A Convex Duality Approach for Assigning Probability Distributions to the State of Nonlinear Stochastic Systems
In order to optimally assign a desired probability distribution to the state of a nonlinear stochastic system, a convex duality approach is proposed to arrive at the associated optimality conditions. For a general class of stochastic systems governed by controlled Itô differential equations and subj...
Saved in:
| Published in | IEEE control systems letters Vol. 6; pp. 3080 - 3085 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
IEEE
2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2475-1456 2475-1456 |
| DOI | 10.1109/LCSYS.2022.3181525 |
Cover
| Abstract | In order to optimally assign a desired probability distribution to the state of a nonlinear stochastic system, a convex duality approach is proposed to arrive at the associated optimality conditions. For a general class of stochastic systems governed by controlled Itô differential equations and subject to constraints on the probability distribution of the state at a fixed terminal time, a measure theoretic formulation is presented and it is shown that the original problem is embedded in a convex linear program on the space of Radon measures and that the embedding is tight, i.e., the optimal solution of both the original and the convex relaxation problems are equal. By exploiting the duality relationship between the space of continuous functions and that of measures, the associated optimality conditions are identified in the form of Hamilton-Jacobi problems where the optimization objective, in addition to the value function evaluation at the initial conditions, includes an extra term which is the integral of the product of the value function at the terminal time and the desired probability distribution. Numerical examples are provided to illustrate the results. |
|---|---|
| AbstractList | In order to optimally assign a desired probability distribution to the state of a nonlinear stochastic system, a convex duality approach is proposed to arrive at the associated optimality conditions. For a general class of stochastic systems governed by controlled Itô differential equations and subject to constraints on the probability distribution of the state at a fixed terminal time, a measure theoretic formulation is presented and it is shown that the original problem is embedded in a convex linear program on the space of Radon measures and that the embedding is tight, i.e., the optimal solution of both the original and the convex relaxation problems are equal. By exploiting the duality relationship between the space of continuous functions and that of measures, the associated optimality conditions are identified in the form of Hamilton-Jacobi problems where the optimization objective, in addition to the value function evaluation at the initial conditions, includes an extra term which is the integral of the product of the value function at the terminal time and the desired probability distribution. Numerical examples are provided to illustrate the results. |
| Author | Pakniyat, Ali |
| Author_xml | – sequence: 1 givenname: Ali orcidid: 0000-0003-0665-0330 surname: Pakniyat fullname: Pakniyat, Ali email: apakniyat@ua.edu organization: Department of Mechanical Engineering, University of Alabama, Tuscaloosa, AL, USA |
| BookMark | eNp9kMtOwzAQRS0EEqX0B2DjH0ixx03jLKOUl1QBUmDBKrIdpzVK7cp2Ef170ocQYsFqRqM5M7rnAp1aZzVCV5SMKSX5zbys3qsxEIAxo5ymkJ6gAUyyNKGTdHr6qz9HoxA-CCGUQ0YgHyBb4NLZT_2FZxvRmbjFxXrtnVBL3DqPixDMwhq7wC_eSSHNfmVmQvRGbqJxNuDocFxqXEURNXYtfnK2M1YL34-cWooQjcLVNkS9CpforBVd0KNjHaK3u9vX8iGZP98_lsU8UTDNYsJamKZUcAJacc0BBJdKScLzNuWEy0mWa6GYVA1tMiEVTRvW5ApUS5ngCtgQweGu8i4Er9t67c1K-G1NSb2TVu-l1Ttp9VFaD_E_kDJ9qD5k9MJ0_6PXB9RorX9-5VlOOOPsGwGqfxM |
| CODEN | ICSLBO |
| CitedBy_id | crossref_primary_10_1007_s11424_025_4507_7 crossref_primary_10_1016_j_automatica_2025_112222 |
| Cites_doi | 10.1109/LCSYS.2018.2826038 10.1137/14099454X 10.1109/TAC.2015.2457791 10.1109/TAC.2015.2457784 10.1109/CDC45484.2021.9683692 10.1137/0327060 10.1137/0316037 10.1137/0316038 10.1080/00207178708933880 10.23919/ACC50511.2021.9483276 10.1109/18.532893 10.1109/CDC.2017.8264189 10.1109/TAC.2019.2929110 10.1177/0278364914528059 10.1137/S0363012995295516 10.1109/ACC.2016.7526817 10.1007/BF00939910 10.1016/j.automatica.2018.01.029 10.1214/aop/1065725192 10.1109/9.256389 10.1137/S0363012900377663 10.1016/0005-1098(93)90075-5 10.1109/LRA.2019.2901546 10.1109/CDC40024.2019.9029993 10.1016/S0005-1098(96)00188-4 10.1137/120901490 10.1109/TAC.2019.2941443 10.1109/CDC.2016.7798422 10.1137/070685051 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/LCSYS.2022.3181525 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore Digital Library (LUT) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Library (LUT) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2475-1456 |
| EndPage | 3085 |
| ExternalDocumentID | 10_1109_LCSYS_2022_3181525 9790838 |
| Genre | orig-research |
| GroupedDBID | 0R~ 6IK 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AHBIQ AKJIK ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF OCL RIA RIE AAYXX CITATION |
| ID | FETCH-LOGICAL-c267t-3f2651a802ec8e822a8bccb089f5808b479eac3bcd1d7abc15d3d9c2cf13a8c23 |
| IEDL.DBID | RIE |
| ISSN | 2475-1456 |
| IngestDate | Thu Apr 24 23:08:14 EDT 2025 Wed Oct 01 04:41:08 EDT 2025 Wed Aug 27 02:28:04 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c267t-3f2651a802ec8e822a8bccb089f5808b479eac3bcd1d7abc15d3d9c2cf13a8c23 |
| ORCID | 0000-0003-0665-0330 |
| PageCount | 6 |
| ParticipantIDs | crossref_primary_10_1109_LCSYS_2022_3181525 ieee_primary_9790838 crossref_citationtrail_10_1109_LCSYS_2022_3181525 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20220000 2022-00-00 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 20220000 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE control systems letters |
| PublicationTitleAbbrev | LCSYS |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref12 ref15 ref31 ref30 ref11 ref32 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref22 ref21 ref27 ref29 ref8 chen (ref28) 2019 ref7 ref9 ref4 ref3 ref6 ref5 vermes (ref20) 1985; 14 caluya (ref14) 2019 |
| References_xml | – ident: ref11 doi: 10.1109/LCSYS.2018.2826038 – ident: ref27 doi: 10.1137/14099454X – ident: ref6 doi: 10.1109/TAC.2015.2457791 – ident: ref5 doi: 10.1109/TAC.2015.2457784 – volume: 14 start-page: 165 year: 1985 ident: ref20 article-title: Optimal control of piecewise deterministic Markov processes publication-title: Stochastics An International Journal of Probability and Stochastic Processes – ident: ref17 doi: 10.1109/CDC45484.2021.9683692 – ident: ref21 doi: 10.1137/0327060 – ident: ref18 doi: 10.1137/0316037 – ident: ref19 doi: 10.1137/0316038 – year: 2019 ident: ref28 article-title: Duality between density function and value function with applications in constrained optimal control and Markov decision process publication-title: arXiv 1902 09583 – ident: ref1 doi: 10.1080/00207178708933880 – ident: ref16 doi: 10.23919/ACC50511.2021.9483276 – ident: ref7 doi: 10.1109/18.532893 – ident: ref10 doi: 10.1109/CDC.2017.8264189 – year: 2019 ident: ref14 article-title: Finite horizon density control for static state feedback linearizable systems publication-title: arXiv 1904 02272 – ident: ref31 doi: 10.1109/TAC.2019.2929110 – ident: ref30 doi: 10.1177/0278364914528059 – ident: ref24 doi: 10.1137/S0363012995295516 – ident: ref13 doi: 10.1109/ACC.2016.7526817 – ident: ref22 doi: 10.1007/BF00939910 – ident: ref9 doi: 10.1016/j.automatica.2018.01.029 – ident: ref23 doi: 10.1214/aop/1065725192 – ident: ref2 doi: 10.1109/9.256389 – ident: ref25 doi: 10.1137/S0363012900377663 – ident: ref3 doi: 10.1016/0005-1098(93)90075-5 – ident: ref12 doi: 10.1109/LRA.2019.2901546 – ident: ref15 doi: 10.1109/CDC40024.2019.9029993 – ident: ref4 doi: 10.1016/S0005-1098(96)00188-4 – ident: ref29 doi: 10.1137/120901490 – ident: ref32 doi: 10.1109/TAC.2019.2941443 – ident: ref8 doi: 10.1109/CDC.2016.7798422 – ident: ref26 doi: 10.1137/070685051 |
| SSID | ssj0001827029 |
| Score | 2.199494 |
| Snippet | In order to optimally assign a desired probability distribution to the state of a nonlinear stochastic system, a convex duality approach is proposed to arrive... |
| SourceID | crossref ieee |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 3080 |
| SubjectTerms | Aerospace electronics Costs Nonlinear systems Optimal control Probability distribution Stochastic optimal control Stochastic systems Time measurement |
| Title | A Convex Duality Approach for Assigning Probability Distributions to the State of Nonlinear Stochastic Systems |
| URI | https://ieeexplore.ieee.org/document/9790838 |
| Volume | 6 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore Digital Library (LUT) customDbUrl: eissn: 2475-1456 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001827029 issn: 2475-1456 databaseCode: RIE dateStart: 20170101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA7bnnzxwhTnjTz4pt3aNGuTx7E5hugQ5mA-lVxVlFZmB85fb5Jm84KIL6WEBEK_tOc7p-d8B4BTyYxNpDoKlEQqwChUAYuIDjDFilAmaVIlyI6T0RRfzrqzGjhf18IopVzymWrbW_cvXxZiYUNlHZpSwxhIHdRTklS1Wp_xFGIrq-iqLiaknav-5G5iPECEjGNKbJ-fb7bnSzMVZ0uGW-B6tYsqheSpvSh5W7z_EGj87za3waYnlbBXnYIdUFN5E-Q92Lcp5W9w4Aonl7Dn9cOhIarQ4PJ4b4Mi8GZu3mmXI7uEA6uj61tgvcKygIYfQkdIYaHhuNLVYHMzVIgHZjWeodc83wXT4cVtfxT47gqBQElaBrFGSTdiJERKEGV4AiNcCB4SqrskJByn1HyUYy5kJFPGRdSVsaQCCR3FjAgU74FGXuRqH0Bb3iowT1KkNY6R4pJbz4RiYS6cqhaIVs89E1563HbAeM6cCxLSzGGVWawyj1ULnK3XvFTCG3_Obloc1jM9BAe_Dx-CDbu4iqQcgUY5X6hjwy1KfuIO1Qefwc66 |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA5zPuiLF6Y4r3nwTTvbNG2Tx7E5pm5D2AbzqeRWFaWV2YHz15uk3bwg4kspIS2hX9rzndNzvgPAqWTaJtLEc5REysHIVQ7zSOJgihWhTNKwSJAdhN0xvp4Ekwo4X9bCKKVs8plqmFP7L19mYmZCZRc0opoxkBWwGmCMg6Ja6zOiQkxtFV1Uxrj0otca3g21D4iQdk2J6fTzzfp8aadirUlnE_QX6yiSSJ4as5w3xPsPicb_LnQLbJS0EjaLfbANKiqtgbQJWyap_A22benkHDZLBXGoqSrUyDzem7AIvJ3qt9pmyc5h2yjplk2wXmGeQc0QoaWkMEvgoFDWYFM9lIkHZlSeYal6vgPGnctRq-uU_RUcgcIod_wEhYHHiIuUIEozBUa4ENwlNAmISziOqP4s-1xIT0aMCy-QvqQCicTzGRHI3wXVNEvVHoCmwFVgHkYoSbCPFJfc-CYUC33gVNWBt3jusSjFx00PjOfYOiEujS1WscEqLrGqg7PlNS-F9Mafs2sGh-XMEoL934dPwFp31O_FvavBzQFYNzcq4iqHoJpPZ-pIM42cH9sN9gGaLtIH |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Convex+Duality+Approach+for+Assigning+Probability+Distributions+to+the+State+of+Nonlinear+Stochastic+Systems&rft.jtitle=IEEE+control+systems+letters&rft.au=Pakniyat%2C+Ali&rft.date=2022&rft.issn=2475-1456&rft.eissn=2475-1456&rft.volume=6&rft.spage=3080&rft.epage=3085&rft_id=info:doi/10.1109%2FLCSYS.2022.3181525&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LCSYS_2022_3181525 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2475-1456&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2475-1456&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2475-1456&client=summon |