A graph neural network and multi-task learning-based decoding algorithm for enhancing XZZX code stability in biased noise
Quantum error correction is a technique that enhances a system’s ability to combat noise by encoding logical information into additional quantum bits, which plays a key role in building practical quantum computers. The XZZX surface code, with only one stabilizer generator on each face, demonstrates...
Saved in:
| Published in | Chinese physics B Vol. 34; no. 5; pp. 50306 - 50313 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Chinese Physical Society and IOP Publishing Ltd
01.05.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1674-1056 2058-3834 |
| DOI | 10.1088/1674-1056/adbadb |
Cover
| Abstract | Quantum error correction is a technique that enhances a system’s ability to combat noise by encoding logical information into additional quantum bits, which plays a key role in building practical quantum computers. The XZZX surface code, with only one stabilizer generator on each face, demonstrates significant application potential under biased noise. However, the existing minimum weight perfect matching (MWPM) algorithm has high computational complexity and lacks flexibility in large-scale systems. Therefore, this paper proposes a decoding method that combines graph neural networks (GNN) with multi-classifiers, the syndrome is transformed into an undirected graph, and the features are aggregated by convolutional layers, providing a more efficient and accurate decoding strategy. In the experiments, we evaluated the performance of the XZZX code under different biased noise conditions (bias = 1, 20, 200) and different code distances ( d = 3, 5, 7, 9, 11). The experimental results show that under low bias noise (bias = 1), the GNN decoder achieves a threshold of 0.18386, an improvement of approximately 19.12% compared to the MWPM decoder. Under high bias noise (bias = 200), the GNN decoder reaches a threshold of 0.40542, improving by approximately 20.76%, overcoming the limitations of the conventional decoder. They demonstrate that the GNN decoding method exhibits superior performance and has broad application potential in the error correction of XZZX code. |
|---|---|
| AbstractList | Quantum error correction is a technique that enhances a system’s ability to combat noise by encoding logical information into additional quantum bits, which plays a key role in building practical quantum computers. The XZZX surface code, with only one stabilizer generator on each face, demonstrates significant application potential under biased noise. However, the existing minimum weight perfect matching (MWPM) algorithm has high computational complexity and lacks flexibility in large-scale systems. Therefore, this paper proposes a decoding method that combines graph neural networks (GNN) with multi-classifiers, the syndrome is transformed into an undirected graph, and the features are aggregated by convolutional layers, providing a more efficient and accurate decoding strategy. In the experiments, we evaluated the performance of the XZZX code under different biased noise conditions (bias = 1, 20, 200) and different code distances ( d = 3, 5, 7, 9, 11). The experimental results show that under low bias noise (bias = 1), the GNN decoder achieves a threshold of 0.18386, an improvement of approximately 19.12% compared to the MWPM decoder. Under high bias noise (bias = 200), the GNN decoder reaches a threshold of 0.40542, improving by approximately 20.76%, overcoming the limitations of the conventional decoder. They demonstrate that the GNN decoding method exhibits superior performance and has broad application potential in the error correction of XZZX code. |
| Author | Fan, Xing-Kui Fan, Zai-Xu Xiao, Bo Ma, Hong-Yang Sun, Hui-Qian |
| Author_xml | – sequence: 1 givenname: Bo surname: Xiao fullname: Xiao, Bo organization: Qingdao University of Technology School of Information and Control Engineering, Qingdao 266033, China – sequence: 2 givenname: Zai-Xu surname: Fan fullname: Fan, Zai-Xu organization: Qingdao University of Technology School of Information and Control Engineering, Qingdao 266033, China – sequence: 3 givenname: Hui-Qian surname: Sun fullname: Sun, Hui-Qian organization: Qingdao University of Technology School of Information and Control Engineering, Qingdao 266033, China – sequence: 4 givenname: Hong-Yang surname: Ma fullname: Ma, Hong-Yang organization: Qingdao University of Technology School of Sciences, Qingdao 266033, China – sequence: 5 givenname: Xing-Kui surname: Fan fullname: Fan, Xing-Kui organization: Qingdao University of Technology School of Sciences, Qingdao 266033, China |
| BookMark | eNp9kL1rwzAQxUVJoUnavaO2LnUjWbYljyH0CwJdWghZhGydEiWOZCSHkv--dlM6lcLB4-7eO47fBI2cd4DQLSUPlAgxowXPEkryYqZ01dcFGqckFwkTLBuh8e_6Ck1i3BFSUJKyMTrN8SaodosdHINqeuk-fdhj5TQ-HJvOJp2Ke9yACs66TVKpCBprqL3uW6yajQ-22x6w8QGD2ypXD_PVer3CvQdw7FRlG9udsHW4st9x522Ea3RpVBPh5ken6OPp8X3xkizfnl8X82VSpwXvEqhSo7hmtaBlVmhOVM4ppCkrMqqzGgQHk3EGNRgmDDeGixJSKlKTlQXVJZsicr5bBx9jACPbYA8qnCQlckAnBzZyYCPP6PrI_TlifSt3_hhc_-B_9rs_7HVbSZbJXJKcMFLIVhv2BfiFgjs |
| Cites_doi | 10.48550/arXiv.2410.23779 10.1038/nphys1309 10.48550/arXiv.2308.02769 10.1088/1674-1056/ad342b 10.1103/PhysRevX.13.031007 10.1088/0034-4885/61/2/002 10.1145/3464420 10.48550/arXiv.2203.16486 10.1016/j.neucom.2021.03.091 10.1103/PhysRevA.52.R2493 10.48550/arXiv.2307.01241 10.1103/PhysRevLett.121.190501 10.1038/s41586-022-04566-8 10.1016/j.eswa.2022.117921 10.48550/arXiv.2205.08154 10.1109/ISIT50566.2022.9834489 10.1007/s102080010013 10.1145/3394486.3403076 10.1007/s11432-020-2881-9 10.1088/1674-1056/ad2bef 10.1007/s41095-022-0271-y 10.48550/arXiv.quant-ph/9811052 10.1109/ACCESS.2022.3144598 10.1109/TC.2019.2948612 10.3390/biomimetics8020199 10.1088/1612-202X/ad3a54 10.1007/s12532-009-0002-8 10.1038/s41467-021-21098-3 10.1038/s42254-023-00603-1 10.1109/TNNLS.2020.2978386 10.1103/PhysRevLett.121.050502 10.1007/s10489-020-02069-5 10.1038/s41567-020-0992-8 10.1109/JSAC.2024.3380088 10.1007/s00521-022-06953-8 10.1049/iet-qtc.2020.0027 10.1109/ACCESS.2021.3071274 10.1088/1674-1056/ac11e3 10.1038/s41467-021-22274-1 10.48550/arXiv.2003.09416 10.1038/s41567-020-0920-y 10.3390/asi4040085 10.1016/j.sbi.2023.102538 10.1109/IPIN54987.2022.9918120 10.1016/j.eswa.2023.119892 10.1103/PhysRevA.86.042313 10.1038/s41567-020-01112-z 10.1016/j.neunet.2022.05.028 10.1016/j.cosrev.2018.11.002 |
| ContentType | Journal Article |
| Copyright | 2025 Chinese Physical Society and IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved. |
| Copyright_xml | – notice: 2025 Chinese Physical Society and IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved. |
| DBID | AAYXX CITATION |
| DOI | 10.1088/1674-1056/adbadb |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2058-3834 |
| ExternalDocumentID | 10_1088_1674_1056_adbadb cpb_34_5_050306 |
| GroupedDBID | -SA -S~ 1JI 29B 4.4 5B3 5GY 5VR 5VS 5ZH 6J9 7.M 7.Q AAGCD AAJIO AAJKP AATNI ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP ADEQX AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG AVWKF AZFZN CAJEA CCEZO CCVFK CEBXE CHBEP CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN FA0 IJHAN IOP IZVLO KOT N5L PJBAE RIN RNS ROL RPA SY9 TCJ TGP U1G U5K W28 AAYXX AEINN CITATION |
| ID | FETCH-LOGICAL-c267t-eb2fa7d3c81946d70a571e223641d4ce87ef473ecef38f7ff789e2182f4961d93 |
| IEDL.DBID | IOP |
| ISSN | 1674-1056 |
| IngestDate | Wed Oct 01 06:31:29 EDT 2025 Thu May 15 22:16:56 EDT 2025 Thu May 15 22:17:28 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | This article is available under the terms of the IOP-Standard License. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c267t-eb2fa7d3c81946d70a571e223641d4ce87ef473ecef38f7ff789e2182f4961d93 |
| PageCount | 8 |
| ParticipantIDs | crossref_primary_10_1088_1674_1056_adbadb iop_journals_10_1088_1674_1056_adbadb |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20250501 2025-05-01 |
| PublicationDateYYYYMMDD | 2025-05-01 |
| PublicationDate_xml | – month: 05 year: 2025 text: 20250501 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Chinese physics B |
| PublicationTitleAlternate | Chin. Phys. B |
| PublicationYear | 2025 |
| Publisher | Chinese Physical Society and IOP Publishing Ltd |
| Publisher_xml | – name: Chinese Physical Society and IOP Publishing Ltd |
| References | Freedman (cpb_34_5_050306bib16) 2001; 1 Forlivesi (cpb_34_5_050306bib21) 2023; 42 Velickovic (cpb_34_5_050306bib37) 2023; 79 Beale (cpb_34_5_050306bib13) 2018; 121 Bonilla Ataides (cpb_34_5_050306bib19) 2021; 12 Tiku (cpb_34_5_050306bib51) 2022 Fowler (cpb_34_5_050306bib22) 2012; 86 Chao (cpb_34_5_050306bib11) 2018; 121 Lavasani (cpb_34_5_050306bib42) 2021; 17 Kuo (cpb_34_5_050306bib25) 2023 Guo (cpb_34_5_050306bib29) 2023; 8 Kurdija (cpb_34_5_050306bib41) 2022; 10 Du (cpb_34_5_050306bib31) 2020 Hassija (cpb_34_5_050306bib4) 2020; 1 Huang (cpb_34_5_050306bib5) 2020; 63 Chiaverini (cpb_34_5_050306bib8) 2004; 33 Sharaf Al-deen (cpb_34_5_050306bib49) 2021; 4 Higgott (cpb_34_5_050306bib32) 2023; 13 Lange (cpb_34_5_050306bib27) 2023 Xu (cpb_34_5_050306bib20) 2022 Chen (cpb_34_5_050306bib50) 2021; 51 Aoki (cpb_34_5_050306bib9) 2009; 5 Wu (cpb_34_5_050306bib35) 2020; 32 Resch (cpb_34_5_050306bib30) 2021; 54 Gong (cpb_34_5_050306bib10) 2024; 21 Chen (cpb_34_5_050306bib7) 2024; 33 Varsamopoulos (cpb_34_5_050306bib47) 2019; 69 Asif (cpb_34_5_050306bib36) 2021; 9 Marcianò (cpb_34_5_050306bib46) 2022; 153 Harper (cpb_34_5_050306bib33) 2020; 16 Sung (cpb_34_5_050306bib34) 2021; 12 Krinner (cpb_34_5_050306bib43) 2022; 605 Andersen (cpb_34_5_050306bib18) 2020; 16 Kerstin (cpb_34_5_050306bib45) 2022 Kolmogorov (cpb_34_5_050306bib17) 2009; 1 Niu (cpb_34_5_050306bib28) 2023; 452 Krinner (cpb_34_5_050306bib12) 2022; 605 Bravyi (cpb_34_5_050306bib15) 1998 Özdemir (cpb_34_5_050306bib40) 2023; 223 Wen (cpb_34_5_050306bib48) 2023; 8 Steane (cpb_34_5_050306bib1) 1998; 61 Nirthika (cpb_34_5_050306bib39) 2022; 34 Jiang (cpb_34_5_050306bib44) 2022; 207 Chatterjee (cpb_34_5_050306bib24) 2023 Gyongyosi (cpb_34_5_050306bib2) 2019; 31 Luan (cpb_34_5_050306bib38) 2022; 35 Herman (cpb_34_5_050306bib3) 2023; 5 Zheng (cpb_34_5_050306bib26) 2021 Kam (cpb_34_5_050306bib23) 2024 Wang (cpb_34_5_050306bib6) 2022; 31 Shor (cpb_34_5_050306bib14) 1995; 52 |
| References_xml | – year: 2024 ident: cpb_34_5_050306bib23 doi: 10.48550/arXiv.2410.23779 – volume: 5 start-page: 541 year: 2009 ident: cpb_34_5_050306bib9 publication-title: Nat. Phys. doi: 10.1038/nphys1309 – year: 2023 ident: cpb_34_5_050306bib24 doi: 10.48550/arXiv.2308.02769 – volume: 33 year: 2024 ident: cpb_34_5_050306bib7 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/ad342b – volume: 13 year: 2023 ident: cpb_34_5_050306bib32 publication-title: Phys. Rev. X doi: 10.1103/PhysRevX.13.031007 – volume: 61 start-page: 117 year: 1998 ident: cpb_34_5_050306bib1 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/61/2/002 – volume: 54 start-page: 1 year: 2021 ident: cpb_34_5_050306bib30 publication-title: ACM Computing Surveys doi: 10.1145/3464420 – year: 2022 ident: cpb_34_5_050306bib20 doi: 10.48550/arXiv.2203.16486 – volume: 452 start-page: 48 year: 2023 ident: cpb_34_5_050306bib28 publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.03.091 – volume: 52 year: 1995 ident: cpb_34_5_050306bib14 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.52.R2493 – year: 2023 ident: cpb_34_5_050306bib27 doi: 10.48550/arXiv.2307.01241 – volume: 121 year: 2018 ident: cpb_34_5_050306bib13 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.190501 – volume: 605 start-page: 669 year: 2022 ident: cpb_34_5_050306bib43 publication-title: Nature doi: 10.1038/s41586-022-04566-8 – volume: 207 year: 2022 ident: cpb_34_5_050306bib44 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.117921 – year: 2022 ident: cpb_34_5_050306bib45 doi: 10.48550/arXiv.2205.08154 – start-page: 186 year: 2023 ident: cpb_34_5_050306bib25 doi: 10.1109/ISIT50566.2022.9834489 – volume: 1 start-page: 325 year: 2001 ident: cpb_34_5_050306bib16 publication-title: Found. Comput. Math. doi: 10.1007/s102080010013 – volume: 35 start-page: 1362 year: 2022 ident: cpb_34_5_050306bib38 publication-title: Adv. Neural Inf. Process. Syst. doi: 10.1145/3394486.3403076 – volume: 63 year: 2020 ident: cpb_34_5_050306bib5 publication-title: Sci. China Inf. Sci. doi: 10.1007/s11432-020-2881-9 – volume: 33 year: 2004 ident: cpb_34_5_050306bib8 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/ad2bef – volume: 8 start-page: 331 year: 2023 ident: cpb_34_5_050306bib29 publication-title: Comp. Visual Media doi: 10.1007/s41095-022-0271-y – year: 1998 ident: cpb_34_5_050306bib15 doi: 10.48550/arXiv.quant-ph/9811052 – volume: 10 year: 2022 ident: cpb_34_5_050306bib41 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3144598 – volume: 69 start-page: 300 year: 2019 ident: cpb_34_5_050306bib47 publication-title: IEEE Trans. Comput. doi: 10.1109/TC.2019.2948612 – volume: 8 start-page: 199 year: 2023 ident: cpb_34_5_050306bib48 publication-title: Biomimetics doi: 10.3390/biomimetics8020199 – volume: 21 year: 2024 ident: cpb_34_5_050306bib10 publication-title: Phys. Rev. B doi: 10.1088/1612-202X/ad3a54 – volume: 1 start-page: 43 year: 2009 ident: cpb_34_5_050306bib17 publication-title: Math. Prog. Comp. doi: 10.1007/s12532-009-0002-8 – volume: 12 start-page: 967 year: 2021 ident: cpb_34_5_050306bib34 publication-title: Nat. Comm. doi: 10.1038/s41467-021-21098-3 – volume: 5 start-page: 450 year: 2023 ident: cpb_34_5_050306bib3 publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-023-00603-1 – volume: 32 start-page: 4 year: 2020 ident: cpb_34_5_050306bib35 publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2020.2978386 – volume: 121 year: 2018 ident: cpb_34_5_050306bib11 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.050502 – volume: 51 start-page: 4287 year: 2021 ident: cpb_34_5_050306bib50 publication-title: Appl. Intell. doi: 10.1007/s10489-020-02069-5 – volume: 16 start-page: 1184 year: 2020 ident: cpb_34_5_050306bib33 publication-title: Nat. Phys. doi: 10.1038/s41567-020-0992-8 – volume: 42 start-page: 1808 year: 2023 ident: cpb_34_5_050306bib21 publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/JSAC.2024.3380088 – volume: 34 start-page: 5321 year: 2022 ident: cpb_34_5_050306bib39 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-022-06953-8 – volume: 1 start-page: 42 year: 2020 ident: cpb_34_5_050306bib4 publication-title: ET Quantum Commun. doi: 10.1049/iet-qtc.2020.0027 – volume: 9 year: 2021 ident: cpb_34_5_050306bib36 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3071274 – volume: 31 year: 2022 ident: cpb_34_5_050306bib6 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/ac11e3 – volume: 12 start-page: 2172 year: 2021 ident: cpb_34_5_050306bib19 publication-title: Nat. Commun. doi: 10.1038/s41467-021-22274-1 – year: 2020 ident: cpb_34_5_050306bib31 doi: 10.48550/arXiv.2003.09416 – volume: 16 start-page: 875 year: 2020 ident: cpb_34_5_050306bib18 publication-title: Nat. Phys. doi: 10.1038/s41567-020-0920-y – volume: 4 start-page: 85 year: 2021 ident: cpb_34_5_050306bib49 publication-title: Appl. Syst. Innov. doi: 10.3390/asi4040085 – volume: 79 year: 2023 ident: cpb_34_5_050306bib37 publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2023.102538 – volume: 605 start-page: 669 year: 2022 ident: cpb_34_5_050306bib12 publication-title: Nature doi: 10.1038/s41586-022-04566-8 – start-page: 1 year: 2022 ident: cpb_34_5_050306bib51 doi: 10.1109/IPIN54987.2022.9918120 – volume: 223 year: 2023 ident: cpb_34_5_050306bib40 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.119892 – volume: 86 year: 2012 ident: cpb_34_5_050306bib22 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.86.042313 – volume: 17 start-page: 342 year: 2021 ident: cpb_34_5_050306bib42 publication-title: Nat. Phys. doi: 10.1038/s41567-020-01112-z – volume: 153 start-page: 164 year: 2022 ident: cpb_34_5_050306bib46 publication-title: Expert Syst. Appl. doi: 10.1016/j.neunet.2022.05.028 – start-page: 6335 year: 2021 ident: cpb_34_5_050306bib26 doi: 10.48550/arXiv.2307.01241 – volume: 31 start-page: 51 year: 2019 ident: cpb_34_5_050306bib2 publication-title: Comput. Sci. Rev. doi: 10.1016/j.cosrev.2018.11.002 |
| SSID | ssj0061023 |
| Score | 2.3671675 |
| Snippet | Quantum error correction is a technique that enhances a system’s ability to combat noise by encoding logical information into additional quantum bits, which... |
| SourceID | crossref iop |
| SourceType | Index Database Enrichment Source Publisher |
| StartPage | 50306 |
| SubjectTerms | biased noise code graph neural network quantum error correction |
| Title | A graph neural network and multi-task learning-based decoding algorithm for enhancing XZZX code stability in biased noise |
| URI | https://iopscience.iop.org/article/10.1088/1674-1056/adbadb |
| Volume | 34 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: IOP Science Platform customDbUrl: eissn: 2058-3834 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0061023 issn: 1674-1056 databaseCode: IOP dateStart: 20080101 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4-ELz4Ft_koAcPWbtNmrR4ElFE8HFQWEQISTPVRe0ubvew_nozaVdURETooZRpGiZpZob55htCdh0my8AAy7iwTCR5zAzECTORVY4nEJkAxry4lGe34ryTdCbI4UctTK_fHP0tf1sTBdcqbABx6QHi5hk2jD8wzvprkkzz1DvGWL13dT0-hiVyEmC0NZZucpQ_jfDFJk36734yMafz5H48uRpZ8tQaVraVv33jbfzn7BfIXON60qNadJFMQLlEZgIENB8sk9ERDezVFCkuvVxZA8SpKR0NsENWmcETbdpMPDC0f446H76i-aPm-aH32q0eX6h3gymUj0jk4Z937u46FAvnqfdDAxJ3RLsltd3wetnrDmCF3J6e3ByfsaYxA8tjqSrmo_HC-KXMvTshpFORSVQbYuSibzuRQ6qgEIpDDgVPC1UUKs0AqeILkcm2y_gqmSp7JawRKv1QTirgznChpMxAmdhyEwmQ1thkneyPl0b3a_4NHfLmaapRlRpVqWtVrpM9r3Xd_ISDX-ToF7m8bzUXOtHIjRNJ3XfFxh-H2iSzMTYEDgjILTJVvQ5h23spld0Ju_EdeZfj3g |
| linkProvider | IOP Publishing |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDBaWDit66Z5F0-6hw3bYQYljyZJ9LLoF3avrYQWMXDTJopMgrRM0ziH79RVlG1iHYRhQwAfDoGibtEUS-vSRkLcOF8vAAMu4sEwkRcwMxAkzkVWOJxCZAMb8di7PLsXnPMnbPqdhL8xy1U79A3_aEAU3JmwBcekQcfMMG8YPjbP-GK5c2SMPA08J7uD7ftFNxRJ5CbDi6ka065R_03InLvX8vX8LM-PH5Gf3gA26ZDHY1HZQ_PqDu_Eeb_CE7LcpKD1pxJ-SB1A9I48CFLRYPyfbExpYrClSXXq5qgGKU1M5GuCHrDbrBW3bTUwZxkFHnS9jMQxSczVd3szr2TX16TCFaoaEHv56PpnkFDfQU5-PBkTuls4raudheLWcr-EFuRx__HF6xtoGDayIpaqZr8pL411a-LRCSKcik6gRxMhJP3KigFRBKRSHAkqelqosVZoBUsaXIpMjl_EDslMtKzgkVHpVTirgznChpMxAmdhyEwmQ1tikT9537tGrhodDh_XzNNVoTo3m1I05--Sdt7xuf8b1P-ToHbliZTUXOtHIkRNJ7b1y9J-q3pDdiw9j_fXT-Zdjshdjj-AAinxJduqbDbzyiUttX4eP8xagHek_ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+graph+neural+network+and+multi-task+learning-based+decoding+algorithm+for+enhancing+XZZX+code+stability+in+biased+noise&rft.jtitle=Chinese+physics+B&rft.au=Xiao%2C+Bo&rft.au=Fan%2C+Zai-Xu&rft.au=Sun%2C+Hui-Qian&rft.au=Ma%2C+Hong-Yang&rft.date=2025-05-01&rft.pub=Chinese+Physical+Society+and+IOP+Publishing+Ltd&rft.issn=1674-1056&rft.volume=34&rft.issue=5&rft_id=info:doi/10.1088%2F1674-1056%2Fadbadb&rft.externalDocID=cpb_34_5_050306 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-1056&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-1056&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-1056&client=summon |