Optimized Fuzzy Cmeans – Fuzzy Covariance – Fuzzy Maximum Likelihood Estimation Clustering Method Based on Deferential Evolutionary Optimization Algorithm for Identification of Rock Mass Discontinuities Sets
Detecting of joint sets (clusters) is one of the most important processes in determining properties of fractures. Joints clustering and consequently, determination of the mean value representing each cluster is applicable to most rock mass studies. It is clear that the accuracy of the clustering pro...
Saved in:
| Published in | Periodica polytechnica. Civil engineering. Bauingenieurwesen |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
31.05.2019
|
| Online Access | Get full text |
| ISSN | 0553-6626 1587-3773 1587-3773 |
| DOI | 10.3311/PPci.13885 |
Cover
| Abstract | Detecting of joint sets (clusters) is one of the most important processes in determining properties of fractures. Joints clustering and consequently, determination of the mean value representing each cluster is applicable to most rock mass studies. It is clear that the accuracy of the clustering process plays a key role in analyzing stability of infrastructures such as dams and tunnels and so on. Hence, in this paper, by reviewing several methods proposed for clustering fractures and considering their advantages and disadvantages, a three-stage hybrid method is developed which contains Fuzzy c-means, Fuzzy covariance and Fuzzy maximum likelihood estimation that by utilizing the modified orientation matrix had been optimized. This method is optimized by the Differential Evolutionary algorithm using a new and strong cost function which is defined as the computation core. In addition, using three clustering quality comparing criteria, the new developed method of differential evolutionary optimized of fuzzy cmeans - fuzzy covariance - fuzzy maximum likelihood estimation clustering method (DEF3) is compared with other base and common methods using field data. After doing the calculations, the developed method by giving the best values for all the criteria provided the best results and good stability in meeting different criteria. The DEF3 method was validated using actual field data which mapped in Rudbar Lorestan dam site. The results revealed that DEF3 acquired the best rank among the other method by getting the value of 0.5721 of Davis-Bouldin criterion, 1403.1 of Calinski-Harabasz criterion, and 0.83482 of Silihotte as comparing criteria of clustering methods. |
|---|---|
| AbstractList | Detecting of joint sets (clusters) is one of the most important processes in determining properties of fractures. Joints clustering and consequently, determination of the mean value representing each cluster is applicable to most rock mass studies. It is clear that the accuracy of the clustering process plays a key role in analyzing stability of infrastructures such as dams and tunnels and so on. Hence, in this paper, by reviewing several methods proposed for clustering fractures and considering their advantages and disadvantages, a three-stage hybrid method is developed which contains Fuzzy c-means, Fuzzy covariance and Fuzzy maximum likelihood estimation that by utilizing the modified orientation matrix had been optimized. This method is optimized by the Differential Evolutionary algorithm using a new and strong cost function which is defined as the computation core. In addition, using three clustering quality comparing criteria, the new developed method of differential evolutionary optimized of fuzzy cmeans - fuzzy covariance - fuzzy maximum likelihood estimation clustering method (DEF3) is compared with other base and common methods using field data. After doing the calculations, the developed method by giving the best values for all the criteria provided the best results and good stability in meeting different criteria. The DEF3 method was validated using actual field data which mapped in Rudbar Lorestan dam site. The results revealed that DEF3 acquired the best rank among the other method by getting the value of 0.5721 of Davis-Bouldin criterion, 1403.1 of Calinski-Harabasz criterion, and 0.83482 of Silihotte as comparing criteria of clustering methods. |
| Author | Esmaeilzadeh, Akbar Shahriar, Kourosh |
| Author_xml | – sequence: 1 givenname: Akbar surname: Esmaeilzadeh fullname: Esmaeilzadeh, Akbar – sequence: 2 givenname: Kourosh surname: Shahriar fullname: Shahriar, Kourosh |
| BookMark | eNpdUU1O3DAUtiqQOtBuegKvW4Xa8SQOSzoMLdIgELTryHGemVccO7Id6Myqd-jRuAEnaYYBhFg96X0_7-fbIzvOOyDkE2cHQnD-9eJC4wEXVVW8IxNeVDITUoodMmFFIbKyzMv3ZC_G34yVhRBsQu7P-4QdrqGlJ8N6vaKzDpSL9OHvv-eGv1UBldPwqnmm_mA3dHSBN2Bx6X1L53E0Ugm9ozM7xAQB3TU9g7QcwW8qjhNG6BgMBHAJlaXzW2-HjUCFFX3aY2twZK99wLTsqPGBnrYbgUG9Bb2hl17fjDvESI8xaj-ibsCEEOkVpPiB7BplI3x8qvvk18n85-xHtjj_fjo7WmQ6L2XKpJwWwMvcmEoyww8rCblop0LlJfBpY1qlGzBtWzbcFGr8KVMNY1LmTQHTQ87EPvmy9R1cr1Z3ytq6D-MPwqrmrN7kUfe9xvoxj5HNtmwdfIwBTK0xPV6UgkL7ItlE-CL5_Eby1v8V-T9-t6a6 |
| CitedBy_id | crossref_primary_10_1007_s00603_024_03804_x crossref_primary_10_1007_s00603_023_03587_7 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION ADTOC UNPAY |
| DOI | 10.3311/PPci.13885 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1587-3773 |
| ExternalDocumentID | 10.3311/ppci.13885 10_3311_PPci_13885 |
| GroupedDBID | 2WC 8FE 8FG 8FH AAYXX ABJCF ABUWG ACIWK AEUYN AFKRA AFRAH ALMA_UNASSIGNED_HOLDINGS BENPR BGLVJ BHPHI BKSAR BPHCQ BYOGL CCPQU CITATION FRP HCIFZ L6V LK5 M7R M7S OK1 PCBAR PHGZM PHGZT PQGLB PQQKQ PROAC PTHSS PUEGO ~02 ADTOC C1A UNPAY |
| ID | FETCH-LOGICAL-c267t-7745e162ff870f1987e23d43a26e14bfdacbefdd6b1f5a3880ab00772b5e49103 |
| IEDL.DBID | UNPAY |
| ISSN | 0553-6626 1587-3773 |
| IngestDate | Tue Aug 19 17:36:35 EDT 2025 Wed Oct 01 02:11:15 EDT 2025 Thu Apr 24 22:51:28 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c267t-7745e162ff870f1987e23d43a26e14bfdacbefdd6b1f5a3880ab00772b5e49103 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://pp.bme.hu/ci/article/download/13885/8351 |
| ParticipantIDs | unpaywall_primary_10_3311_ppci_13885 crossref_citationtrail_10_3311_PPci_13885 crossref_primary_10_3311_PPci_13885 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-05-31 |
| PublicationDateYYYYMMDD | 2019-05-31 |
| PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-31 day: 31 |
| PublicationDecade | 2010 |
| PublicationTitle | Periodica polytechnica. Civil engineering. Bauingenieurwesen |
| PublicationYear | 2019 |
| SSID | ssj0065330 ssib022314486 |
| Score | 2.1427557 |
| Snippet | Detecting of joint sets (clusters) is one of the most important processes in determining properties of fractures. Joints clustering and consequently,... |
| SourceID | unpaywall crossref |
| SourceType | Open Access Repository Enrichment Source Index Database |
| Title | Optimized Fuzzy Cmeans – Fuzzy Covariance – Fuzzy Maximum Likelihood Estimation Clustering Method Based on Deferential Evolutionary Optimization Algorithm for Identification of Rock Mass Discontinuities Sets |
| URI | https://pp.bme.hu/ci/article/download/13885/8351 |
| UnpaywallVersion | publishedVersion |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: East Europe, Central Europe Database customDbUrl: eissn: 1587-3773 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065330 issn: 0553-6626 databaseCode: BYOGL dateStart: 19680101 isFulltext: true titleUrlDefault: https://search.proquest.com/eastcentraleurope providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1587-3773 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065330 issn: 0553-6626 databaseCode: BENPR dateStart: 19680101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1587-3773 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065330 issn: 0553-6626 databaseCode: 8FG dateStart: 19680101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JbtswECUC-9D20L1ougQEmksPkiNRpJyj49gNijhxFwPJySBFsiGixbCltPap_9BP6x_0SzoUZcNdDu2VGlADcTTzhph5g9B-GPMw0qzrSamJB96PeDw8iDwaS5WIOI5l3RQ2OmMnk-jtBb3YQQfrXpjZzIcw4F9Bcmg6zcfrSMsbX3DZCUi3SzsAGiDfaTMK6LuF2pOzce_SOlxKicdYPWEtoPW_ExPHSEpIEMDWifHrHX6JQbeqfMaXn3mabgWW4T30bqNSXU9y7Vel8JPVb2yN_6PzfXS3QZm456QeoB2VP0R3trgHH6Hv5-AsMrNSEg-r1WqJ-5mCsIV_fP22XihuIJG2VrG1OOJfTFZl-NRcq9RYTmQ8AC_hGiBxP60s8QK8AI_q0dT4CKKkxPDo2DHagkNJ8eCmMXg-X-JGD7dBL_1UzE15lWEA09h1EevmWhEXGr8H9w06LBb42Cxsmb3Jq5oTFn9Q5eIxmgwHH_snXjPhwUtCFpcA7SOqAhZqDW5D2_sPFRIZER4yFURCS54IpaVkItCUW94aLiwBUSioigDokCeolRe5eoowPVQWukhOGIs4pJEBIA8RBwISUkg6-S56vT7zadLQn9spHOkU0iBrH9PxODHT-rR20auN7MyRfvxVan9jOn-IWWNzYs_-Tew5ug1Y7NAVJrxArXJeqZeAd0qxh9pHl-dvTvcaU_8JXtsHnA |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZW3QNw4I1YXhqJvXBIuoljp3ss3VYrRJfyqLScKju2WWvzqNpkoT3xH_hp_AN-CeMkrcrjAFdn5Iziycw31sw3hByGsQgjw3ueUoZ66P2oJ8KjyGOx0omM41jVTWHjM346jV6ds_M9crTphZnPfQwD_gUmh7bbfryucrzxhVDdgPZ6rIugAfOdfc4QfXfI_vRs0v_oHC5j1OO8nrAWsPrfiWnDSEppEODWifXrHX6JQdeqfC5Wn0Wa7gSW0S3ydqtSXU9y6Vel9JP1b2yN_6PzbXKzRZnQb6TukD2d3yU3drgH75Hvb9BZZHatFYyq9XoFg0xj2IIfX79tFoorTKSdVewsjsUXm1UZvLaXOrWOExmG6CWaBkgYpJUjXsAXwLgeTQ0vMUoqwEcnDaMtOpQUhletwYvFClo9mg366adiYcuLDBBMQ9NFbNprRSgMvEP3jTosl3Bil67M3uZVzQkL73W5vE-mo-GHwanXTnjwkpDHJUL7iOmAh8ag2zDu_kOHVEVUhFwHkTRKJFIbpbgMDBOOt0ZIR0AUSqYjBDr0AenkRa4fEmDH2kEXJSjnkcA0MkDkIeNAYkKKSac4IC82Zz5LWvpzN4UjnWEa5OxjNpkkdlaf1gF5vpWdN6Qff5U63JrOH2LO2BqxR_8m9phcRyx23BQmPCGdclHpp4h3SvmsNfGfKfgF_A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimized+Fuzzy+Cmeans+%E2%80%93+Fuzzy+Covariance+%E2%80%93+Fuzzy+Maximum+Likelihood+Estimation+Clustering+Method+Based+on+Deferential+Evolutionary+Optimization+Algorithm+for+Identification+of+Rock+Mass+Discontinuities+Sets&rft.jtitle=Periodica+polytechnica.+Civil+engineering.+Bauingenieurwesen&rft.au=Esmaeilzadeh%2C+Akbar&rft.au=Shahriar%2C+Kourosh&rft.date=2019-05-31&rft.issn=0553-6626&rft.eissn=1587-3773&rft_id=info:doi/10.3311%2FPPci.13885&rft.externalDBID=n%2Fa&rft.externalDocID=10_3311_PPci_13885 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0553-6626&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0553-6626&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0553-6626&client=summon |