A graph neural network and multi-task learning-based decoding algorithm for enhancing XZZX code stability in biased noise

Quantum error correction is a technique that enhances a system’s ability to combat noise by encoding logical information into additional quantum bits, which plays a key role in building practical quantum computers. The XZZX surface code, with only one stabilizer generator on each face, demonstrates...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 34; no. 5; pp. 50306 - 50313
Main Authors Xiao, Bo, Fan, Zai-Xu, Sun, Hui-Qian, Ma, Hong-Yang, Fan, Xing-Kui
Format Journal Article
LanguageEnglish
Published Chinese Physical Society and IOP Publishing Ltd 01.05.2025
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
DOI10.1088/1674-1056/adbadb

Cover

Abstract Quantum error correction is a technique that enhances a system’s ability to combat noise by encoding logical information into additional quantum bits, which plays a key role in building practical quantum computers. The XZZX surface code, with only one stabilizer generator on each face, demonstrates significant application potential under biased noise. However, the existing minimum weight perfect matching (MWPM) algorithm has high computational complexity and lacks flexibility in large-scale systems. Therefore, this paper proposes a decoding method that combines graph neural networks (GNN) with multi-classifiers, the syndrome is transformed into an undirected graph, and the features are aggregated by convolutional layers, providing a more efficient and accurate decoding strategy. In the experiments, we evaluated the performance of the XZZX code under different biased noise conditions (bias = 1, 20, 200) and different code distances ( d = 3, 5, 7, 9, 11). The experimental results show that under low bias noise (bias = 1), the GNN decoder achieves a threshold of 0.18386, an improvement of approximately 19.12% compared to the MWPM decoder. Under high bias noise (bias = 200), the GNN decoder reaches a threshold of 0.40542, improving by approximately 20.76%, overcoming the limitations of the conventional decoder. They demonstrate that the GNN decoding method exhibits superior performance and has broad application potential in the error correction of XZZX code.
AbstractList Quantum error correction is a technique that enhances a system’s ability to combat noise by encoding logical information into additional quantum bits, which plays a key role in building practical quantum computers. The XZZX surface code, with only one stabilizer generator on each face, demonstrates significant application potential under biased noise. However, the existing minimum weight perfect matching (MWPM) algorithm has high computational complexity and lacks flexibility in large-scale systems. Therefore, this paper proposes a decoding method that combines graph neural networks (GNN) with multi-classifiers, the syndrome is transformed into an undirected graph, and the features are aggregated by convolutional layers, providing a more efficient and accurate decoding strategy. In the experiments, we evaluated the performance of the XZZX code under different biased noise conditions (bias = 1, 20, 200) and different code distances ( d = 3, 5, 7, 9, 11). The experimental results show that under low bias noise (bias = 1), the GNN decoder achieves a threshold of 0.18386, an improvement of approximately 19.12% compared to the MWPM decoder. Under high bias noise (bias = 200), the GNN decoder reaches a threshold of 0.40542, improving by approximately 20.76%, overcoming the limitations of the conventional decoder. They demonstrate that the GNN decoding method exhibits superior performance and has broad application potential in the error correction of XZZX code.
Author Fan, Xing-Kui
Fan, Zai-Xu
Xiao, Bo
Ma, Hong-Yang
Sun, Hui-Qian
Author_xml – sequence: 1
  givenname: Bo
  surname: Xiao
  fullname: Xiao, Bo
  organization: Qingdao University of Technology School of Information and Control Engineering, Qingdao 266033, China
– sequence: 2
  givenname: Zai-Xu
  surname: Fan
  fullname: Fan, Zai-Xu
  organization: Qingdao University of Technology School of Information and Control Engineering, Qingdao 266033, China
– sequence: 3
  givenname: Hui-Qian
  surname: Sun
  fullname: Sun, Hui-Qian
  organization: Qingdao University of Technology School of Information and Control Engineering, Qingdao 266033, China
– sequence: 4
  givenname: Hong-Yang
  surname: Ma
  fullname: Ma, Hong-Yang
  organization: Qingdao University of Technology School of Sciences, Qingdao 266033, China
– sequence: 5
  givenname: Xing-Kui
  surname: Fan
  fullname: Fan, Xing-Kui
  organization: Qingdao University of Technology School of Sciences, Qingdao 266033, China
BookMark eNp9kL1rwzAQxUVJoUnavaO2LnUjWbYljyH0CwJdWghZhGydEiWOZCSHkv--dlM6lcLB4-7eO47fBI2cd4DQLSUPlAgxowXPEkryYqZ01dcFGqckFwkTLBuh8e_6Ck1i3BFSUJKyMTrN8SaodosdHINqeuk-fdhj5TQ-HJvOJp2Ke9yACs66TVKpCBprqL3uW6yajQ-22x6w8QGD2ypXD_PVer3CvQdw7FRlG9udsHW4st9x522Ea3RpVBPh5ken6OPp8X3xkizfnl8X82VSpwXvEqhSo7hmtaBlVmhOVM4ppCkrMqqzGgQHk3EGNRgmDDeGixJSKlKTlQXVJZsicr5bBx9jACPbYA8qnCQlckAnBzZyYCPP6PrI_TlifSt3_hhc_-B_9rs_7HVbSZbJXJKcMFLIVhv2BfiFgjs
Cites_doi 10.48550/arXiv.2410.23779
10.1038/nphys1309
10.48550/arXiv.2308.02769
10.1088/1674-1056/ad342b
10.1103/PhysRevX.13.031007
10.1088/0034-4885/61/2/002
10.1145/3464420
10.48550/arXiv.2203.16486
10.1016/j.neucom.2021.03.091
10.1103/PhysRevA.52.R2493
10.48550/arXiv.2307.01241
10.1103/PhysRevLett.121.190501
10.1038/s41586-022-04566-8
10.1016/j.eswa.2022.117921
10.48550/arXiv.2205.08154
10.1109/ISIT50566.2022.9834489
10.1007/s102080010013
10.1145/3394486.3403076
10.1007/s11432-020-2881-9
10.1088/1674-1056/ad2bef
10.1007/s41095-022-0271-y
10.48550/arXiv.quant-ph/9811052
10.1109/ACCESS.2022.3144598
10.1109/TC.2019.2948612
10.3390/biomimetics8020199
10.1088/1612-202X/ad3a54
10.1007/s12532-009-0002-8
10.1038/s41467-021-21098-3
10.1038/s42254-023-00603-1
10.1109/TNNLS.2020.2978386
10.1103/PhysRevLett.121.050502
10.1007/s10489-020-02069-5
10.1038/s41567-020-0992-8
10.1109/JSAC.2024.3380088
10.1007/s00521-022-06953-8
10.1049/iet-qtc.2020.0027
10.1109/ACCESS.2021.3071274
10.1088/1674-1056/ac11e3
10.1038/s41467-021-22274-1
10.48550/arXiv.2003.09416
10.1038/s41567-020-0920-y
10.3390/asi4040085
10.1016/j.sbi.2023.102538
10.1109/IPIN54987.2022.9918120
10.1016/j.eswa.2023.119892
10.1103/PhysRevA.86.042313
10.1038/s41567-020-01112-z
10.1016/j.neunet.2022.05.028
10.1016/j.cosrev.2018.11.002
ContentType Journal Article
Copyright 2025 Chinese Physical Society and IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Copyright_xml – notice: 2025 Chinese Physical Society and IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
DBID AAYXX
CITATION
DOI 10.1088/1674-1056/adbadb
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2058-3834
ExternalDocumentID 10_1088_1674_1056_adbadb
cpb_34_5_050306
GroupedDBID -SA
-S~
1JI
29B
4.4
5B3
5GY
5VR
5VS
5ZH
6J9
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
ADEQX
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
AVWKF
AZFZN
CAJEA
CCEZO
CCVFK
CEBXE
CHBEP
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
FA0
IJHAN
IOP
IZVLO
KOT
N5L
PJBAE
RIN
RNS
ROL
RPA
SY9
TCJ
TGP
U1G
U5K
W28
AAYXX
AEINN
CITATION
ID FETCH-LOGICAL-c267t-eb2fa7d3c81946d70a571e223641d4ce87ef473ecef38f7ff789e2182f4961d93
IEDL.DBID IOP
ISSN 1674-1056
IngestDate Wed Oct 01 06:31:29 EDT 2025
Thu May 15 22:16:56 EDT 2025
Thu May 15 22:17:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c267t-eb2fa7d3c81946d70a571e223641d4ce87ef473ecef38f7ff789e2182f4961d93
PageCount 8
ParticipantIDs crossref_primary_10_1088_1674_1056_adbadb
iop_journals_10_1088_1674_1056_adbadb
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250501
2025-05-01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 20250501
  day: 01
PublicationDecade 2020
PublicationTitle Chinese physics B
PublicationTitleAlternate Chin. Phys. B
PublicationYear 2025
Publisher Chinese Physical Society and IOP Publishing Ltd
Publisher_xml – name: Chinese Physical Society and IOP Publishing Ltd
References Freedman (cpb_34_5_050306bib16) 2001; 1
Forlivesi (cpb_34_5_050306bib21) 2023; 42
Velickovic (cpb_34_5_050306bib37) 2023; 79
Beale (cpb_34_5_050306bib13) 2018; 121
Bonilla Ataides (cpb_34_5_050306bib19) 2021; 12
Tiku (cpb_34_5_050306bib51) 2022
Fowler (cpb_34_5_050306bib22) 2012; 86
Chao (cpb_34_5_050306bib11) 2018; 121
Lavasani (cpb_34_5_050306bib42) 2021; 17
Kuo (cpb_34_5_050306bib25) 2023
Guo (cpb_34_5_050306bib29) 2023; 8
Kurdija (cpb_34_5_050306bib41) 2022; 10
Du (cpb_34_5_050306bib31) 2020
Hassija (cpb_34_5_050306bib4) 2020; 1
Huang (cpb_34_5_050306bib5) 2020; 63
Chiaverini (cpb_34_5_050306bib8) 2004; 33
Sharaf Al-deen (cpb_34_5_050306bib49) 2021; 4
Higgott (cpb_34_5_050306bib32) 2023; 13
Lange (cpb_34_5_050306bib27) 2023
Xu (cpb_34_5_050306bib20) 2022
Chen (cpb_34_5_050306bib50) 2021; 51
Aoki (cpb_34_5_050306bib9) 2009; 5
Wu (cpb_34_5_050306bib35) 2020; 32
Resch (cpb_34_5_050306bib30) 2021; 54
Gong (cpb_34_5_050306bib10) 2024; 21
Chen (cpb_34_5_050306bib7) 2024; 33
Varsamopoulos (cpb_34_5_050306bib47) 2019; 69
Asif (cpb_34_5_050306bib36) 2021; 9
Marcianò (cpb_34_5_050306bib46) 2022; 153
Harper (cpb_34_5_050306bib33) 2020; 16
Sung (cpb_34_5_050306bib34) 2021; 12
Krinner (cpb_34_5_050306bib43) 2022; 605
Andersen (cpb_34_5_050306bib18) 2020; 16
Kerstin (cpb_34_5_050306bib45) 2022
Kolmogorov (cpb_34_5_050306bib17) 2009; 1
Niu (cpb_34_5_050306bib28) 2023; 452
Krinner (cpb_34_5_050306bib12) 2022; 605
Bravyi (cpb_34_5_050306bib15) 1998
Özdemir (cpb_34_5_050306bib40) 2023; 223
Wen (cpb_34_5_050306bib48) 2023; 8
Steane (cpb_34_5_050306bib1) 1998; 61
Nirthika (cpb_34_5_050306bib39) 2022; 34
Jiang (cpb_34_5_050306bib44) 2022; 207
Chatterjee (cpb_34_5_050306bib24) 2023
Gyongyosi (cpb_34_5_050306bib2) 2019; 31
Luan (cpb_34_5_050306bib38) 2022; 35
Herman (cpb_34_5_050306bib3) 2023; 5
Zheng (cpb_34_5_050306bib26) 2021
Kam (cpb_34_5_050306bib23) 2024
Wang (cpb_34_5_050306bib6) 2022; 31
Shor (cpb_34_5_050306bib14) 1995; 52
References_xml – year: 2024
  ident: cpb_34_5_050306bib23
  doi: 10.48550/arXiv.2410.23779
– volume: 5
  start-page: 541
  year: 2009
  ident: cpb_34_5_050306bib9
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1309
– year: 2023
  ident: cpb_34_5_050306bib24
  doi: 10.48550/arXiv.2308.02769
– volume: 33
  year: 2024
  ident: cpb_34_5_050306bib7
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/ad342b
– volume: 13
  year: 2023
  ident: cpb_34_5_050306bib32
  publication-title: Phys. Rev. X
  doi: 10.1103/PhysRevX.13.031007
– volume: 61
  start-page: 117
  year: 1998
  ident: cpb_34_5_050306bib1
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/61/2/002
– volume: 54
  start-page: 1
  year: 2021
  ident: cpb_34_5_050306bib30
  publication-title: ACM Computing Surveys
  doi: 10.1145/3464420
– year: 2022
  ident: cpb_34_5_050306bib20
  doi: 10.48550/arXiv.2203.16486
– volume: 452
  start-page: 48
  year: 2023
  ident: cpb_34_5_050306bib28
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.03.091
– volume: 52
  year: 1995
  ident: cpb_34_5_050306bib14
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.52.R2493
– year: 2023
  ident: cpb_34_5_050306bib27
  doi: 10.48550/arXiv.2307.01241
– volume: 121
  year: 2018
  ident: cpb_34_5_050306bib13
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.190501
– volume: 605
  start-page: 669
  year: 2022
  ident: cpb_34_5_050306bib43
  publication-title: Nature
  doi: 10.1038/s41586-022-04566-8
– volume: 207
  year: 2022
  ident: cpb_34_5_050306bib44
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.117921
– year: 2022
  ident: cpb_34_5_050306bib45
  doi: 10.48550/arXiv.2205.08154
– start-page: 186
  year: 2023
  ident: cpb_34_5_050306bib25
  doi: 10.1109/ISIT50566.2022.9834489
– volume: 1
  start-page: 325
  year: 2001
  ident: cpb_34_5_050306bib16
  publication-title: Found. Comput. Math.
  doi: 10.1007/s102080010013
– volume: 35
  start-page: 1362
  year: 2022
  ident: cpb_34_5_050306bib38
  publication-title: Adv. Neural Inf. Process. Syst.
  doi: 10.1145/3394486.3403076
– volume: 63
  year: 2020
  ident: cpb_34_5_050306bib5
  publication-title: Sci. China Inf. Sci.
  doi: 10.1007/s11432-020-2881-9
– volume: 33
  year: 2004
  ident: cpb_34_5_050306bib8
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/ad2bef
– volume: 8
  start-page: 331
  year: 2023
  ident: cpb_34_5_050306bib29
  publication-title: Comp. Visual Media
  doi: 10.1007/s41095-022-0271-y
– year: 1998
  ident: cpb_34_5_050306bib15
  doi: 10.48550/arXiv.quant-ph/9811052
– volume: 10
  year: 2022
  ident: cpb_34_5_050306bib41
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3144598
– volume: 69
  start-page: 300
  year: 2019
  ident: cpb_34_5_050306bib47
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/TC.2019.2948612
– volume: 8
  start-page: 199
  year: 2023
  ident: cpb_34_5_050306bib48
  publication-title: Biomimetics
  doi: 10.3390/biomimetics8020199
– volume: 21
  year: 2024
  ident: cpb_34_5_050306bib10
  publication-title: Phys. Rev. B
  doi: 10.1088/1612-202X/ad3a54
– volume: 1
  start-page: 43
  year: 2009
  ident: cpb_34_5_050306bib17
  publication-title: Math. Prog. Comp.
  doi: 10.1007/s12532-009-0002-8
– volume: 12
  start-page: 967
  year: 2021
  ident: cpb_34_5_050306bib34
  publication-title: Nat. Comm.
  doi: 10.1038/s41467-021-21098-3
– volume: 5
  start-page: 450
  year: 2023
  ident: cpb_34_5_050306bib3
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-023-00603-1
– volume: 32
  start-page: 4
  year: 2020
  ident: cpb_34_5_050306bib35
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2020.2978386
– volume: 121
  year: 2018
  ident: cpb_34_5_050306bib11
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.050502
– volume: 51
  start-page: 4287
  year: 2021
  ident: cpb_34_5_050306bib50
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-020-02069-5
– volume: 16
  start-page: 1184
  year: 2020
  ident: cpb_34_5_050306bib33
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-020-0992-8
– volume: 42
  start-page: 1808
  year: 2023
  ident: cpb_34_5_050306bib21
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2024.3380088
– volume: 34
  start-page: 5321
  year: 2022
  ident: cpb_34_5_050306bib39
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-022-06953-8
– volume: 1
  start-page: 42
  year: 2020
  ident: cpb_34_5_050306bib4
  publication-title: ET Quantum Commun.
  doi: 10.1049/iet-qtc.2020.0027
– volume: 9
  year: 2021
  ident: cpb_34_5_050306bib36
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3071274
– volume: 31
  year: 2022
  ident: cpb_34_5_050306bib6
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/ac11e3
– volume: 12
  start-page: 2172
  year: 2021
  ident: cpb_34_5_050306bib19
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22274-1
– year: 2020
  ident: cpb_34_5_050306bib31
  doi: 10.48550/arXiv.2003.09416
– volume: 16
  start-page: 875
  year: 2020
  ident: cpb_34_5_050306bib18
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-020-0920-y
– volume: 4
  start-page: 85
  year: 2021
  ident: cpb_34_5_050306bib49
  publication-title: Appl. Syst. Innov.
  doi: 10.3390/asi4040085
– volume: 79
  year: 2023
  ident: cpb_34_5_050306bib37
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2023.102538
– volume: 605
  start-page: 669
  year: 2022
  ident: cpb_34_5_050306bib12
  publication-title: Nature
  doi: 10.1038/s41586-022-04566-8
– start-page: 1
  year: 2022
  ident: cpb_34_5_050306bib51
  doi: 10.1109/IPIN54987.2022.9918120
– volume: 223
  year: 2023
  ident: cpb_34_5_050306bib40
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.119892
– volume: 86
  year: 2012
  ident: cpb_34_5_050306bib22
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.86.042313
– volume: 17
  start-page: 342
  year: 2021
  ident: cpb_34_5_050306bib42
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-020-01112-z
– volume: 153
  start-page: 164
  year: 2022
  ident: cpb_34_5_050306bib46
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.neunet.2022.05.028
– start-page: 6335
  year: 2021
  ident: cpb_34_5_050306bib26
  doi: 10.48550/arXiv.2307.01241
– volume: 31
  start-page: 51
  year: 2019
  ident: cpb_34_5_050306bib2
  publication-title: Comput. Sci. Rev.
  doi: 10.1016/j.cosrev.2018.11.002
SSID ssj0061023
Score 2.3671675
Snippet Quantum error correction is a technique that enhances a system’s ability to combat noise by encoding logical information into additional quantum bits, which...
SourceID crossref
iop
SourceType Index Database
Enrichment Source
Publisher
StartPage 50306
SubjectTerms biased noise
code
graph neural network
quantum error correction
Title A graph neural network and multi-task learning-based decoding algorithm for enhancing XZZX code stability in biased noise
URI https://iopscience.iop.org/article/10.1088/1674-1056/adbadb
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOP Science Platform
  customDbUrl:
  eissn: 2058-3834
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061023
  issn: 1674-1056
  databaseCode: IOP
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4-ELz4Ft_koAcPWbtNmrR4ElFE8HFQWEQISTPVRe0ubvew_nozaVdURETooZRpGiZpZob55htCdh0my8AAy7iwTCR5zAzECTORVY4nEJkAxry4lGe34ryTdCbI4UctTK_fHP0tf1sTBdcqbABx6QHi5hk2jD8wzvprkkzz1DvGWL13dT0-hiVyEmC0NZZucpQ_jfDFJk36734yMafz5H48uRpZ8tQaVraVv33jbfzn7BfIXON60qNadJFMQLlEZgIENB8sk9ERDezVFCkuvVxZA8SpKR0NsENWmcETbdpMPDC0f446H76i-aPm-aH32q0eX6h3gymUj0jk4Z937u46FAvnqfdDAxJ3RLsltd3wetnrDmCF3J6e3ByfsaYxA8tjqSrmo_HC-KXMvTshpFORSVQbYuSibzuRQ6qgEIpDDgVPC1UUKs0AqeILkcm2y_gqmSp7JawRKv1QTirgznChpMxAmdhyEwmQ1thkneyPl0b3a_4NHfLmaapRlRpVqWtVrpM9r3Xd_ISDX-ToF7m8bzUXOtHIjRNJ3XfFxh-H2iSzMTYEDgjILTJVvQ5h23spld0Ju_EdeZfj3g
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDBaWDit66Z5F0-6hw3bYQYljyZJ9LLoF3avrYQWMXDTJopMgrRM0ziH79RVlG1iHYRhQwAfDoGibtEUS-vSRkLcOF8vAAMu4sEwkRcwMxAkzkVWOJxCZAMb8di7PLsXnPMnbPqdhL8xy1U79A3_aEAU3JmwBcekQcfMMG8YPjbP-GK5c2SMPA08J7uD7ftFNxRJ5CbDi6ka065R_03InLvX8vX8LM-PH5Gf3gA26ZDHY1HZQ_PqDu_Eeb_CE7LcpKD1pxJ-SB1A9I48CFLRYPyfbExpYrClSXXq5qgGKU1M5GuCHrDbrBW3bTUwZxkFHnS9jMQxSczVd3szr2TX16TCFaoaEHv56PpnkFDfQU5-PBkTuls4raudheLWcr-EFuRx__HF6xtoGDayIpaqZr8pL411a-LRCSKcik6gRxMhJP3KigFRBKRSHAkqelqosVZoBUsaXIpMjl_EDslMtKzgkVHpVTirgznChpMxAmdhyEwmQ1tikT9537tGrhodDh_XzNNVoTo3m1I05--Sdt7xuf8b1P-ToHbliZTUXOtHIkRNJ7b1y9J-q3pDdiw9j_fXT-Zdjshdjj-AAinxJduqbDbzyiUttX4eP8xagHek_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+graph+neural+network+and+multi-task+learning-based+decoding+algorithm+for+enhancing+XZZX+code+stability+in+biased+noise&rft.jtitle=Chinese+physics+B&rft.au=Xiao%2C+Bo&rft.au=Fan%2C+Zai-Xu&rft.au=Sun%2C+Hui-Qian&rft.au=Ma%2C+Hong-Yang&rft.date=2025-05-01&rft.pub=Chinese+Physical+Society+and+IOP+Publishing+Ltd&rft.issn=1674-1056&rft.volume=34&rft.issue=5&rft_id=info:doi/10.1088%2F1674-1056%2Fadbadb&rft.externalDocID=cpb_34_5_050306
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-1056&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-1056&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-1056&client=summon