Comparison of LSTM and IndoBERT Method in Identifying Hoax on Twitter

In recent years, social media users have been increasing significantly, in January 2022 social media users in Indonesia reached 191 million people which has an increase of 12.35% from the previous year as many as 170 million people, With this massive increase every year, more and more people tend to...

Full description

Saved in:
Bibliographic Details
Published inJurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) (Online) Vol. 7; no. 3; pp. 657 - 662
Main Authors Muhammad Ikram Kaer Sinapoy, Yuliant Sibaroni, Sri Suryani Prasetyowati
Format Journal Article
LanguageEnglish
Published Ikatan Ahli Informatika Indonesia 01.06.2023
Subjects
Online AccessGet full text
ISSN2580-0760
2580-0760
DOI10.29207/resti.v7i3.4830

Cover

Abstract In recent years, social media users have been increasing significantly, in January 2022 social media users in Indonesia reached 191 million people which has an increase of 12.35% from the previous year as many as 170 million people, With this massive increase every year, more and more people tend to seek and consume information through social media. Despite the many advantages provided by social media, However, the quality of information on social media is lower than in traditional news media there is a lot of hoax information spreading. With many disadvantages felt by hoax information, it has led to many research to detect hoax information on social media, especially information that is widely spread on Twitter. There are several previous researches that use various models using machine learning and also using deep learning to detect hoax. deep learning is very well used to perform several text classification tasks, especially in detecting hoax. The aim of this paper is to compare the LSTM and IndoBERT methods in detecting hoax using datasets taken from Twitter. In this study, two experiments work are conducted, LSTM and IndoBERT methods. The experimental results is average value obtained from experiments using 10-fold cross-validation. The IndoBERT model shows good performance with an average accuracy value of 92.07%, and the LSTM model provides an average accuracy value of 87.54%. The IndoBERT model can show good performance in hoax detection tasks and is shown to outperform the LSTM model which can provide the best average accuracy results in this study.
AbstractList In recent years, social media users have been increasing significantly, in January 2022 social media users in Indonesia reached 191 million people which has an increase of 12.35% from the previous year as many as 170 million people, With this massive increase every year, more and more people tend to seek and consume information through social media. Despite the many advantages provided by social media, However, the quality of information on social media is lower than in traditional news media there is a lot of hoax information spreading. With many disadvantages felt by hoax information, it has led to many research to detect hoax information on social media, especially information that is widely spread on Twitter. There are several previous researches that use various models using machine learning and also using deep learning to detect hoax. deep learning is very well used to perform several text classification tasks, especially in detecting hoax. The aim of this paper is to compare the LSTM and IndoBERT methods in detecting hoax using datasets taken from Twitter. In this study, two experiments work are conducted, LSTM and IndoBERT methods. The experimental results is average value obtained from experiments using 10-fold cross-validation. The IndoBERT model shows good performance with an average accuracy value of 92.07%, and the LSTM model provides an average accuracy value of 87.54%. The IndoBERT model can show good performance in hoax detection tasks and is shown to outperform the LSTM model which can provide the best average accuracy results in this study.
Author Muhammad Ikram Kaer Sinapoy
Yuliant Sibaroni
Sri Suryani Prasetyowati
Author_xml – sequence: 1
  surname: Muhammad Ikram Kaer Sinapoy
  fullname: Muhammad Ikram Kaer Sinapoy
– sequence: 2
  surname: Yuliant Sibaroni
  fullname: Yuliant Sibaroni
– sequence: 3
  surname: Sri Suryani Prasetyowati
  fullname: Sri Suryani Prasetyowati
BookMark eNqFkE1LAzEQhoNUsH7cPeYPtOZrv45aqi20CFrPYXYz0cialGy09t-7tiLiQU8zDDzvOzzHZOCDR0LOORuLSrDiImKX3PitcHKsSskOyFBkJRuxImeDH_sROeu6Z8aYECrPSjkk00l4WUN0XfA0WLq4Xy0peEPn3oSr6d2KLjE9BUOdp3ODPjm7df6RzgK80x5ZbVxKGE_JoYW2w7OveUIerqeryWy0uL2ZTy4Xo0bk_QtWNVJibiuolcKSV2XDheS5rdGgRVugskoqw5UwVc0wKzOFdcEMoC2ZQnlC5vtcE-BZr6N7gbjVAZzeHUJ81BCTa1rUqmmqjGcAIArFuABZ9MW2VAXHjNWqz-L7rFe_hu0G2vY7kDO906p3WvWnVv2ptWfyPdPE0HURrW5cguSCTxFc-xfIfoH_dn0AVkiQmw
CitedBy_id crossref_primary_10_12688_f1000research_130610_4
crossref_primary_10_12688_f1000research_130610_3
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.29207/resti.v7i3.4830
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISSN 2580-0760
EndPage 662
ExternalDocumentID oai_doaj_org_article_4cc9515aaa274012a376f9f8471e50b4
10.29207/resti.v7i3.4830
10_29207_resti_v7i3_4830
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
M~E
ADTOC
UNPAY
ID FETCH-LOGICAL-c2680-f4c33e6f9ab44e8198c12316fbedefef7e4f434d142d9b0e5854eb70daef804e3
IEDL.DBID DOA
ISSN 2580-0760
IngestDate Fri Oct 03 12:52:49 EDT 2025
Wed Oct 01 16:04:59 EDT 2025
Thu Apr 24 22:56:21 EDT 2025
Tue Jul 01 01:32:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2680-f4c33e6f9ab44e8198c12316fbedefef7e4f434d142d9b0e5854eb70daef804e3
OpenAccessLink https://doaj.org/article/4cc9515aaa274012a376f9f8471e50b4
PageCount 6
ParticipantIDs doaj_primary_oai_doaj_org_article_4cc9515aaa274012a376f9f8471e50b4
unpaywall_primary_10_29207_resti_v7i3_4830
crossref_citationtrail_10_29207_resti_v7i3_4830
crossref_primary_10_29207_resti_v7i3_4830
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) (Online)
PublicationYear 2023
Publisher Ikatan Ahli Informatika Indonesia
Publisher_xml – name: Ikatan Ahli Informatika Indonesia
SSID ssj0002246583
Score 2.3059945
Snippet In recent years, social media users have been increasing significantly, in January 2022 social media users in Indonesia reached 191 million people which has an...
SourceID doaj
unpaywall
crossref
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
StartPage 657
SubjectTerms hoax detection, social media, lstm, indobert
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEF_0-qA--IGKV6vsgy8KSTbZzddjW65cxSuiOahPYXZ3tgSPpJQ7-_HXdydJD0VQxNcwwyYzS2aGmfn9GHunkwRlkUEAhYRAQeyCwhkM0Iee2AqUGmh3eHGSzZfq42l6Ou7C0Mh_b7-wgYba-KH3Rw8aSEgRkX-j6jgaDRpZwpLvwEaqkCLK8-w-28lSn49P2M7y5PP-N2KVSwsRUOtp6E8SMVNOmNzrJvyRNzIk1V_iUQ_b_4g92LTncH0Jq9VPseboCTN3GzvDiMn3cLPWobn5HcDxPz7jKXs8pqJ8f5B5xu5h-5zNDrfEhLxz_NPXasGhtfy4td3B7EvFFz3lNG9aPuz49ntSfN7BFfcq1WVD60Ev2PJoVh3Og5FqITBJ5o3klJESM1eCVgp9llAYH9LizGm06NDlqJySysYqsaUW6IsMhToXFtAVQqF8ySZt1-IrxoXNSp36MkYYX2q5UhcQp3nuoHRGlSaZsujO4LUZcciJDmNV-3qkd1Hdu6gmF9Vklil7v9U4HzA4_iB7QD7cyhF6dv-guzirR6PXyhifWKYAkBAhYQL-L-tKR4EaU6HVlH3Y3oC_nrj7L8Kv2UPiqx9mzfbYZH2xwTc-q1nrt-O1vQWQZvnL
  priority: 102
  providerName: Unpaywall
Title Comparison of LSTM and IndoBERT Method in Identifying Hoax on Twitter
URI http://jurnal.iaii.or.id/index.php/RESTI/article/download/4830/776
https://doaj.org/article/4cc9515aaa274012a376f9f8471e50b4
UnpaywallVersion publishedVersion
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2580-0760
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002246583
  issn: 2580-0760
  databaseCode: DOA
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2580-0760
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002246583
  issn: 2580-0760
  databaseCode: M~E
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA6iB_Ugiorzx8jBi0K3tEnb9LiNjSluiHYwTyVJX2AyuiGb0__eJJ2jJ3fxWhLSfi_t9x7N-z6EbmUQAOWR8ASnwmPC1x7XCjww1OPnBKgUtnd4MIz6I_Y4DscVqy97JqyUBy6BazKlTBIQCiECax4XCPNG6ETbjyqERDolUMKTSjH17kRdmKFWWv6XtIZMsdXiXkwan_GENhi3h54rPOTk-g_R_rKYi--VmE4rHNM7Rkfr5BC3yps6QTtQnKJuZ2MViGcaP72mA2zKf_xQ5LN29yXFA2cCjScFLrtuXecS7s_EFzZT0tXENuycoVGvm3b63tr8wFNBxImnmaIUzKMKyRgY3ubKkIwfaQk5aNAxMM0oy30W5IkkYNJ-BjImuQDNCQN6jnaLWQEXCJM8SmRoCguiTPGjE8mFH8axFolWLFFBDTV_ocjUWhncGlRMM1MhOPAyB15mwcsseDV0t5kxL1Ux_hjbtuhuxlk9a3fBRDlbRznbFuUaut_EZuuKl_-x4hU6sM7y5amwa7S7-FjCjck_FrLutlod7Y2Gz623H4xN2ns
linkProvider Directory of Open Access Journals
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEF_0-qA--IGKV6vsgy8KSTbZzddjW65cxSuiOahPYXZ3tgSPpJQ7-_HXdydJD0VQxNcwwyYzS2aGmfn9GHunkwRlkUEAhYRAQeyCwhkM0Iee2AqUGmh3eHGSzZfq42l6Ou7C0Mh_b7-wgYba-KH3Rw8aSEgRkX-j6jgaDRpZwpLvwEaqkCLK8-w-28lSn49P2M7y5PP-N2KVSwsRUOtp6E8SMVNOmNzrJvyRNzIk1V_iUQ_b_4g92LTncH0Jq9VPseboCTN3GzvDiMn3cLPWobn5HcDxPz7jKXs8pqJ8f5B5xu5h-5zNDrfEhLxz_NPXasGhtfy4td3B7EvFFz3lNG9aPuz49ntSfN7BFfcq1WVD60Ev2PJoVh3Og5FqITBJ5o3klJESM1eCVgp9llAYH9LizGm06NDlqJySysYqsaUW6IsMhToXFtAVQqF8ySZt1-IrxoXNSp36MkYYX2q5UhcQp3nuoHRGlSaZsujO4LUZcciJDmNV-3qkd1Hdu6gmF9Vklil7v9U4HzA4_iB7QD7cyhF6dv-guzirR6PXyhifWKYAkBAhYQL-L-tKR4EaU6HVlH3Y3oC_nrj7L8Kv2UPiqx9mzfbYZH2xwTc-q1nrt-O1vQWQZvnL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+LSTM+and+IndoBERT+Method+in+Identifying+Hoax+on+Twitter&rft.jtitle=Jurnal+RESTI+%28Rekayasa+Sistem+dan+Teknologi+Informasi%29+%28Online%29&rft.au=Muhammad+Ikram+Kaer+Sinapoy&rft.au=Yuliant+Sibaroni&rft.au=Sri+Suryani+Prasetyowati&rft.date=2023-06-01&rft.pub=Ikatan+Ahli+Informatika+Indonesia&rft.eissn=2580-0760&rft.volume=7&rft.issue=3&rft.spage=657&rft.epage=662&rft_id=info:doi/10.29207%2Fresti.v7i3.4830&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4cc9515aaa274012a376f9f8471e50b4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2580-0760&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2580-0760&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2580-0760&client=summon