A Convex Duality Approach for Assigning Probability Distributions to the State of Nonlinear Stochastic Systems

In order to optimally assign a desired probability distribution to the state of a nonlinear stochastic system, a convex duality approach is proposed to arrive at the associated optimality conditions. For a general class of stochastic systems governed by controlled Itô differential equations and subj...

Full description

Saved in:
Bibliographic Details
Published inIEEE control systems letters Vol. 6; pp. 3080 - 3085
Main Author Pakniyat, Ali
Format Journal Article
LanguageEnglish
Published IEEE 2022
Subjects
Online AccessGet full text
ISSN2475-1456
2475-1456
DOI10.1109/LCSYS.2022.3181525

Cover

Abstract In order to optimally assign a desired probability distribution to the state of a nonlinear stochastic system, a convex duality approach is proposed to arrive at the associated optimality conditions. For a general class of stochastic systems governed by controlled Itô differential equations and subject to constraints on the probability distribution of the state at a fixed terminal time, a measure theoretic formulation is presented and it is shown that the original problem is embedded in a convex linear program on the space of Radon measures and that the embedding is tight, i.e., the optimal solution of both the original and the convex relaxation problems are equal. By exploiting the duality relationship between the space of continuous functions and that of measures, the associated optimality conditions are identified in the form of Hamilton-Jacobi problems where the optimization objective, in addition to the value function evaluation at the initial conditions, includes an extra term which is the integral of the product of the value function at the terminal time and the desired probability distribution. Numerical examples are provided to illustrate the results.
AbstractList In order to optimally assign a desired probability distribution to the state of a nonlinear stochastic system, a convex duality approach is proposed to arrive at the associated optimality conditions. For a general class of stochastic systems governed by controlled Itô differential equations and subject to constraints on the probability distribution of the state at a fixed terminal time, a measure theoretic formulation is presented and it is shown that the original problem is embedded in a convex linear program on the space of Radon measures and that the embedding is tight, i.e., the optimal solution of both the original and the convex relaxation problems are equal. By exploiting the duality relationship between the space of continuous functions and that of measures, the associated optimality conditions are identified in the form of Hamilton-Jacobi problems where the optimization objective, in addition to the value function evaluation at the initial conditions, includes an extra term which is the integral of the product of the value function at the terminal time and the desired probability distribution. Numerical examples are provided to illustrate the results.
Author Pakniyat, Ali
Author_xml – sequence: 1
  givenname: Ali
  orcidid: 0000-0003-0665-0330
  surname: Pakniyat
  fullname: Pakniyat, Ali
  email: apakniyat@ua.edu
  organization: Department of Mechanical Engineering, University of Alabama, Tuscaloosa, AL, USA
BookMark eNp9kMtOwzAQRS0EEqX0B2DjH0ixx03jLKOUl1QBUmDBKrIdpzVK7cp2Ef170ocQYsFqRqM5M7rnAp1aZzVCV5SMKSX5zbys3qsxEIAxo5ymkJ6gAUyyNKGTdHr6qz9HoxA-CCGUQ0YgHyBb4NLZT_2FZxvRmbjFxXrtnVBL3DqPixDMwhq7wC_eSSHNfmVmQvRGbqJxNuDocFxqXEURNXYtfnK2M1YL34-cWooQjcLVNkS9CpforBVd0KNjHaK3u9vX8iGZP98_lsU8UTDNYsJamKZUcAJacc0BBJdKScLzNuWEy0mWa6GYVA1tMiEVTRvW5ApUS5ngCtgQweGu8i4Er9t67c1K-G1NSb2TVu-l1Ttp9VFaD_E_kDJ9qD5k9MJ0_6PXB9RorX9-5VlOOOPsGwGqfxM
CODEN ICSLBO
CitedBy_id crossref_primary_10_1007_s11424_025_4507_7
crossref_primary_10_1016_j_automatica_2025_112222
Cites_doi 10.1109/LCSYS.2018.2826038
10.1137/14099454X
10.1109/TAC.2015.2457791
10.1109/TAC.2015.2457784
10.1109/CDC45484.2021.9683692
10.1137/0327060
10.1137/0316037
10.1137/0316038
10.1080/00207178708933880
10.23919/ACC50511.2021.9483276
10.1109/18.532893
10.1109/CDC.2017.8264189
10.1109/TAC.2019.2929110
10.1177/0278364914528059
10.1137/S0363012995295516
10.1109/ACC.2016.7526817
10.1007/BF00939910
10.1016/j.automatica.2018.01.029
10.1214/aop/1065725192
10.1109/9.256389
10.1137/S0363012900377663
10.1016/0005-1098(93)90075-5
10.1109/LRA.2019.2901546
10.1109/CDC40024.2019.9029993
10.1016/S0005-1098(96)00188-4
10.1137/120901490
10.1109/TAC.2019.2941443
10.1109/CDC.2016.7798422
10.1137/070685051
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/LCSYS.2022.3181525
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Digital Library (LUT)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library (LUT)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2475-1456
EndPage 3085
ExternalDocumentID 10_1109_LCSYS_2022_3181525
9790838
Genre orig-research
GroupedDBID 0R~
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AHBIQ
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
OCL
RIA
RIE
AAYXX
CITATION
ID FETCH-LOGICAL-c267t-3f2651a802ec8e822a8bccb089f5808b479eac3bcd1d7abc15d3d9c2cf13a8c23
IEDL.DBID RIE
ISSN 2475-1456
IngestDate Thu Apr 24 23:08:14 EDT 2025
Wed Oct 01 04:41:08 EDT 2025
Wed Aug 27 02:28:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c267t-3f2651a802ec8e822a8bccb089f5808b479eac3bcd1d7abc15d3d9c2cf13a8c23
ORCID 0000-0003-0665-0330
PageCount 6
ParticipantIDs crossref_primary_10_1109_LCSYS_2022_3181525
ieee_primary_9790838
crossref_citationtrail_10_1109_LCSYS_2022_3181525
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationTitle IEEE control systems letters
PublicationTitleAbbrev LCSYS
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ref31
ref30
ref11
ref32
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref22
ref21
ref27
ref29
ref8
chen (ref28) 2019
ref7
ref9
ref4
ref3
ref6
ref5
vermes (ref20) 1985; 14
caluya (ref14) 2019
References_xml – ident: ref11
  doi: 10.1109/LCSYS.2018.2826038
– ident: ref27
  doi: 10.1137/14099454X
– ident: ref6
  doi: 10.1109/TAC.2015.2457791
– ident: ref5
  doi: 10.1109/TAC.2015.2457784
– volume: 14
  start-page: 165
  year: 1985
  ident: ref20
  article-title: Optimal control of piecewise deterministic Markov processes
  publication-title: Stochastics An International Journal of Probability and Stochastic Processes
– ident: ref17
  doi: 10.1109/CDC45484.2021.9683692
– ident: ref21
  doi: 10.1137/0327060
– ident: ref18
  doi: 10.1137/0316037
– ident: ref19
  doi: 10.1137/0316038
– year: 2019
  ident: ref28
  article-title: Duality between density function and value function with applications in constrained optimal control and Markov decision process
  publication-title: arXiv 1902 09583
– ident: ref1
  doi: 10.1080/00207178708933880
– ident: ref16
  doi: 10.23919/ACC50511.2021.9483276
– ident: ref7
  doi: 10.1109/18.532893
– ident: ref10
  doi: 10.1109/CDC.2017.8264189
– year: 2019
  ident: ref14
  article-title: Finite horizon density control for static state feedback linearizable systems
  publication-title: arXiv 1904 02272
– ident: ref31
  doi: 10.1109/TAC.2019.2929110
– ident: ref30
  doi: 10.1177/0278364914528059
– ident: ref24
  doi: 10.1137/S0363012995295516
– ident: ref13
  doi: 10.1109/ACC.2016.7526817
– ident: ref22
  doi: 10.1007/BF00939910
– ident: ref9
  doi: 10.1016/j.automatica.2018.01.029
– ident: ref23
  doi: 10.1214/aop/1065725192
– ident: ref2
  doi: 10.1109/9.256389
– ident: ref25
  doi: 10.1137/S0363012900377663
– ident: ref3
  doi: 10.1016/0005-1098(93)90075-5
– ident: ref12
  doi: 10.1109/LRA.2019.2901546
– ident: ref15
  doi: 10.1109/CDC40024.2019.9029993
– ident: ref4
  doi: 10.1016/S0005-1098(96)00188-4
– ident: ref29
  doi: 10.1137/120901490
– ident: ref32
  doi: 10.1109/TAC.2019.2941443
– ident: ref8
  doi: 10.1109/CDC.2016.7798422
– ident: ref26
  doi: 10.1137/070685051
SSID ssj0001827029
Score 2.199494
Snippet In order to optimally assign a desired probability distribution to the state of a nonlinear stochastic system, a convex duality approach is proposed to arrive...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 3080
SubjectTerms Aerospace electronics
Costs
Nonlinear systems
Optimal control
Probability distribution
Stochastic optimal control
Stochastic systems
Time measurement
Title A Convex Duality Approach for Assigning Probability Distributions to the State of Nonlinear Stochastic Systems
URI https://ieeexplore.ieee.org/document/9790838
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore Digital Library (LUT)
  customDbUrl:
  eissn: 2475-1456
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001827029
  issn: 2475-1456
  databaseCode: RIE
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA7bnnzxwhTnjTz4pt3aNGuTx7E5hugQ5mA-lVxVlFZmB85fb5Jm84KIL6WEBEK_tOc7p-d8B4BTyYxNpDoKlEQqwChUAYuIDjDFilAmaVIlyI6T0RRfzrqzGjhf18IopVzymWrbW_cvXxZiYUNlHZpSwxhIHdRTklS1Wp_xFGIrq-iqLiaknav-5G5iPECEjGNKbJ-fb7bnSzMVZ0uGW-B6tYsqheSpvSh5W7z_EGj87za3waYnlbBXnYIdUFN5E-Q92Lcp5W9w4Aonl7Dn9cOhIarQ4PJ4b4Mi8GZu3mmXI7uEA6uj61tgvcKygIYfQkdIYaHhuNLVYHMzVIgHZjWeodc83wXT4cVtfxT47gqBQElaBrFGSTdiJERKEGV4AiNcCB4SqrskJByn1HyUYy5kJFPGRdSVsaQCCR3FjAgU74FGXuRqH0Bb3iowT1KkNY6R4pJbz4RiYS6cqhaIVs89E1563HbAeM6cCxLSzGGVWawyj1ULnK3XvFTCG3_Obloc1jM9BAe_Dx-CDbu4iqQcgUY5X6hjwy1KfuIO1Qefwc66
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA5zPuiLF6Y4r3nwTTvbNG2Tx7E5pm5D2AbzqeRWFaWV2YHz15uk3bwg4kspIS2hX9rzndNzvgPAqWTaJtLEc5REysHIVQ7zSOJgihWhTNKwSJAdhN0xvp4Ekwo4X9bCKKVs8plqmFP7L19mYmZCZRc0opoxkBWwGmCMg6Ja6zOiQkxtFV1Uxrj0otca3g21D4iQdk2J6fTzzfp8aadirUlnE_QX6yiSSJ4as5w3xPsPicb_LnQLbJS0EjaLfbANKiqtgbQJWyap_A22benkHDZLBXGoqSrUyDzem7AIvJ3qt9pmyc5h2yjplk2wXmGeQc0QoaWkMEvgoFDWYFM9lIkHZlSeYal6vgPGnctRq-uU_RUcgcIod_wEhYHHiIuUIEozBUa4ENwlNAmISziOqP4s-1xIT0aMCy-QvqQCicTzGRHI3wXVNEvVHoCmwFVgHkYoSbCPFJfc-CYUC33gVNWBt3jusSjFx00PjOfYOiEujS1WscEqLrGqg7PlNS-F9Mafs2sGh-XMEoL934dPwFp31O_FvavBzQFYNzcq4iqHoJpPZ-pIM42cH9sN9gGaLtIH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Convex+Duality+Approach+for+Assigning+Probability+Distributions+to+the+State+of+Nonlinear+Stochastic+Systems&rft.jtitle=IEEE+control+systems+letters&rft.au=Pakniyat%2C+Ali&rft.date=2022&rft.issn=2475-1456&rft.eissn=2475-1456&rft.volume=6&rft.spage=3080&rft.epage=3085&rft_id=info:doi/10.1109%2FLCSYS.2022.3181525&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LCSYS_2022_3181525
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2475-1456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2475-1456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2475-1456&client=summon