10
  year: 2021
  ident: 2751_CR26
  publication-title: J Biomol Struct Dyn
  doi: 10.1080/07391102.2020.1767212
– volume: 9785
  start-page: 750
  year: 2016
  ident: 2751_CR87
  publication-title: Med Imaging Comput-aided Diagn
  doi: 10.1117/12.2216198
– ident: 2751_CR106
  doi: 10.1007/978-3-319-93000-8_62
– volume: 40
  start-page: 185
  issue: 1
  year: 2009
  ident: 2751_CR121
  publication-title: IEEE Trans Syst, Man, and cybern-Part A: Syst Hum
  doi: 10.1109/TSMCA.2009.2029559
– ident: 2751_CR76
– ident: 2751_CR55
  doi: 10.1109/ICASSP.2018.8461430
– volume: 14
  start-page: 469
  issue: 1
  year: 2023
  ident: 2751_CR52
  publication-title: J Ambient Intell Humaniz Comput
  doi: 10.1007/s12652-021-03306-6
– volume: 7
  start-page: 64279
  year: 2019
  ident: 2751_CR104
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2916849
– volume: 135
  start-page: 221
  year: 2020
  ident: 2751_CR38
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2020.04.016
– volume: 35
  start-page: 421
  year: 2017
  ident: 2751_CR45
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2016.08.004
– volume: 10
  start-page: 3233
  issue: 9
  year: 2020
  ident: 2751_CR79
  publication-title: Appl Sci
  doi: 10.3390/app10093233
– volume: 131
  start-page: 38
  year: 2020
  ident: 2751_CR85
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2019.11.040
– year: 2018
  ident: 2751_CR35
  publication-title: Deep Learn Med Image Analy Multimod Learn Clin Decis Support
  doi: 10.1007/978-3-030-00889-5_30
– volume: 8
  start-page: 74901
  year: 2020
  ident: 2751_CR61
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2989273
– volume: 43
  start-page: 915
  issue: 3
  year: 2020
  ident: 2751_CR95
  publication-title: Phys Eng Sci Med
  doi: 10.1007/s13246-020-00888-x
– volume: 4
  start-page: 475
  issue: 6
  year: 2014
  ident: 2751_CR8
  publication-title: Quant Imaging Med Surg
  doi: 10.3978/j.issn.2223-4292.2014.11.20
– ident: 2751_CR78
  doi: 10.1109/CVPR.2018.00865
– ident: 2751_CR18
  doi: 10.1109/EIT48999.2020.9208232
– volume: 13
  start-page: 449
  issue: 1
  year: 2020
  ident: 2751_CR90
  publication-title: Biomed Pharmacol J
  doi: 10.13005/bpj/1905
– year: 2023
  ident: 2751_CR43
  publication-title: Intell Med
  doi: 10.1016/j.imed.2023.06.001
– ident: 2751_CR17
  doi: 10.1109/ICCCNT45670.2019.8944762
– volume: 36
  start-page: 370
  issue: 2
  year: 2020
  ident: 2751_CR39
  publication-title: Comput Intell
  doi: 10.1111/coin.12241
– ident: 2751_CR9
– volume: 132
  year: 2021
  ident: 2751_CR69
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2021.104348
– ident: 2751_CR119
– ident: 2751_CR1
– year: 2023
  ident: 2751_CR89
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3270774
– volume: 111
  start-page: 179
  issue: 11
  year: 2014
  ident: 2751_CR3
  publication-title: Dtsch Arztebl Int
  doi: 10.3238/arztebl.2014.0179
– ident: 2751_CR68
  doi: 10.1109/ICVEE50212.2020
– volume: 142
  year: 2021
  ident: 2751_CR98
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2020.110495
– volume: 79
  start-page: 14889
  issue: 21
  year: 2020
  ident: 2751_CR84
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-019-08260-2
– ident: 2751_CR111
  doi: 10.1007/978-3-030-32226
– volume: 15
  start-page: 1002686
  issue: 11
  year: 2018
  ident: 2751_CR6
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.1002686
– volume: 121
  year: 2020
  ident: 2751_CR100
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2020.103792
– year: 2017
  ident: 2751_CR59
  publication-title: arXiv Preprint
  doi: 10.48550/arXiv.1705.09850
– volume: 8
  start-page: 429
  issue: 4
  year: 2019
  ident: 2751_CR22
  publication-title: IAES Int J Artif Intell
  doi: 10.11591/ijai.v8.i4.pp429-435
– volume: 27
  start-page: 2657
  issue: 5
  year: 2023
  ident: 2751_CR29
  publication-title: Soft Comput
  doi: 10.1007/s00500-020-05424-3
– ident: 2751_CR120
– volume: 10
  start-page: 649
  issue: 9
  year: 2020
  ident: 2751_CR75
  publication-title: Diagnostics
  doi: 10.3390/diagnostics10090649
– volume: 11
  start-page: 2751
  issue: 6
  year: 2021
  ident: 2751_CR74
  publication-title: Appl Sci
  doi: 10.3390/app11062751
– volume: 19
  year: 2020
  ident: 2751_CR49
  publication-title: Inform Med Unlocked
  doi: 10.1016/j.imu.2020.100360
– volume: 107
  year: 2020
  ident: 2751_CR37
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2020.101881
– volume: 157
  year: 2023
  ident: 2751_CR116
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2023.106683
– ident: 2751_CR107
  doi: 10.1145/3233547.3233573
– ident: 2751_CR112
  doi: 10.1109/IWSSIP48289
– volume: 22
  start-page: 2729
  issue: 12
  year: 2012
  ident: 2751_CR44
  publication-title: Eur Radiol
  doi: 10.1007/s00330-012-2550-y
– volume: 20
  year: 2020
  ident: 2751_CR66
  publication-title: Inform Med Unlocked
  doi: 10.1016/j.imu.2020.100405
– year: 2022
  ident: 2751_CR115
  publication-title: Int J Comput Assist Radiol Surg
  doi: 10.1007/s11548-022-02684-2
– volume: 437
  start-page: 186
  year: 2021
  ident: 2751_CR62
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.03.127
– volume: 75
  start-page: 66
  year: 2019
  ident: 2751_CR36
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/j.compmedimag.2019.05.005
– volume: 84
  start-page: 104667
  year: 2023
  ident: 2751_CR42
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2023.104667
– volume: 12
  start-page: 2080
  issue: 4
  year: 2022
  ident: 2751_CR28
  publication-title: Appl Sci
  doi: 10.3390/app12042080
– volume: 443
  start-page: 96
  year: 2021
  ident: 2751_CR41
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.03.034
– year: 2023
  ident: 2751_CR117
  publication-title: Interdiscip Sci Comput Life Sci
  doi: 10.1007/s12539-023-00562-2
– volume: 55
  start-page: 78
  issue: 10
  year: 2012
  ident: 2751_CR125
  publication-title: Commun ACM
  doi: 10.1145/2347736.2347755
– volume: 33
  start-page: 590
  year: 2019
  ident: 2751_CR12
  publication-title: Proceed AAAI Conf Artif Intell
  doi: 10.1609/aaai.v33i01.3301590
– volume: 6
  start-page: 131
  issue: 12
  year: 2020
  ident: 2751_CR7
  publication-title: J Imaging
  doi: 10.3390/jimaging6120131
– year: 2018
  ident: 2751_CR15
  publication-title: Iberoam Congr Pattern Recogn
  doi: 10.1007/978-3-030-13469-3_88
– volume: 183
  start-page: 329
  year: 2019
  ident: 2751_CR23
  publication-title: Optik
  doi: 10.1016/j.ijleo.2019.02.054
– ident: 2751_CR19
  doi: 10.1109/SIPROCESS.2016.7888251
– volume: 9785
  start-page: 302
  year: 2016
  ident: 2751_CR32
  publication-title: Med Imaging Comput-Aided Diagn
  doi: 10.1117/12.2217209
– volume: 37
  start-page: 1865
  issue: 8
  year: 2018
  ident: 2751_CR34
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2018.2806086
– year: 2018
  ident: 2751_CR77
  publication-title: Int Workshop Mach Learn Med Imaging
  doi: 10.1007/978-3-030-00919-9_29
– volume: 52
  start-page: 281
  issue: 5
  year: 2017
  ident: 2751_CR71
  publication-title: Invest Radiol
  doi: 10.1097/RLI.0000000000000341
– ident: 2751_CR124
  doi: 10.1109/CVPR52729.2023.00983
– volume: 78
  year: 2022
  ident: 2751_CR99
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2022.103977
– volume: 8
  start-page: 191586
  year: 2020
  ident: 2751_CR40
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3031384
– volume: 24
  start-page: 2016
  issue: 7
  year: 2019
  ident: 2751_CR83
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2019.2952597
– ident: 2751_CR11
  doi: 10.1109/CVPR.2017.369
– volume: 94
  year: 2021
  ident: 2751_CR47
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/j.compmedimag.2021.102008
– ident: 2751_CR122
– ident: 2751_CR14
  doi: 10.1109/ICASSP.2019.8682952
– year: 2017
  ident: 2751_CR105
  publication-title: ArXiv preprint
  doi: 10.48550/arXiv.1710.10501
– ident: 2751_CR108
  doi: 10.1007/978-3-030-00919-9_45
– volume: 136
  year: 2022
  ident: 2751_CR27
  publication-title: Tuberculosis
  doi: 10.1016/j.tube.2022.102234
– volume: 138
  start-page: 638
  year: 2020
  ident: 2751_CR96
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2020.09.010
– ident: 2751_CR51
  doi: 10.1109/Confluence47617.2020.9057809
– volume: 7
  start-page: 541
  year: 2021
  ident: 2751_CR16
  publication-title: PeerJ Comput Sci
  doi: 10.7717/peerj-cs.541/supp-1
– volume: 7
  start-page: 495
  year: 2021
  ident: 2751_CR113
  publication-title: PeerJ Comput Sci
  doi: 10.7717/peerj-cs.495
– volume: 1490
  start-page: 012020
  year: 2020
  ident: 2751_CR88
  publication-title: J Phys Conf Ser
  doi: 10.1088/1742-6596/1490/1/012020
– volume: 4
  start-page: 18
  year: 2020
  ident: 2751_CR94
  publication-title: Int J Acad Eng Res (IJAER)
– volume: 78
  start-page: 31515
  issue: 22
  year: 2019
  ident: 2751_CR60
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-019-07984-5
– volume: 9
  start-page: 4130
  issue: 19
  year: 2019
  ident: 2751_CR109
  publication-title: Appl Sci
  doi: 10.3390/app9194130
– volume: 130
  start-page: 259
  year: 2020
  ident: 2751_CR86
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2018.10.027
– volume: 22
  start-page: 1211
  issue: 3
  year: 2022
  ident: 2751_CR101
  publication-title: Sensors
  doi: 10.3390/s22031211
– volume: 64
  start-page: 923
  year: 2023
  ident: 2751_CR102
  publication-title: Alex Eng J
  doi: 10.1016/j.aej.2022.10.053
– volume: 53
  start-page: 101554
  year: 2019
  ident: 2751_CR110
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2019.04.031
– year: 2018
  ident: 2751_CR4
  publication-title: arXiv preprint
  doi: 10.48550/arXiv.1807.03058
– volume: 9
  start-page: 1
  issue: 1
  year: 2019
  ident: 2751_CR50
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-42294-8
– year: 2018
  ident: 2751_CR81
  publication-title: arXiv preprint
  doi: 10.48550/arXiv.1807.07247
– ident: 2751_CR80
  doi: 10.1109/BMEiCON.2018.8609997
– volume: 174
  start-page: 71
  issue: 1
  year: 2000
  ident: 2751_CR10
  publication-title: Am J Roentgenol
  doi: 10.2214/ajr.174.1.1740071
– ident: 2751_CR21
  doi: 10.1109/EMBC
– volume: 13
  start-page: 8
  issue: 1
  year: 2020
  ident: 2751_CR57
  publication-title: Future Internet
  doi: 10.3390/fi13010008
– volume: 78
  start-page: 388
  year: 2019
  ident: 2751_CR53
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2019.08.004
– volume: 10574
  start-page: 415
  year: 2018
  ident: 2751_CR56
  publication-title: Med Imaging: Image Process
  doi: 10.1117/12.2293971
– volume: 8
  start-page: 217897
  year: 2020
  ident: 2751_CR24
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3041867
– year: 2018
  ident: 2751_CR103
  publication-title: arXiv preprint
  doi: 10.48550/arXiv.1804.07839
– volume: 2
  start-page: 124
  year: 2019
  ident: 2751_CR82
  publication-title: Int Symp Comput Intell Design (ISCID)
  doi: 10.1109/ISCID.2019.10111
– volume: 11050
  start-page: 147
  year: 2019
  ident: 2751_CR93
  publication-title: Int Forum Med Imaging Asia
  doi: 10.1117/12.2521652
– ident: 2751_CR65
– volume: 45
  start-page: 729
  issue: 3
  year: 2022
  ident: 2751_CR31
  publication-title: Phys Eng Sci Med
  doi: 10.1007/s13246-022-01139-x
– ident: 2751_CR20
  doi: 10.1109/WiSPNET.2016
– ident: 2751_CR118
– volume: 1848
  start-page: 012030
  year: 2021
  ident: 2751_CR114
  publication-title: J Phys Conf Ser
  doi: 10.1088/1742-6596/1848/1/012030
– ident: 2751_CR2
– year: 2017
  ident: 2751_CR5
  publication-title: arXiv preprint
  doi: 10.48550/arXiv.1711.05225
– volume: 284
  start-page: 574
  issue: 2
  year: 2017
  ident: 2751_CR63
  publication-title: Radiology
  doi: 10.1148/radiol.2017162326
– ident: 2751_CR73
  doi: 10.1109/ICIRCA48905
– volume: 218
  start-page: 357
  year: 2023
  ident: 2751_CR92
  publication-title: Proced Comput Sci
  doi: 10.1016/j.procs.2023.01.018
– volume: 155
  year: 2023
  ident: 2751_CR30
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2023.106646
– volume: 41
  start-page: 239
  issue: 1
  year: 2021
  ident: 2751_CR48
  publication-title: Biocybern Biomed Eng
  doi: 10.1016/j.bbe.2021.01.002
– volume: 57
  start-page: 10
  year: 2017
  ident: 2751_CR33
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/j.compmedimag.2016.11.004
– year: 2021
  ident: 2751_CR70
  publication-title: Cogn Comput
  doi: 10.1007/s12559-020-09787-5
– year: 2022
  ident: 2751_CR91
  publication-title: IEEE/ACM Trans Comput Biol Bioinf
  doi: 10.1109/TCBB.2022.3190265
SSID ssj0002504465
Score 2.2546892
SecondaryResourceType review_article
Snippet The purpose of this survey is to provide a comprehensive review of the most recent publications on lung disease classification from chest X-ray images using...
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 405
SubjectTerms Algorithms
Artificial intelligence
Chest
Classification
Computer Imaging
Computer Science
Computer Systems Organization and Communication Networks
COVID-19
Data Structures and Information Theory
Datasets
Deep learning
Engineering Sciences
Image classification
Information Systems and Communication Service
Lung cancer
Lung diseases
Machine learning
Medical diagnosis
Medical imaging
Pattern Recognition and Graphics
Performance evaluation
Pneumonia
Research methodology
Review Article
Software Engineering/Programming and Operating Systems
Systematic review
Tuberculosis
Vision
X-rays
Title A Systematic Review: Classification of Lung Diseases from Chest X-Ray Images Using Deep Learning Algorithms
URI https://link.springer.com/article/10.1007/s42979-024-02751-2
https://www.proquest.com/docview/3033950353
https://univ-angers.hal.science/hal-04606818
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2661-8907
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002504465
  issn: 2661-8907
  databaseCode: AFBBN
  dateStart: 20190625
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2661-8907
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0002504465
  issn: 2661-8907
  databaseCode: BENPR
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS-NAEB9s--KLnKhY9coivnnLNZvsNnsgR6r2eodXDj-gbyHZ3SicttXWA_97Z7ZJ_IATQh6STQIzuzOTmZ3fD-DAxnmGfjbgSvRyHmlT8MzkeNKRRhdhTRxTv_PvkRpeRb_GcrwCo6oXhrZVVjbRG2o7NZQj_4qmNtSyG8rw--yeE2sUVVcrCo2spFawRx5irAEtQchYTWj1T0d_zuusCwF2RZ5fEh2T4FrLcdlJ4_vp0Dj3NEe3RaVNGXDxxls1bmiv5KtA9F3t1LukwSdYK2NJliyVvw4rbrIBfxN2UaMzs2Xq_xvz3Je0K8grgk0LdoarnJ0syzNzRl0m7Ji4s9iYn2dP7OcdGpo58zsK2IlzM1YisV6z5PYaBbO4uZtvwtXg9PJ4yEtGBW6EwlDaKSIJ1bYIHUZWtuhFlEt0eeGMcoHFYFHk2uE_TBevqizOChSsUVKGtpsZ9Hdb0JxMJ24bmIww9AmlLqSzUexUrrvKxj0RBzgtbFS0Iagkl5oSbpxYL27TGijZSztFaade2qlow2H9zGwJtvHh6H1USD2QcLKHyVlK16jaqzAU-Re0Ya_SV1quznn6Mpfa8KXS4cvt_39y5-O37cKq8JMHD7UHzcXDo_uMMcsi70AjHvzoQCsZ9PujTjktnwE3DOfS
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED7txwO8TCCG6DaGhdgTWDSO7cZIEyrrppZ1FRqb1DeT2M4msbWFFKb9c_xtnF0nY0jb26QoD46TSHeXuy8-330Ab2xW5BhnEypZp6BcmZLmpsCT4gpDhDVZ5uudj0ayf8o_j8V4Cf7UtTB-W2XtE4OjtlPj18jfo6tNlWinIv04-0E9a5TPrtYUGnmkVrC7ocVYLOw4dNdX-AtX7Q56qO8dxg72T_b6NLIMUMMkwksnPXGmsmXqEG3YssP9-porSmekSywCKFYoh7i-jaMyz_ISX2akEKlt5wZjAD53GVZ5yhX-_K1-2h99OW5WeXyDMB74LDEQMqqUGMfKnVC_h8GgoyiGSZ9KFQllt6Lj8rnfm_kP8P0vVxtC4METWIvYlXQXxvYUltzkGXzvkq9NN2iySDV8IIFr0-9CCoon05IM0auQ3iIdVBFf1UL2PFcXGdPj_JoMLtGxVSTsYCA952Ykdn49I92LM1TE_PyyWofTB5Htc1iZTCfuBRDBEWqlQpXCWZ45Wai2tFmHZQmaoeVlC5JactrE9uaeZeNCN42Zg7Q1SlsHaWvWgrfNPbNFc497Z79GhTQTfV_ufneo_ZjPLkuEPr-TFmzV-tLRG1T6xnZb8K7W4c3lu1-5cf_TXsGj_snRUA8Ho8NNeMyCIeEht2Bl_vOXe4l4aV5sR6Mk8O2hv4O_WnQirw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Systematic+Review%3A+Classification+of+Lung+Diseases+from+Chest+X-Ray+Images+Using+Deep+Learning+Algorithms&rft.jtitle=SN+computer+science&rft.au=Hage+Chehade%2C+Aya&rft.au=Abdallah%2C+Nassib&rft.au=Marion%2C+Jean-Marie&rft.au=Hatt%2C+Mathieu&rft.date=2024-04-06&rft.pub=Springer+Nature+B.V&rft.issn=2662-995X&rft.eissn=2661-8907&rft.volume=5&rft.issue=4&rft.spage=405&rft_id=info:doi/10.1007%2Fs42979-024-02751-2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2661-8907&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2661-8907&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2661-8907&client=summon