Optimized Fuzzy Cmeans – Fuzzy Covariance – Fuzzy Maximum Likelihood Estimation Clustering Method Based on Deferential Evolutionary Optimization Algorithm for Identification of Rock Mass Discontinuities Sets

Detecting of joint sets (clusters) is one of the most important processes in determining properties of fractures. Joints clustering and consequently, determination of the mean value representing each cluster is applicable to most rock mass studies. It is clear that the accuracy of the clustering pro...

Full description

Saved in:
Bibliographic Details
Published inPeriodica polytechnica. Civil engineering. Bauingenieurwesen
Main Authors Esmaeilzadeh, Akbar, Shahriar, Kourosh
Format Journal Article
LanguageEnglish
Published 31.05.2019
Online AccessGet full text
ISSN0553-6626
1587-3773
1587-3773
DOI10.3311/PPci.13885

Cover

Abstract Detecting of joint sets (clusters) is one of the most important processes in determining properties of fractures. Joints clustering and consequently, determination of the mean value representing each cluster is applicable to most rock mass studies. It is clear that the accuracy of the clustering process plays a key role in analyzing stability of infrastructures such as dams and tunnels and so on. Hence, in this paper, by reviewing several methods proposed for clustering fractures and considering their advantages and disadvantages, a three-stage hybrid method is developed which contains Fuzzy c-means, Fuzzy covariance and Fuzzy maximum likelihood estimation that by utilizing the modified orientation matrix had been optimized. This method is optimized by the Differential Evolutionary algorithm using a new and strong cost function which is defined as the computation core. In addition, using three clustering quality comparing criteria, the new developed method of differential evolutionary optimized of fuzzy cmeans - fuzzy covariance - fuzzy maximum likelihood estimation clustering method (DEF3) is compared with other base and common methods using field data. After doing the calculations, the developed method by giving the best values for all the criteria provided the best results and good stability in meeting different criteria. The DEF3 method was validated using actual field data which mapped in Rudbar Lorestan dam site. The results revealed that DEF3 acquired the best rank among the other method by getting the value of 0.5721 of Davis-Bouldin criterion, 1403.1 of Calinski-Harabasz criterion, and 0.83482 of Silihotte as comparing criteria of clustering methods.
AbstractList Detecting of joint sets (clusters) is one of the most important processes in determining properties of fractures. Joints clustering and consequently, determination of the mean value representing each cluster is applicable to most rock mass studies. It is clear that the accuracy of the clustering process plays a key role in analyzing stability of infrastructures such as dams and tunnels and so on. Hence, in this paper, by reviewing several methods proposed for clustering fractures and considering their advantages and disadvantages, a three-stage hybrid method is developed which contains Fuzzy c-means, Fuzzy covariance and Fuzzy maximum likelihood estimation that by utilizing the modified orientation matrix had been optimized. This method is optimized by the Differential Evolutionary algorithm using a new and strong cost function which is defined as the computation core. In addition, using three clustering quality comparing criteria, the new developed method of differential evolutionary optimized of fuzzy cmeans - fuzzy covariance - fuzzy maximum likelihood estimation clustering method (DEF3) is compared with other base and common methods using field data. After doing the calculations, the developed method by giving the best values for all the criteria provided the best results and good stability in meeting different criteria. The DEF3 method was validated using actual field data which mapped in Rudbar Lorestan dam site. The results revealed that DEF3 acquired the best rank among the other method by getting the value of 0.5721 of Davis-Bouldin criterion, 1403.1 of Calinski-Harabasz criterion, and 0.83482 of Silihotte as comparing criteria of clustering methods.
Author Esmaeilzadeh, Akbar
Shahriar, Kourosh
Author_xml – sequence: 1
  givenname: Akbar
  surname: Esmaeilzadeh
  fullname: Esmaeilzadeh, Akbar
– sequence: 2
  givenname: Kourosh
  surname: Shahriar
  fullname: Shahriar, Kourosh
BookMark eNpdUU1O3DAUtiqQOtBuegKvW4Xa8SQOSzoMLdIgELTryHGemVccO7Id6Myqd-jRuAEnaYYBhFg96X0_7-fbIzvOOyDkE2cHQnD-9eJC4wEXVVW8IxNeVDITUoodMmFFIbKyzMv3ZC_G34yVhRBsQu7P-4QdrqGlJ8N6vaKzDpSL9OHvv-eGv1UBldPwqnmm_mA3dHSBN2Bx6X1L53E0Ugm9ozM7xAQB3TU9g7QcwW8qjhNG6BgMBHAJlaXzW2-HjUCFFX3aY2twZK99wLTsqPGBnrYbgUG9Bb2hl17fjDvESI8xaj-ibsCEEOkVpPiB7BplI3x8qvvk18n85-xHtjj_fjo7WmQ6L2XKpJwWwMvcmEoyww8rCblop0LlJfBpY1qlGzBtWzbcFGr8KVMNY1LmTQHTQ87EPvmy9R1cr1Z3ytq6D-MPwqrmrN7kUfe9xvoxj5HNtmwdfIwBTK0xPV6UgkL7ItlE-CL5_Eby1v8V-T9-t6a6
CitedBy_id crossref_primary_10_1007_s00603_024_03804_x
crossref_primary_10_1007_s00603_023_03587_7
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.3311/PPci.13885
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1587-3773
ExternalDocumentID 10.3311/ppci.13885
10_3311_PPci_13885
GroupedDBID 2WC
8FE
8FG
8FH
AAYXX
ABJCF
ABUWG
ACIWK
AEUYN
AFKRA
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BENPR
BGLVJ
BHPHI
BKSAR
BPHCQ
BYOGL
CCPQU
CITATION
FRP
HCIFZ
L6V
LK5
M7R
M7S
OK1
PCBAR
PHGZM
PHGZT
PQGLB
PQQKQ
PROAC
PTHSS
PUEGO
~02
ADTOC
C1A
UNPAY
ID FETCH-LOGICAL-c267t-7745e162ff870f1987e23d43a26e14bfdacbefdd6b1f5a3880ab00772b5e49103
IEDL.DBID UNPAY
ISSN 0553-6626
1587-3773
IngestDate Tue Aug 19 17:36:35 EDT 2025
Wed Oct 01 02:11:15 EDT 2025
Thu Apr 24 22:51:28 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c267t-7745e162ff870f1987e23d43a26e14bfdacbefdd6b1f5a3880ab00772b5e49103
OpenAccessLink https://proxy.k.utb.cz/login?url=https://pp.bme.hu/ci/article/download/13885/8351
ParticipantIDs unpaywall_primary_10_3311_ppci_13885
crossref_citationtrail_10_3311_PPci_13885
crossref_primary_10_3311_PPci_13885
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-05-31
PublicationDateYYYYMMDD 2019-05-31
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-31
  day: 31
PublicationDecade 2010
PublicationTitle Periodica polytechnica. Civil engineering. Bauingenieurwesen
PublicationYear 2019
SSID ssj0065330
ssib022314486
Score 2.1427557
Snippet Detecting of joint sets (clusters) is one of the most important processes in determining properties of fractures. Joints clustering and consequently,...
SourceID unpaywall
crossref
SourceType Open Access Repository
Enrichment Source
Index Database
Title Optimized Fuzzy Cmeans – Fuzzy Covariance – Fuzzy Maximum Likelihood Estimation Clustering Method Based on Deferential Evolutionary Optimization Algorithm for Identification of Rock Mass Discontinuities Sets
URI https://pp.bme.hu/ci/article/download/13885/8351
UnpaywallVersion publishedVersion
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: East Europe, Central Europe Database
  customDbUrl:
  eissn: 1587-3773
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065330
  issn: 0553-6626
  databaseCode: BYOGL
  dateStart: 19680101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eastcentraleurope
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1587-3773
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065330
  issn: 0553-6626
  databaseCode: BENPR
  dateStart: 19680101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1587-3773
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065330
  issn: 0553-6626
  databaseCode: 8FG
  dateStart: 19680101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JbtswECUC-9D20L1ougQEmksPkiNRpJyj49gNijhxFwPJySBFsiGixbCltPap_9BP6x_0SzoUZcNdDu2VGlADcTTzhph5g9B-GPMw0qzrSamJB96PeDw8iDwaS5WIOI5l3RQ2OmMnk-jtBb3YQQfrXpjZzIcw4F9Bcmg6zcfrSMsbX3DZCUi3SzsAGiDfaTMK6LuF2pOzce_SOlxKicdYPWEtoPW_ExPHSEpIEMDWifHrHX6JQbeqfMaXn3mabgWW4T30bqNSXU9y7Vel8JPVb2yN_6PzfXS3QZm456QeoB2VP0R3trgHH6Hv5-AsMrNSEg-r1WqJ-5mCsIV_fP22XihuIJG2VrG1OOJfTFZl-NRcq9RYTmQ8AC_hGiBxP60s8QK8AI_q0dT4CKKkxPDo2DHagkNJ8eCmMXg-X-JGD7dBL_1UzE15lWEA09h1EevmWhEXGr8H9w06LBb42Cxsmb3Jq5oTFn9Q5eIxmgwHH_snXjPhwUtCFpcA7SOqAhZqDW5D2_sPFRIZER4yFURCS54IpaVkItCUW94aLiwBUSioigDokCeolRe5eoowPVQWukhOGIs4pJEBIA8RBwISUkg6-S56vT7zadLQn9spHOkU0iBrH9PxODHT-rR20auN7MyRfvxVan9jOn-IWWNzYs_-Tew5ug1Y7NAVJrxArXJeqZeAd0qxh9pHl-dvTvcaU_8JXtsHnA
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZW3QNw4I1YXhqJvXBIuoljp3ss3VYrRJfyqLScKju2WWvzqNpkoT3xH_hp_AN-CeMkrcrjAFdn5Iziycw31sw3hByGsQgjw3ueUoZ66P2oJ8KjyGOx0omM41jVTWHjM346jV6ds_M9crTphZnPfQwD_gUmh7bbfryucrzxhVDdgPZ6rIugAfOdfc4QfXfI_vRs0v_oHC5j1OO8nrAWsPrfiWnDSEppEODWifXrHX6JQdeqfC5Wn0Wa7gSW0S3ydqtSXU9y6Vel9JP1b2yN_6PzbXKzRZnQb6TukD2d3yU3drgH75Hvb9BZZHatFYyq9XoFg0xj2IIfX79tFoorTKSdVewsjsUXm1UZvLaXOrWOExmG6CWaBkgYpJUjXsAXwLgeTQ0vMUoqwEcnDaMtOpQUhletwYvFClo9mg366adiYcuLDBBMQ9NFbNprRSgMvEP3jTosl3Bil67M3uZVzQkL73W5vE-mo-GHwanXTnjwkpDHJUL7iOmAh8ag2zDu_kOHVEVUhFwHkTRKJFIbpbgMDBOOt0ZIR0AUSqYjBDr0AenkRa4fEmDH2kEXJSjnkcA0MkDkIeNAYkKKSac4IC82Zz5LWvpzN4UjnWEa5OxjNpkkdlaf1gF5vpWdN6Qff5U63JrOH2LO2BqxR_8m9phcRyx23BQmPCGdclHpp4h3SvmsNfGfKfgF_A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimized+Fuzzy+Cmeans+%E2%80%93+Fuzzy+Covariance+%E2%80%93+Fuzzy+Maximum+Likelihood+Estimation+Clustering+Method+Based+on+Deferential+Evolutionary+Optimization+Algorithm+for+Identification+of+Rock+Mass+Discontinuities+Sets&rft.jtitle=Periodica+polytechnica.+Civil+engineering.+Bauingenieurwesen&rft.au=Esmaeilzadeh%2C+Akbar&rft.au=Shahriar%2C+Kourosh&rft.date=2019-05-31&rft.issn=0553-6626&rft.eissn=1587-3773&rft_id=info:doi/10.3311%2FPPci.13885&rft.externalDBID=n%2Fa&rft.externalDocID=10_3311_PPci_13885
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0553-6626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0553-6626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0553-6626&client=summon