Location Secrecy Enhancement in Adversarial Networks via Trajectory Control

In networked environments, adversaries may exploit location information to perform carefully crafted attacks on cyber-physical systems (CPS). To prevent such security breaches, this letter develops a network localization and navigation (NLN) paradigm that accounts for network secrecy in the control...

Full description

Saved in:
Bibliographic Details
Published inIEEE control systems letters Vol. 7; pp. 601 - 606
Main Authors Khojasteh, Mohammad Javad, Saucan, Augustin A., Liu, Zhenyu, Conti, Andrea, Win, Moe Z.
Format Journal Article
LanguageEnglish
Published IEEE 2023
Subjects
Online AccessGet full text
ISSN2475-1456
2475-1456
DOI10.1109/LCSYS.2022.3189960

Cover

Abstract In networked environments, adversaries may exploit location information to perform carefully crafted attacks on cyber-physical systems (CPS). To prevent such security breaches, this letter develops a network localization and navigation (NLN) paradigm that accounts for network secrecy in the control of mobile agents. We consider a scenario in which a mobile agent is tasked with maneuvering through an adversarial network, based on a nominal control policy, and we aim to reduce the ability of the adversarial network to infer the mobile agent's position. Specifically, the Fisher information of the agent's position obtained by the adversarial network is adopted as a secrecy metric. We propose a new control policy that results from an optimization problem and achieves a compromise between maximizing location secrecy and minimizing the deviation from the nominal control policy. Results show that the proposed optimization-based control policy significantly improves the secrecy of the mobile agent.
AbstractList In networked environments, adversaries may exploit location information to perform carefully crafted attacks on cyber-physical systems (CPS). To prevent such security breaches, this letter develops a network localization and navigation (NLN) paradigm that accounts for network secrecy in the control of mobile agents. We consider a scenario in which a mobile agent is tasked with maneuvering through an adversarial network, based on a nominal control policy, and we aim to reduce the ability of the adversarial network to infer the mobile agent's position. Specifically, the Fisher information of the agent's position obtained by the adversarial network is adopted as a secrecy metric. We propose a new control policy that results from an optimization problem and achieves a compromise between maximizing location secrecy and minimizing the deviation from the nominal control policy. Results show that the proposed optimization-based control policy significantly improves the secrecy of the mobile agent.
Author Conti, Andrea
Khojasteh, Mohammad Javad
Win, Moe Z.
Liu, Zhenyu
Saucan, Augustin A.
Author_xml – sequence: 1
  givenname: Mohammad Javad
  orcidid: 0000-0002-8459-6483
  surname: Khojasteh
  fullname: Khojasteh, Mohammad Javad
  organization: Wireless Information and Network Sciences Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
– sequence: 2
  givenname: Augustin A.
  orcidid: 0000-0002-4431-4525
  surname: Saucan
  fullname: Saucan, Augustin A.
  organization: Wireless Information and Network Sciences Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
– sequence: 3
  givenname: Zhenyu
  orcidid: 0000-0002-6581-2849
  surname: Liu
  fullname: Liu, Zhenyu
  organization: Wireless Information and Network Sciences Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
– sequence: 4
  givenname: Andrea
  orcidid: 0000-0001-9224-2178
  surname: Conti
  fullname: Conti, Andrea
  organization: Department of Engineering and CNIT, University of Ferrara, Ferrara, Italy
– sequence: 5
  givenname: Moe Z.
  orcidid: 0000-0002-8573-0488
  surname: Win
  fullname: Win, Moe Z.
  email: moewin@mit.edu
  organization: Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, MA, USA
BookMark eNp9kMlOwzAURS1UJErpD8DGP5Di5yQellVUBhHBomXBKnIdR7ikNrKtov49nYQQC1bvbs7VfecSDZx3BqFrIBMAIm_rav42n1BC6SQHISUjZ2hIC15mUJRs8CtfoHGMK0IICMoJlUP0VHutkvUOz40ORm_xzL0rp83auIStw9N2Y0JUwaoeP5v05cNHxBur8CKoldHJhy2uvEvB91fovFN9NOPTHaHXu9miesjql_vHalpnmjKesmXeFl3LVAvdkhSl1FzKjmshoAQmObAWOCVLxonghEsqQbdlp0ETLjgVLB8hcezVwccYTNdomw5PpKBs3wBp9l6ag5dm76U5edmh9A_6Gexahe3_0M0RssaYH0AKynaT828LyXB1
CODEN ICSLBO
CitedBy_id crossref_primary_10_1109_LCSYS_2024_3513814
crossref_primary_10_1109_LCSYS_2024_3411624
Cites_doi 10.1016/S0004-3702(99)00052-1
10.1109/CDC42340.2020.9304395
10.1109/CDC.2010.5717405
10.1109/JPROC.2018.2844553
10.1109/MSP.2018.2845907
10.1109/VTCSpring.2015.7145917
10.1109/MCOM.2011.5762798
10.1017/CBO9780511804441
10.1007/s10514-011-9241-4
10.1007/978-3-319-01159-2_6
10.1109/MC.2018.2876048
10.1109/TIM.2016.2618978
10.1109/TSP.2017.2728504
10.1109/TSP.2014.2320455
10.4304/jcm.6.6.460-470
10.1109/JPROC.2019.2905854
10.1017/9781139061759
10.23919/ACC45564.2020.9147690
10.1145/3465481.3470098
10.1109/JPROC.2018.2835314
10.1145/3386568
10.1016/j.automatica.2009.12.003
10.1137/080734510
10.1109/TNET.2013.2297339
10.9746/jcmsi.10.495
10.1109/TCNS.2020.3028035
10.1016/j.automatica.2005.12.018
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/LCSYS.2022.3189960
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2475-1456
EndPage 606
ExternalDocumentID 10_1109_LCSYS_2022_3189960
9826815
Genre orig-research
GrantInformation_xml – fundername: European Union’s Horizon 2020 Research and Innovation Programme
  grantid: 871249
– fundername: Army Research Office through the MIT Institute for Soldier Nanotechnologies
  grantid: W911NF-13-D-0001
  funderid: 10.13039/100000183
– fundername: Office of Naval Research
  grantid: N00014-16-1-2141; N62909-22-1-2009
  funderid: 10.13039/100000006
GroupedDBID 0R~
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AHBIQ
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
OCL
RIA
RIE
AAYXX
CITATION
ID FETCH-LOGICAL-c267t-b3d4fd6ad1fb0459c799f7c8815169716d1720b67087079291cd5fc1c07872863
IEDL.DBID RIE
ISSN 2475-1456
IngestDate Wed Oct 01 04:41:08 EDT 2025
Thu Apr 24 22:54:30 EDT 2025
Wed Aug 27 02:14:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c267t-b3d4fd6ad1fb0459c799f7c8815169716d1720b67087079291cd5fc1c07872863
ORCID 0000-0002-8573-0488
0000-0002-6581-2849
0000-0002-8459-6483
0000-0002-4431-4525
0000-0001-9224-2178
PageCount 6
ParticipantIDs crossref_primary_10_1109_LCSYS_2022_3189960
ieee_primary_9826815
crossref_citationtrail_10_1109_LCSYS_2022_3189960
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230000
2023-00-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 20230000
PublicationDecade 2020
PublicationTitle IEEE control systems letters
PublicationTitleAbbrev LCSYS
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref35
ref12
ref15
ref14
ref31
ref30
ref11
ref32
ref2
ref1
ref16
ref19
ref18
Schlotfeldt (ref20)
Bertsekas (ref25) 2019
Siegwart (ref10) 2011
ref24
ref23
Sun (ref26)
Ristic (ref33) 2004
ref22
ref21
ref28
ref27
ref8
ref7
Kay (ref29) 1993
ref9
ref4
Khojasteh (ref34)
ref3
ref6
ref5
Haarnoja (ref17); 80
References_xml – volume: 80
  start-page: 1861
  volume-title: Proc. 35th Int. Conf. Mach. Learn.
  ident: ref17
  article-title: Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor
– ident: ref22
  doi: 10.1016/S0004-3702(99)00052-1
– ident: ref35
  doi: 10.1109/CDC42340.2020.9304395
– ident: ref23
  doi: 10.1109/CDC.2010.5717405
– volume-title: Beyond the Kalman Filter: Particle Filters for Tracking Applications
  year: 2004
  ident: ref33
– ident: ref12
  doi: 10.1109/JPROC.2018.2844553
– ident: ref1
  doi: 10.1109/MSP.2018.2845907
– start-page: 728
  volume-title: Proc. 3rd Conf. Learn. Dyn. Control
  ident: ref26
  article-title: Uncertain-aware safe exploratory planning using Gaussian process and neural control contraction metric
– ident: ref6
  doi: 10.1109/VTCSpring.2015.7145917
– ident: ref9
  doi: 10.1109/MCOM.2011.5762798
– ident: ref30
  doi: 10.1017/CBO9780511804441
– ident: ref8
  doi: 10.1007/s10514-011-9241-4
– start-page: 1
  volume-title: Proc. Workshop Adv. Robot. RSS
  ident: ref20
  article-title: Adversarial information acquisition
– start-page: 781
  volume-title: Proc. Conf. Learn. Dyn. Control
  ident: ref34
  article-title: Probabilistic safety constraints for learned high relative degree system dynamics
– volume-title: Introduction to Autonomous Mobile Robots
  year: 2011
  ident: ref10
– volume-title: Fundamentals of Statistical Signal Processing: Estimation Theory
  year: 1993
  ident: ref29
– ident: ref21
  doi: 10.1007/978-3-319-01159-2_6
– ident: ref2
  doi: 10.1109/MC.2018.2876048
– ident: ref3
  doi: 10.1109/TIM.2016.2618978
– volume-title: Reinforcement Learning and Optimal Control
  year: 2019
  ident: ref25
– ident: ref16
  doi: 10.1109/TSP.2017.2728504
– ident: ref32
  doi: 10.1109/TSP.2014.2320455
– ident: ref5
  doi: 10.4304/jcm.6.6.460-470
– ident: ref14
  doi: 10.1109/JPROC.2019.2905854
– ident: ref24
  doi: 10.1017/9781139061759
– ident: ref18
  doi: 10.23919/ACC45564.2020.9147690
– ident: ref7
  doi: 10.1145/3465481.3470098
– ident: ref13
  doi: 10.1109/JPROC.2018.2835314
– ident: ref4
  doi: 10.1145/3386568
– ident: ref31
  doi: 10.1016/j.automatica.2009.12.003
– ident: ref27
  doi: 10.1137/080734510
– ident: ref11
  doi: 10.1109/TNET.2013.2297339
– ident: ref28
  doi: 10.9746/jcmsi.10.495
– ident: ref19
  doi: 10.1109/TCNS.2020.3028035
– ident: ref15
  doi: 10.1016/j.automatica.2005.12.018
SSID ssj0001827029
Score 2.2295444
Snippet In networked environments, adversaries may exploit location information to perform carefully crafted attacks on cyber-physical systems (CPS). To prevent such...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 601
SubjectTerms control
Fisher information
Localization
Location awareness
Measurement
Mobile agents
Robot sensing systems
Robots
secrecy
sensor network
Sensors
Trajectory
Title Location Secrecy Enhancement in Adversarial Networks via Trajectory Control
URI https://ieeexplore.ieee.org/document/9826815
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2475-1456
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001827029
  issn: 2475-1456
  databaseCode: RIE
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA61Jy8-qGJ9kYM33XZfzeMopaVo20st1NOSzQOrshXbCvXXm0m29YGItyUkMMwMzDezM98gdMEJS6UwURDHJgxSIlnANAmD0EiWCAK94zCNPBiS3ji9mbQmFXS1mYXRWrvmM92AT_cvX83kEkplTW6xMIOJ8i3KiJ_V-qynMJis4uu5mJA3--3R_chmgHFsE1MGLCTfYs-XZSoulnR30WAthW8heWosF3lDvv8gaPyvmHtopwSV-Np7wT6q6KKGbvszX47DI4CGcoU7xQPYGF7jaYHdLua5AA_EQ98NPsdvU4Ft_Hp0xfwVbvtO9gM07nbu2r2gXJ0QyJjQRZAnKjWKCBWZ3II2LinnhkpmxYoIsEYpC1zCnNCQAUVezCOpWkZG0iIGGjOSHKJqMSv0EcKhsjlFIgRnmqWKMGFTtEQSag9b1BheR9FaqZksecVhvcVz5vKLkGfOEBkYIisNUUeXmzcvnlXjz9s1UPLmZqnf49-PT9A2rIT3ZZJTVF28LvWZBQ6L_Nx5zAeY-r9M
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5FD3rxQRXrMwdvuu0-s8lRSku1217aQj0t2WyCVdmKbYX6680k2_pAxNsSEhhmBuab2ZlvELpkhIaCK8_xfeU6IRHUoZK4jqsEDTiB3nGYRu71SWcU3o2jcQVdr2dhpJSm-UzW4dP8y8-nYgGlsgbTWJjCRPlmFIZhZKe1PisqFGar2GoyxmWNpDm4H-gc0Pd1akqBh-Rb9PmyTsVEk_Yu6q3ksE0kT_XFPKuL9x8Ujf8VdA_tlLAS31g_2EcVWVRRN5naghweADgUS9wqHsDK8BpPCmy2Mc84-CDu237wGX6bcKwj2KMp5y9x0_ayH6BRuzVsdpxyeYIjfBLPnSzIQ5UTnnsq07CNiZgxFQuqxfII8EblGrq4GYldCiR5PvNEHinhCY0ZYp-S4BBtFNNCHiHs5jqrCDhnVNIwJ5TrJC0QJNaHUawUqyFvpdRUlMzisODiOTUZhstSY4gUDJGWhqihq_WbF8ur8eftKih5fbPU7_HvxxdoqzPsJWly2--eoG1YEG-LJqdoY_66kGcaRsyzc-M9H8ulwpk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Location+Secrecy+Enhancement+in+Adversarial+Networks+via+Trajectory+Control&rft.jtitle=IEEE+control+systems+letters&rft.au=Khojasteh%2C+Mohammad+Javad&rft.au=Saucan%2C+Augustin+A.&rft.au=Liu%2C+Zhenyu&rft.au=Conti%2C+Andrea&rft.date=2023&rft.pub=IEEE&rft.eissn=2475-1456&rft.volume=7&rft.spage=601&rft.epage=606&rft_id=info:doi/10.1109%2FLCSYS.2022.3189960&rft.externalDocID=9826815
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2475-1456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2475-1456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2475-1456&client=summon