Location Secrecy Enhancement in Adversarial Networks via Trajectory Control
In networked environments, adversaries may exploit location information to perform carefully crafted attacks on cyber-physical systems (CPS). To prevent such security breaches, this letter develops a network localization and navigation (NLN) paradigm that accounts for network secrecy in the control...
Saved in:
| Published in | IEEE control systems letters Vol. 7; pp. 601 - 606 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
IEEE
2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2475-1456 2475-1456 |
| DOI | 10.1109/LCSYS.2022.3189960 |
Cover
| Abstract | In networked environments, adversaries may exploit location information to perform carefully crafted attacks on cyber-physical systems (CPS). To prevent such security breaches, this letter develops a network localization and navigation (NLN) paradigm that accounts for network secrecy in the control of mobile agents. We consider a scenario in which a mobile agent is tasked with maneuvering through an adversarial network, based on a nominal control policy, and we aim to reduce the ability of the adversarial network to infer the mobile agent's position. Specifically, the Fisher information of the agent's position obtained by the adversarial network is adopted as a secrecy metric. We propose a new control policy that results from an optimization problem and achieves a compromise between maximizing location secrecy and minimizing the deviation from the nominal control policy. Results show that the proposed optimization-based control policy significantly improves the secrecy of the mobile agent. |
|---|---|
| AbstractList | In networked environments, adversaries may exploit location information to perform carefully crafted attacks on cyber-physical systems (CPS). To prevent such security breaches, this letter develops a network localization and navigation (NLN) paradigm that accounts for network secrecy in the control of mobile agents. We consider a scenario in which a mobile agent is tasked with maneuvering through an adversarial network, based on a nominal control policy, and we aim to reduce the ability of the adversarial network to infer the mobile agent's position. Specifically, the Fisher information of the agent's position obtained by the adversarial network is adopted as a secrecy metric. We propose a new control policy that results from an optimization problem and achieves a compromise between maximizing location secrecy and minimizing the deviation from the nominal control policy. Results show that the proposed optimization-based control policy significantly improves the secrecy of the mobile agent. |
| Author | Conti, Andrea Khojasteh, Mohammad Javad Win, Moe Z. Liu, Zhenyu Saucan, Augustin A. |
| Author_xml | – sequence: 1 givenname: Mohammad Javad orcidid: 0000-0002-8459-6483 surname: Khojasteh fullname: Khojasteh, Mohammad Javad organization: Wireless Information and Network Sciences Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA – sequence: 2 givenname: Augustin A. orcidid: 0000-0002-4431-4525 surname: Saucan fullname: Saucan, Augustin A. organization: Wireless Information and Network Sciences Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA – sequence: 3 givenname: Zhenyu orcidid: 0000-0002-6581-2849 surname: Liu fullname: Liu, Zhenyu organization: Wireless Information and Network Sciences Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA – sequence: 4 givenname: Andrea orcidid: 0000-0001-9224-2178 surname: Conti fullname: Conti, Andrea organization: Department of Engineering and CNIT, University of Ferrara, Ferrara, Italy – sequence: 5 givenname: Moe Z. orcidid: 0000-0002-8573-0488 surname: Win fullname: Win, Moe Z. email: moewin@mit.edu organization: Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, MA, USA |
| BookMark | eNp9kMlOwzAURS1UJErpD8DGP5Di5yQellVUBhHBomXBKnIdR7ikNrKtov49nYQQC1bvbs7VfecSDZx3BqFrIBMAIm_rav42n1BC6SQHISUjZ2hIC15mUJRs8CtfoHGMK0IICMoJlUP0VHutkvUOz40ORm_xzL0rp83auIStw9N2Y0JUwaoeP5v05cNHxBur8CKoldHJhy2uvEvB91fovFN9NOPTHaHXu9miesjql_vHalpnmjKesmXeFl3LVAvdkhSl1FzKjmshoAQmObAWOCVLxonghEsqQbdlp0ETLjgVLB8hcezVwccYTNdomw5PpKBs3wBp9l6ag5dm76U5edmh9A_6Gexahe3_0M0RssaYH0AKynaT828LyXB1 |
| CODEN | ICSLBO |
| CitedBy_id | crossref_primary_10_1109_LCSYS_2024_3513814 crossref_primary_10_1109_LCSYS_2024_3411624 |
| Cites_doi | 10.1016/S0004-3702(99)00052-1 10.1109/CDC42340.2020.9304395 10.1109/CDC.2010.5717405 10.1109/JPROC.2018.2844553 10.1109/MSP.2018.2845907 10.1109/VTCSpring.2015.7145917 10.1109/MCOM.2011.5762798 10.1017/CBO9780511804441 10.1007/s10514-011-9241-4 10.1007/978-3-319-01159-2_6 10.1109/MC.2018.2876048 10.1109/TIM.2016.2618978 10.1109/TSP.2017.2728504 10.1109/TSP.2014.2320455 10.4304/jcm.6.6.460-470 10.1109/JPROC.2019.2905854 10.1017/9781139061759 10.23919/ACC45564.2020.9147690 10.1145/3465481.3470098 10.1109/JPROC.2018.2835314 10.1145/3386568 10.1016/j.automatica.2009.12.003 10.1137/080734510 10.1109/TNET.2013.2297339 10.9746/jcmsi.10.495 10.1109/TCNS.2020.3028035 10.1016/j.automatica.2005.12.018 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/LCSYS.2022.3189960 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2475-1456 |
| EndPage | 606 |
| ExternalDocumentID | 10_1109_LCSYS_2022_3189960 9826815 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: European Union’s Horizon 2020 Research and Innovation Programme grantid: 871249 – fundername: Army Research Office through the MIT Institute for Soldier Nanotechnologies grantid: W911NF-13-D-0001 funderid: 10.13039/100000183 – fundername: Office of Naval Research grantid: N00014-16-1-2141; N62909-22-1-2009 funderid: 10.13039/100000006 |
| GroupedDBID | 0R~ 6IK 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AHBIQ AKJIK ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF OCL RIA RIE AAYXX CITATION |
| ID | FETCH-LOGICAL-c267t-b3d4fd6ad1fb0459c799f7c8815169716d1720b67087079291cd5fc1c07872863 |
| IEDL.DBID | RIE |
| ISSN | 2475-1456 |
| IngestDate | Wed Oct 01 04:41:08 EDT 2025 Thu Apr 24 22:54:30 EDT 2025 Wed Aug 27 02:14:19 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c267t-b3d4fd6ad1fb0459c799f7c8815169716d1720b67087079291cd5fc1c07872863 |
| ORCID | 0000-0002-8573-0488 0000-0002-6581-2849 0000-0002-8459-6483 0000-0002-4431-4525 0000-0001-9224-2178 |
| PageCount | 6 |
| ParticipantIDs | crossref_primary_10_1109_LCSYS_2022_3189960 ieee_primary_9826815 crossref_citationtrail_10_1109_LCSYS_2022_3189960 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20230000 2023-00-00 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – year: 2023 text: 20230000 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE control systems letters |
| PublicationTitleAbbrev | LCSYS |
| PublicationYear | 2023 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref35 ref12 ref15 ref14 ref31 ref30 ref11 ref32 ref2 ref1 ref16 ref19 ref18 Schlotfeldt (ref20) Bertsekas (ref25) 2019 Siegwart (ref10) 2011 ref24 ref23 Sun (ref26) Ristic (ref33) 2004 ref22 ref21 ref28 ref27 ref8 ref7 Kay (ref29) 1993 ref9 ref4 Khojasteh (ref34) ref3 ref6 ref5 Haarnoja (ref17); 80 |
| References_xml | – volume: 80 start-page: 1861 volume-title: Proc. 35th Int. Conf. Mach. Learn. ident: ref17 article-title: Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor – ident: ref22 doi: 10.1016/S0004-3702(99)00052-1 – ident: ref35 doi: 10.1109/CDC42340.2020.9304395 – ident: ref23 doi: 10.1109/CDC.2010.5717405 – volume-title: Beyond the Kalman Filter: Particle Filters for Tracking Applications year: 2004 ident: ref33 – ident: ref12 doi: 10.1109/JPROC.2018.2844553 – ident: ref1 doi: 10.1109/MSP.2018.2845907 – start-page: 728 volume-title: Proc. 3rd Conf. Learn. Dyn. Control ident: ref26 article-title: Uncertain-aware safe exploratory planning using Gaussian process and neural control contraction metric – ident: ref6 doi: 10.1109/VTCSpring.2015.7145917 – ident: ref9 doi: 10.1109/MCOM.2011.5762798 – ident: ref30 doi: 10.1017/CBO9780511804441 – ident: ref8 doi: 10.1007/s10514-011-9241-4 – start-page: 1 volume-title: Proc. Workshop Adv. Robot. RSS ident: ref20 article-title: Adversarial information acquisition – start-page: 781 volume-title: Proc. Conf. Learn. Dyn. Control ident: ref34 article-title: Probabilistic safety constraints for learned high relative degree system dynamics – volume-title: Introduction to Autonomous Mobile Robots year: 2011 ident: ref10 – volume-title: Fundamentals of Statistical Signal Processing: Estimation Theory year: 1993 ident: ref29 – ident: ref21 doi: 10.1007/978-3-319-01159-2_6 – ident: ref2 doi: 10.1109/MC.2018.2876048 – ident: ref3 doi: 10.1109/TIM.2016.2618978 – volume-title: Reinforcement Learning and Optimal Control year: 2019 ident: ref25 – ident: ref16 doi: 10.1109/TSP.2017.2728504 – ident: ref32 doi: 10.1109/TSP.2014.2320455 – ident: ref5 doi: 10.4304/jcm.6.6.460-470 – ident: ref14 doi: 10.1109/JPROC.2019.2905854 – ident: ref24 doi: 10.1017/9781139061759 – ident: ref18 doi: 10.23919/ACC45564.2020.9147690 – ident: ref7 doi: 10.1145/3465481.3470098 – ident: ref13 doi: 10.1109/JPROC.2018.2835314 – ident: ref4 doi: 10.1145/3386568 – ident: ref31 doi: 10.1016/j.automatica.2009.12.003 – ident: ref27 doi: 10.1137/080734510 – ident: ref11 doi: 10.1109/TNET.2013.2297339 – ident: ref28 doi: 10.9746/jcmsi.10.495 – ident: ref19 doi: 10.1109/TCNS.2020.3028035 – ident: ref15 doi: 10.1016/j.automatica.2005.12.018 |
| SSID | ssj0001827029 |
| Score | 2.2295444 |
| Snippet | In networked environments, adversaries may exploit location information to perform carefully crafted attacks on cyber-physical systems (CPS). To prevent such... |
| SourceID | crossref ieee |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 601 |
| SubjectTerms | control Fisher information Localization Location awareness Measurement Mobile agents Robot sensing systems Robots secrecy sensor network Sensors Trajectory |
| Title | Location Secrecy Enhancement in Adversarial Networks via Trajectory Control |
| URI | https://ieeexplore.ieee.org/document/9826815 |
| Volume | 7 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2475-1456 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001827029 issn: 2475-1456 databaseCode: RIE dateStart: 20170101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA61Jy8-qGJ9kYM33XZfzeMopaVo20st1NOSzQOrshXbCvXXm0m29YGItyUkMMwMzDezM98gdMEJS6UwURDHJgxSIlnANAmD0EiWCAK94zCNPBiS3ji9mbQmFXS1mYXRWrvmM92AT_cvX83kEkplTW6xMIOJ8i3KiJ_V-qynMJis4uu5mJA3--3R_chmgHFsE1MGLCTfYs-XZSoulnR30WAthW8heWosF3lDvv8gaPyvmHtopwSV-Np7wT6q6KKGbvszX47DI4CGcoU7xQPYGF7jaYHdLua5AA_EQ98NPsdvU4Ft_Hp0xfwVbvtO9gM07nbu2r2gXJ0QyJjQRZAnKjWKCBWZ3II2LinnhkpmxYoIsEYpC1zCnNCQAUVezCOpWkZG0iIGGjOSHKJqMSv0EcKhsjlFIgRnmqWKMGFTtEQSag9b1BheR9FaqZksecVhvcVz5vKLkGfOEBkYIisNUUeXmzcvnlXjz9s1UPLmZqnf49-PT9A2rIT3ZZJTVF28LvWZBQ6L_Nx5zAeY-r9M |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5FD3rxQRXrMwdvuu0-s8lRSku1217aQj0t2WyCVdmKbYX6680k2_pAxNsSEhhmBuab2ZlvELpkhIaCK8_xfeU6IRHUoZK4jqsEDTiB3nGYRu71SWcU3o2jcQVdr2dhpJSm-UzW4dP8y8-nYgGlsgbTWJjCRPlmFIZhZKe1PisqFGar2GoyxmWNpDm4H-gc0Pd1akqBh-Rb9PmyTsVEk_Yu6q3ksE0kT_XFPKuL9x8Ujf8VdA_tlLAS31g_2EcVWVRRN5naghweADgUS9wqHsDK8BpPCmy2Mc84-CDu237wGX6bcKwj2KMp5y9x0_ayH6BRuzVsdpxyeYIjfBLPnSzIQ5UTnnsq07CNiZgxFQuqxfII8EblGrq4GYldCiR5PvNEHinhCY0ZYp-S4BBtFNNCHiHs5jqrCDhnVNIwJ5TrJC0QJNaHUawUqyFvpdRUlMzisODiOTUZhstSY4gUDJGWhqihq_WbF8ur8eftKih5fbPU7_HvxxdoqzPsJWly2--eoG1YEG-LJqdoY_66kGcaRsyzc-M9H8ulwpk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Location+Secrecy+Enhancement+in+Adversarial+Networks+via+Trajectory+Control&rft.jtitle=IEEE+control+systems+letters&rft.au=Khojasteh%2C+Mohammad+Javad&rft.au=Saucan%2C+Augustin+A.&rft.au=Liu%2C+Zhenyu&rft.au=Conti%2C+Andrea&rft.date=2023&rft.pub=IEEE&rft.eissn=2475-1456&rft.volume=7&rft.spage=601&rft.epage=606&rft_id=info:doi/10.1109%2FLCSYS.2022.3189960&rft.externalDocID=9826815 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2475-1456&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2475-1456&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2475-1456&client=summon |