Impact of sublayer thickness and annealing on silicon nanostructures formation in a-Si:H/a-SiNx:H superlattices for photovoltaics
In this work, we synthesized amorphous multilayered a-Si:H/a-SiNx:H superlattices with different thickness of sublayers grown on silicon and quartz substrates by PECVD method at low power density (60 mW/cm2) and substrate temperature (250 °C) using nitrogen and silane gases as reactive precursors. S...
Saved in:
| Published in | Vacuum Vol. 153; pp. 154 - 161 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.07.2018
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0042-207X 1879-2715 1879-2715 |
| DOI | 10.1016/j.vacuum.2018.04.009 |
Cover
| Abstract | In this work, we synthesized amorphous multilayered a-Si:H/a-SiNx:H superlattices with different thickness of sublayers grown on silicon and quartz substrates by PECVD method at low power density (60 mW/cm2) and substrate temperature (250 °C) using nitrogen and silane gases as reactive precursors. Subsequently, the post-deposition annealing of these structures, composed of alternating layers of a-Si:H and a-SiNx:H, was carried out up to 1100° in vacuum to form silicon nanostructures. The dependence of the structural and chemical bonding characteristics of prepared superlattices on the silicon sublayer thickness and post-deposition annealing temperature was investigated. The formation of silicon nanostructures was confirmed by transmission electron microscopy, X-ray diffraction measurement and Raman scattering spectroscopy. Changes in bonding configuration during the annealing were carried out by Fourier transform infrared spectroscopy. Optical properties were studied by UV–Vis spectroscopy. XRD, Raman and TEM measurements show that the crystallization process of a-Si:H sublayers strongly depends on the thickness of initial a-Si:H sublayers and the post-deposition treatment process. It was found that a higher crystallization temperature for the thinner a-Si:H sublayers is needed. Results clearly show that structural and optical characteristics of these systems can be controlled by deposition parameters and post-deposition annealing conditions.
•NH3-free fabrication of silicon nitride based as dielectric barrier in superlattices.•Silicon nanostructures formed by annealing of a-Si:H/a-SiNx:H superlattices.•Synergy effect of analytical method in investigation of Si-NCs formation.•Increasing in crystallization temperature with decreasing Si sublayer thickness. |
|---|---|
| AbstractList | In this work, we synthesized amorphous multilayered a-Si:H/a-SiNx:H superlattices with different thickness of sublayers grown on silicon and quartz substrates by PECVD method at low power density (60 mW/cm2) and substrate temperature (250 °C) using nitrogen and silane gases as reactive precursors. Subsequently, the post-deposition annealing of these structures, composed of alternating layers of a-Si:H and a-SiNx:H, was carried out up to 1100° in vacuum to form silicon nanostructures. The dependence of the structural and chemical bonding characteristics of prepared superlattices on the silicon sublayer thickness and post-deposition annealing temperature was investigated. The formation of silicon nanostructures was confirmed by transmission electron microscopy, X-ray diffraction measurement and Raman scattering spectroscopy. Changes in bonding configuration during the annealing were carried out by Fourier transform infrared spectroscopy. Optical properties were studied by UV–Vis spectroscopy. XRD, Raman and TEM measurements show that the crystallization process of a-Si:H sublayers strongly depends on the thickness of initial a-Si:H sublayers and the post-deposition treatment process. It was found that a higher crystallization temperature for the thinner a-Si:H sublayers is needed. Results clearly show that structural and optical characteristics of these systems can be controlled by deposition parameters and post-deposition annealing conditions.
•NH3-free fabrication of silicon nitride based as dielectric barrier in superlattices.•Silicon nanostructures formed by annealing of a-Si:H/a-SiNx:H superlattices.•Synergy effect of analytical method in investigation of Si-NCs formation.•Increasing in crystallization temperature with decreasing Si sublayer thickness. |
| Author | Medlín, Rostislav Netrvalová, Marie Calta, Pavel Šutta, Pavol |
| Author_xml | – sequence: 1 givenname: Pavel surname: Calta fullname: Calta, Pavel email: pcalta@ntc.zcu.cz – sequence: 2 givenname: Pavol orcidid: 0000-0002-6549-2064 surname: Šutta fullname: Šutta, Pavol – sequence: 3 givenname: Rostislav orcidid: 0000-0003-4056-4022 surname: Medlín fullname: Medlín, Rostislav – sequence: 4 givenname: Marie orcidid: 0000-0003-3143-4859 surname: Netrvalová fullname: Netrvalová, Marie |
| BookMark | eNqNkMFu1DAURS1UJKaFP2DhH0hqexInmQUSqoCpVJUFILGz3jw71IPHjmxnyiz5czwNKxbAwroL-1zrnkty4YM3hLzmrOaMy-t9fQSc50MtGO9r1tSMDc_IivfdUImOtxdkxVgjKsG6ry_IZUp7xpiQrF-Rn7eHCTDTMNI07xycTKT5weJ3b1Ki4HU53oCz_hsNnibrLJb04EPKccY8R5PoGOIBsi0X1lOoPtnN9voc9z8229I7meggZ4vLUzo9hByOwWWwmF6S5yO4ZF79zivy5f27zzfb6u7jh9ubt3cVCll2oBadHIRs5FpC3wxaawNtWTH0bbfrGy0k4gC8Ea0YpdxpABw5dmbdDdrIdn1F2qV39hOcHsE5NUV7gHhSnKmzR7VXi0d19qhYo4rHwm0WDmNIKZpRoc1PY3ME6_4FN3_A__nnmwUzRcjRmqgSWuPRaBsNZqWD_XvBLzAHqD0 |
| CitedBy_id | crossref_primary_10_2478_jee_2019_0045 crossref_primary_10_4028_www_scientific_net_KEM_788_96 crossref_primary_10_1364_OSAC_389612 |
| Cites_doi | 10.1063/1.103561 10.1109/JSTQE.2006.885391 10.1103/PhysRevB.55.2938 10.1088/0953-8984/13/44/303 10.1016/S0022-3093(01)01110-3 10.1063/1.2349565 10.1103/PhysRevB.61.4693 10.1063/1.3021158 10.1016/j.jcrysgro.2008.05.018 10.1139/cjp-2013-0442 10.1126/science.285.5428.692 10.1016/j.vacuum.2015.06.007 10.1088/0953-8984/14/43/307 10.1016/S0167-9317(98)00273-1 10.1016/0025-5408(68)90023-8 10.1063/1.1736034 10.1063/1.108309 10.1007/BF00482725 10.1016/j.vacuum.2006.09.006 10.1063/1.1664026 10.1109/16.119035 10.1016/j.mseb.2008.10.052 10.1063/1.1330557 10.1016/j.solmat.2008.04.012 10.1063/1.1433906 10.1039/c3ta12878d 10.1039/C5RA20770C 10.1103/PhysRevB.73.033307 10.1063/1.4707939 10.1016/j.tsf.2011.06.084 10.1103/PhysRevLett.76.539 10.1063/1.1371794 10.1063/1.99054 10.1002/pssa.201330231 10.1088/0957-4484/19/24/245201 10.1063/1.356432 10.1007/s00339-012-7301-z 10.1016/j.tsf.2009.01.086 10.1007/s12274-014-0551-7 10.1016/j.tsf.2005.12.119 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier Ltd |
| Copyright_xml | – notice: 2018 Elsevier Ltd |
| DBID | AAYXX CITATION ADTOC UNPAY |
| DOI | 10.1016/j.vacuum.2018.04.009 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Physics |
| EISSN | 1879-2715 |
| EndPage | 161 |
| ExternalDocumentID | 10.1016/j.vacuum.2018.04.009 10_1016_j_vacuum_2018_04_009 S0042207X18302938 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 6TJ 7-5 71M 8P~ 8WZ 9JN A6W AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABMAC ABNEU ABTAH ABXDB ABXRA ABYKQ ACDAQ ACFVG ACGFS ACNCT ACNNM ACRLP ADBBV ADEZE ADMUD ADOJD AEBSH AEKER AENEX AEZYN AFFNX AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA HMV HVGLF HZ~ IHE J1W KOM M38 M41 MAGPM MO0 MVM N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SPD SPG SSM SSQ SSZ T5K T9H TAE TN5 WUQ ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AHDLI AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD ADTOC UNPAY |
| ID | FETCH-LOGICAL-c2679-cd2769264636a849dddea50269857b84d26cc9a14252f66bdaacf1c7e379de653 |
| IEDL.DBID | UNPAY |
| ISSN | 0042-207X 1879-2715 |
| IngestDate | Wed Oct 01 15:17:42 EDT 2025 Thu Apr 24 23:09:14 EDT 2025 Wed Oct 01 04:22:07 EDT 2025 Fri Feb 23 02:28:31 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | X-ray diffraction Transmission electron microscopy Silicon nanocrystal PECVD Superlattice Silicon nitride |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2679-cd2769264636a849dddea50269857b84d26cc9a14252f66bdaacf1c7e379de653 |
| ORCID | 0000-0002-6549-2064 0000-0003-3143-4859 0000-0003-4056-4022 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.sciencedirect.com/science/article/pii/S0042207X18302938 |
| PageCount | 8 |
| ParticipantIDs | unpaywall_primary_10_1016_j_vacuum_2018_04_009 crossref_citationtrail_10_1016_j_vacuum_2018_04_009 crossref_primary_10_1016_j_vacuum_2018_04_009 elsevier_sciencedirect_doi_10_1016_j_vacuum_2018_04_009 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | July 2018 2018-07-00 |
| PublicationDateYYYYMMDD | 2018-07-01 |
| PublicationDate_xml | – month: 07 year: 2018 text: July 2018 |
| PublicationDecade | 2010 |
| PublicationTitle | Vacuum |
| PublicationYear | 2018 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Pérez-Rodríguez, Cornet, Morante (bib28) 1998; 40 Vernhes, Zabeida, Klemberg-Sapieha, Martinu (bib41) 2006; 100 Xu, Zhou, He, Jiang, Fan, Huang, Ao, He (bib42) 2013; 111 Xu, Li, Zhao, Ren, Yu (bib12) 2015; 120 Faraci, Gibilisco, Russo, Pennisi (bib36) 2006; 73 Gardelis, Nassiopoulou, Manousiadis, Milita, Gkanatsiou, Frangis, Lioutas (bib5) 2012; 111 Scardera, Puzzer, Perez-Wurfl, Conibeer (bib9) 2008; 310 He, Yin, Cheng, Wang, Liu, Hu (bib37) 1994; 75 Shah, Torres, Tscharner, Wyrsch, Keppner (bib16) 1999; 285 Gourbilleau, Dufour, Rezgui, Bremond (bib4) 2009; 159 Cho, Park, Hao, Song, Conibeer, Park, Green (bib15) 2008; 19 Scardera, Puzzer, Conibeer, Green (bib39) 2008; 104 Langford (bib22) 1978; 11 Green (bib2) 2003 Chen, Huang, Xu, Feng (bib19) 1992; 61 Zhao, Green (bib40) 1991; 8 Agbo, Calta, Šutta, Vavruňková, Netrvalová, Prušáková (bib10) 2014; 211 Hartel, Hiller, Gutsch, Löper, Estradé, Peiró, Garrido, Zacharias (bib14) 2011; 520 Mallorquí, Alarcón-Lladó, Mundet, Kiani, Demaurex (bib43) 2015; 2 Shockley, Queisser (bib1) 1961; 32 Giorgis, Vinegoni, Pavesi (bib21) 2000; 61 Wang, Wang, Huang, Li, Ma, Zhang, Bao, Shi, Li, Huang, Xu, Chen (bib32) 2001; 13 Wei, Xu, Wang, Wang (bib34) 2007; 81 Conibeer, Green, Corkish, Cho, Cho, Jiang, Fangsuwannarak, Pink, Huang, Puzzer, Trupke, Richards, Shalav, Lin (bib3) 2006; 511 Zhang, Chen, Wang, Li, Xu, Huang, Chen (bib20) 2002; 14 Tauc (bib44) 1968; 3 Zacharias, Blasing, Hirschman, Tsybeskov, Fauchet (bib17) 2000 Očenášek, Netrvalová, Šutta (bib45) 2011 Kar, Das (bib26) 2013; 1 Hao, Wu, Shen, Dekkers (bib30) 2007; 91 Delhez, de Keijser, Mittemeijer (bib23) 1982; 312 Wang, Wang, Huang, Ma, Bao, Shi, Li, Xu, Chen (bib8) 2002; 299–302 Iacona, Bongiorno, Spinella, Boninelli, Priolo (bib24) 2004; 95 Gajovic, Gracin, Juraic, Parramon, Ceh (bib38) 2009; 517 Canham (bib6) 1990; 57 Marinov, Zotov (bib33) 1997; 55 Sung, Park, Shin, Kim, Kim, Cho, Huh (bib18) 2006; 86 Funde, Bakr, Kamble, Hawaldar, Amalnerkar, Jadkar (bib35) 2008; 92 Lockwood, Lu, Baribeau (bib7) 1996; 76 Gourbilleau, Portier, Ternon, Voivenel, Madelon, Rizk (bib25) 2001; 78 Das, Kar (bib27) 2016; 6 Rinnert, Vergnat, Burneau (bib29) 2001; 89 Bustarret, Hachicha, Brunel (bib31) 1988; 52 Agbo, Šutta, Calta, Biswas, Pan (bib11) 2014; 92 Zacharias, Heitmann, Scholz, Kahler, Schmidt, Bläsing (bib13) 2002; 80 Zhang (10.1016/j.vacuum.2018.04.009_bib20) 2002; 14 Wei (10.1016/j.vacuum.2018.04.009_bib34) 2007; 81 Xu (10.1016/j.vacuum.2018.04.009_bib42) 2013; 111 Xu (10.1016/j.vacuum.2018.04.009_bib12) 2015; 120 Hao (10.1016/j.vacuum.2018.04.009_bib30) 2007; 91 Shockley (10.1016/j.vacuum.2018.04.009_bib1) 1961; 32 Gourbilleau (10.1016/j.vacuum.2018.04.009_bib25) 2001; 78 Marinov (10.1016/j.vacuum.2018.04.009_bib33) 1997; 55 Conibeer (10.1016/j.vacuum.2018.04.009_bib3) 2006; 511 Wang (10.1016/j.vacuum.2018.04.009_bib8) 2002; 299–302 Wang (10.1016/j.vacuum.2018.04.009_bib32) 2001; 13 Agbo (10.1016/j.vacuum.2018.04.009_bib10) 2014; 211 Mallorquí (10.1016/j.vacuum.2018.04.009_bib43) 2015; 2 Očenášek (10.1016/j.vacuum.2018.04.009_bib45) 2011 Canham (10.1016/j.vacuum.2018.04.009_bib6) 1990; 57 Agbo (10.1016/j.vacuum.2018.04.009_bib11) 2014; 92 Tauc (10.1016/j.vacuum.2018.04.009_bib44) 1968; 3 Kar (10.1016/j.vacuum.2018.04.009_bib26) 2013; 1 Das (10.1016/j.vacuum.2018.04.009_bib27) 2016; 6 Langford (10.1016/j.vacuum.2018.04.009_bib22) 1978; 11 Rinnert (10.1016/j.vacuum.2018.04.009_bib29) 2001; 89 Scardera (10.1016/j.vacuum.2018.04.009_bib39) 2008; 104 Shah (10.1016/j.vacuum.2018.04.009_bib16) 1999; 285 Giorgis (10.1016/j.vacuum.2018.04.009_bib21) 2000; 61 Zacharias (10.1016/j.vacuum.2018.04.009_bib13) 2002; 80 Sung (10.1016/j.vacuum.2018.04.009_bib18) 2006; 86 Funde (10.1016/j.vacuum.2018.04.009_bib35) 2008; 92 Vernhes (10.1016/j.vacuum.2018.04.009_bib41) 2006; 100 Faraci (10.1016/j.vacuum.2018.04.009_bib36) 2006; 73 Gourbilleau (10.1016/j.vacuum.2018.04.009_bib4) 2009; 159 Scardera (10.1016/j.vacuum.2018.04.009_bib9) 2008; 310 Zhao (10.1016/j.vacuum.2018.04.009_bib40) 1991; 8 Pérez-Rodríguez (10.1016/j.vacuum.2018.04.009_bib28) 1998; 40 Gardelis (10.1016/j.vacuum.2018.04.009_bib5) 2012; 111 He (10.1016/j.vacuum.2018.04.009_bib37) 1994; 75 Bustarret (10.1016/j.vacuum.2018.04.009_bib31) 1988; 52 Green (10.1016/j.vacuum.2018.04.009_bib2) 2003 Iacona (10.1016/j.vacuum.2018.04.009_bib24) 2004; 95 Chen (10.1016/j.vacuum.2018.04.009_bib19) 1992; 61 Lockwood (10.1016/j.vacuum.2018.04.009_bib7) 1996; 76 Delhez (10.1016/j.vacuum.2018.04.009_bib23) 1982; 312 Gajovic (10.1016/j.vacuum.2018.04.009_bib38) 2009; 517 Hartel (10.1016/j.vacuum.2018.04.009_bib14) 2011; 520 Zacharias (10.1016/j.vacuum.2018.04.009_bib17) 2000 Cho (10.1016/j.vacuum.2018.04.009_bib15) 2008; 19 |
| References_xml | – volume: 6 start-page: 3860 year: 2016 end-page: 3869 ident: bib27 publication-title: RSC Adv. – volume: 76 start-page: 539 year: 1996 ident: bib7 publication-title: Phys. Rev. Lett. – volume: 89 start-page: 237 year: 2001 ident: bib29 publication-title: J. Appl. Phys. – volume: 40 start-page: 223 year: 1998 end-page: 237 ident: bib28 publication-title: Microelectron. Eng. – volume: 57 start-page: 1046 year: 1990 ident: bib6 publication-title: Appl. Phys. Lett. – volume: 11 start-page: 10 year: 1978 end-page: 14 ident: bib22 publication-title: J. Appl. Phys. – volume: 3 start-page: 37 year: 1968 end-page: 46 ident: bib44 publication-title: Mater. Res. Bull. – start-page: 110 year: 2011 end-page: 113 ident: bib45 publication-title: APCOM Proc. – volume: 285 start-page: 692 year: 1999 ident: bib16 publication-title: Science – volume: 517 start-page: 5453 year: 2009 end-page: 5458 ident: bib38 publication-title: Thin Solid Films – volume: 211 start-page: 1512 year: 2014 end-page: 1518 ident: bib10 publication-title: Phys. Status Solidi – volume: 111 year: 2012 ident: bib5 publication-title: J. Appl. Phys. – volume: 61 start-page: 2069 year: 1992 ident: bib19 publication-title: Appl. Phys. Lett. – volume: 75 start-page: 797 year: 1994 ident: bib37 publication-title: J. Appl. Phys. – volume: 8 start-page: 1925 year: 1991 end-page: 1934 ident: bib40 publication-title: IEEE Trans. Electron. Dev. – year: 2003 ident: bib2 article-title: Third Generation Photovoltaics: Ultra-high Efficiency at Low Cost – volume: 80 start-page: 661 year: 2002 end-page: 663 ident: bib13 publication-title: Appl. Phys. Lett. – volume: 92 start-page: 783 year: 2014 end-page: 788 ident: bib11 publication-title: Can. J. Phys. – volume: 310 start-page: 3680 year: 2008 end-page: 3684 ident: bib9 publication-title: J. Cryst. Growth – volume: 81 start-page: 656 year: 2007 end-page: 662 ident: bib34 publication-title: Vacuum – volume: 61 start-page: 4693 year: 2000 end-page: 4698 ident: bib21 publication-title: Phys. Rev. B – volume: 55 start-page: 2938 year: 1997 end-page: 2944 ident: bib33 publication-title: Phys. Rev. B – volume: 14 start-page: 10083 year: 2002 end-page: 10091 ident: bib20 publication-title: J. Phys. Condens. Matter – volume: 13 start-page: 9857 year: 2001 end-page: 9865 ident: bib32 publication-title: J. Phys. Condens. Matter – volume: 159 start-page: 70 year: 2009 ident: bib4 publication-title: Mater. Sci. Eng. B – volume: 1 start-page: 14744 year: 2013 end-page: 14753 ident: bib26 publication-title: J. Mat. Chem. a – volume: 19 year: 2008 ident: bib15 publication-title: Nanotechnology – volume: 120 start-page: 37 year: 2015 end-page: 41 ident: bib12 publication-title: Vacuum – volume: 95 start-page: 3723 year: 2004 ident: bib24 publication-title: J. Appl. Phys. – volume: 299–302 start-page: 751 year: 2002 end-page: 755 ident: bib8 publication-title: J. Non-cryst. Solids – volume: 92 start-page: 1217 year: 2008 end-page: 1223 ident: bib35 publication-title: Sol. Energy Mater. Sol. Cells – volume: 2 start-page: 673 year: 2015 ident: bib43 publication-title: Nano Res. – volume: 520 start-page: 121 year: 2011 end-page: 125 ident: bib14 publication-title: Thin Solid Films – volume: 86 start-page: 1545 year: 2006 end-page: 1555 ident: bib18 publication-title: IEEE J. Sel. Top. Quant. Electron. – volume: 100 year: 2006 ident: bib41 publication-title: J. Appl. Phys. – volume: 511 start-page: 654 year: 2006 ident: bib3 publication-title: Thin Solid Films – start-page: 266 year: 2000 end-page: 269 ident: bib17 publication-title: J. Non-cryst. Solids – volume: 111 start-page: 867 year: 2013 end-page: 876 ident: bib42 publication-title: Appl. Phys. Mater. Sci. Process – volume: 73 year: 2006 ident: bib36 publication-title: Phys. Rev. B – volume: 91 year: 2007 ident: bib30 publication-title: Appl. Phys. Lett. – volume: 312 start-page: 1 year: 1982 end-page: 16 ident: bib23 publication-title: Fresenius Z. Anal. Chem. – volume: 104 start-page: 104310 year: 2008 ident: bib39 publication-title: J. Appl. Phys. – volume: 78 start-page: 3058 year: 2001 ident: bib25 publication-title: Appl. Phys. Lett. – volume: 52 start-page: 1675 year: 1988 ident: bib31 publication-title: Appl. Phys. Lett. – volume: 32 start-page: 510 year: 1961 end-page: 519 ident: bib1 publication-title: J. Appl. Phys. – volume: 57 start-page: 1046 year: 1990 ident: 10.1016/j.vacuum.2018.04.009_bib6 publication-title: Appl. Phys. Lett. doi: 10.1063/1.103561 – volume: 86 start-page: 1545 year: 2006 ident: 10.1016/j.vacuum.2018.04.009_bib18 publication-title: IEEE J. Sel. Top. Quant. Electron. doi: 10.1109/JSTQE.2006.885391 – volume: 55 start-page: 2938 year: 1997 ident: 10.1016/j.vacuum.2018.04.009_bib33 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.55.2938 – volume: 13 start-page: 9857 year: 2001 ident: 10.1016/j.vacuum.2018.04.009_bib32 publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/13/44/303 – volume: 299–302 start-page: 751 year: 2002 ident: 10.1016/j.vacuum.2018.04.009_bib8 publication-title: J. Non-cryst. Solids doi: 10.1016/S0022-3093(01)01110-3 – year: 2003 ident: 10.1016/j.vacuum.2018.04.009_bib2 – volume: 100 year: 2006 ident: 10.1016/j.vacuum.2018.04.009_bib41 publication-title: J. Appl. Phys. doi: 10.1063/1.2349565 – volume: 61 start-page: 4693 year: 2000 ident: 10.1016/j.vacuum.2018.04.009_bib21 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.61.4693 – volume: 104 start-page: 104310 year: 2008 ident: 10.1016/j.vacuum.2018.04.009_bib39 publication-title: J. Appl. Phys. doi: 10.1063/1.3021158 – volume: 91 year: 2007 ident: 10.1016/j.vacuum.2018.04.009_bib30 publication-title: Appl. Phys. Lett. – volume: 310 start-page: 3680 year: 2008 ident: 10.1016/j.vacuum.2018.04.009_bib9 publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2008.05.018 – volume: 92 start-page: 783 year: 2014 ident: 10.1016/j.vacuum.2018.04.009_bib11 publication-title: Can. J. Phys. doi: 10.1139/cjp-2013-0442 – volume: 285 start-page: 692 year: 1999 ident: 10.1016/j.vacuum.2018.04.009_bib16 publication-title: Science doi: 10.1126/science.285.5428.692 – volume: 120 start-page: 37 year: 2015 ident: 10.1016/j.vacuum.2018.04.009_bib12 publication-title: Vacuum doi: 10.1016/j.vacuum.2015.06.007 – start-page: 110 year: 2011 ident: 10.1016/j.vacuum.2018.04.009_bib45 publication-title: APCOM Proc. – volume: 14 start-page: 10083 year: 2002 ident: 10.1016/j.vacuum.2018.04.009_bib20 publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/14/43/307 – volume: 40 start-page: 223 year: 1998 ident: 10.1016/j.vacuum.2018.04.009_bib28 publication-title: Microelectron. Eng. doi: 10.1016/S0167-9317(98)00273-1 – volume: 3 start-page: 37 year: 1968 ident: 10.1016/j.vacuum.2018.04.009_bib44 publication-title: Mater. Res. Bull. doi: 10.1016/0025-5408(68)90023-8 – volume: 32 start-page: 510 year: 1961 ident: 10.1016/j.vacuum.2018.04.009_bib1 publication-title: J. Appl. Phys. doi: 10.1063/1.1736034 – volume: 61 start-page: 2069 year: 1992 ident: 10.1016/j.vacuum.2018.04.009_bib19 publication-title: Appl. Phys. Lett. doi: 10.1063/1.108309 – volume: 312 start-page: 1 year: 1982 ident: 10.1016/j.vacuum.2018.04.009_bib23 publication-title: Fresenius Z. Anal. Chem. doi: 10.1007/BF00482725 – volume: 81 start-page: 656 year: 2007 ident: 10.1016/j.vacuum.2018.04.009_bib34 publication-title: Vacuum doi: 10.1016/j.vacuum.2006.09.006 – volume: 95 start-page: 3723 year: 2004 ident: 10.1016/j.vacuum.2018.04.009_bib24 publication-title: J. Appl. Phys. doi: 10.1063/1.1664026 – start-page: 266 year: 2000 ident: 10.1016/j.vacuum.2018.04.009_bib17 publication-title: J. Non-cryst. Solids – volume: 8 start-page: 1925 year: 1991 ident: 10.1016/j.vacuum.2018.04.009_bib40 publication-title: IEEE Trans. Electron. Dev. doi: 10.1109/16.119035 – volume: 159 start-page: 70 year: 2009 ident: 10.1016/j.vacuum.2018.04.009_bib4 publication-title: Mater. Sci. Eng. B doi: 10.1016/j.mseb.2008.10.052 – volume: 89 start-page: 237 year: 2001 ident: 10.1016/j.vacuum.2018.04.009_bib29 publication-title: J. Appl. Phys. doi: 10.1063/1.1330557 – volume: 92 start-page: 1217 year: 2008 ident: 10.1016/j.vacuum.2018.04.009_bib35 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2008.04.012 – volume: 80 start-page: 661 year: 2002 ident: 10.1016/j.vacuum.2018.04.009_bib13 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1433906 – volume: 1 start-page: 14744 year: 2013 ident: 10.1016/j.vacuum.2018.04.009_bib26 publication-title: J. Mat. Chem. a doi: 10.1039/c3ta12878d – volume: 6 start-page: 3860 year: 2016 ident: 10.1016/j.vacuum.2018.04.009_bib27 publication-title: RSC Adv. doi: 10.1039/C5RA20770C – volume: 73 year: 2006 ident: 10.1016/j.vacuum.2018.04.009_bib36 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.73.033307 – volume: 11 start-page: 10 year: 1978 ident: 10.1016/j.vacuum.2018.04.009_bib22 publication-title: J. Appl. Phys. – volume: 111 year: 2012 ident: 10.1016/j.vacuum.2018.04.009_bib5 publication-title: J. Appl. Phys. doi: 10.1063/1.4707939 – volume: 520 start-page: 121 year: 2011 ident: 10.1016/j.vacuum.2018.04.009_bib14 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2011.06.084 – volume: 76 start-page: 539 year: 1996 ident: 10.1016/j.vacuum.2018.04.009_bib7 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.76.539 – volume: 78 start-page: 3058 year: 2001 ident: 10.1016/j.vacuum.2018.04.009_bib25 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1371794 – volume: 52 start-page: 1675 year: 1988 ident: 10.1016/j.vacuum.2018.04.009_bib31 publication-title: Appl. Phys. Lett. doi: 10.1063/1.99054 – volume: 211 start-page: 1512 issue: 7 year: 2014 ident: 10.1016/j.vacuum.2018.04.009_bib10 publication-title: Phys. Status Solidi doi: 10.1002/pssa.201330231 – volume: 19 year: 2008 ident: 10.1016/j.vacuum.2018.04.009_bib15 publication-title: Nanotechnology doi: 10.1088/0957-4484/19/24/245201 – volume: 75 start-page: 797 year: 1994 ident: 10.1016/j.vacuum.2018.04.009_bib37 publication-title: J. Appl. Phys. doi: 10.1063/1.356432 – volume: 111 start-page: 867 year: 2013 ident: 10.1016/j.vacuum.2018.04.009_bib42 publication-title: Appl. Phys. Mater. Sci. Process doi: 10.1007/s00339-012-7301-z – volume: 517 start-page: 5453 year: 2009 ident: 10.1016/j.vacuum.2018.04.009_bib38 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2009.01.086 – volume: 2 start-page: 673 year: 2015 ident: 10.1016/j.vacuum.2018.04.009_bib43 publication-title: Nano Res. doi: 10.1007/s12274-014-0551-7 – volume: 511 start-page: 654 year: 2006 ident: 10.1016/j.vacuum.2018.04.009_bib3 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2005.12.119 |
| SSID | ssj0002608 |
| Score | 2.2125452 |
| Snippet | In this work, we synthesized amorphous multilayered a-Si:H/a-SiNx:H superlattices with different thickness of sublayers grown on silicon and quartz substrates... |
| SourceID | unpaywall crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 154 |
| SubjectTerms | PECVD Silicon nanocrystal Silicon nitride Superlattice Transmission electron microscopy X-ray diffraction |
| SummonAdditionalLinks | – databaseName: ScienceDirect (Elsevier) dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEBUhENpLmiYN2X6hQ6_O7kqyZOVWQsO2kFySwN7MSLapEyMbdp20l0L_eWf8sW0hkJCDMTaSJTTS6Fm8N8PYJxA5zIwoIiUKEVE6C1xzRkcGIJGZLYx3dDRwfqEX1-rbMl5usdNRC0O0ysH39z6989bDm-kwmtOmLEnjq4SYmeWcQlhZSYJfpQxlMTj-9ZfmgXg92chQsPQon-s4Xnfg25b06POkC3hKtMSHt6cXbWjg5z1U1T_bz9ke2x1wI__cd-0128rDPns1YEg-rNDVPtvpKJ1-dcB-f-0EkLwu-Kp1FSC25kRuvyXnxiFkeAWEibh38TrwVVnhpAg8QKj7oLIt_onzjbiRl4FDdFmeLKZ0u_hxssDvNnQcuCYCXVeUN9_rdY0ebw3Yhzfs-uzL1ekiGhIuRF5oYyOfCaMtQiQtNSTKZuj7IMYhtElsXKIyob23MMd1LgqtXQbgi7k3uTQ2y3UsD9l2qEN-xLhInCiUlOA9gkaXJ75wFMsu9rH1zssJk-M4p36IRk5JMap0pJ3dpL11UrJOOlMpWmfCok2tpo_G8Uh5M5ow_W9WpbhhPFLzeGPxJzX19tlNvWMv6annAL9n22ji_AMinbX72E3lPxfB_uo priority: 102 providerName: Elsevier |
| Title | Impact of sublayer thickness and annealing on silicon nanostructures formation in a-Si:H/a-SiNx:H superlattices for photovoltaics |
| URI | https://dx.doi.org/10.1016/j.vacuum.2018.04.009 https://www.sciencedirect.com/science/article/pii/S0042207X18302938 |
| UnpaywallVersion | publishedVersion |
| Volume | 153 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-2715 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002608 issn: 1879-2715 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-2715 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002608 issn: 1879-2715 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-2715 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002608 issn: 1879-2715 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1879-2715 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002608 issn: 1879-2715 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-2715 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002608 issn: 1879-2715 databaseCode: AKRWK dateStart: 19510101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pi9QwFH7sziCeXF0Vd3GHHLx2Zpq0Sbu3YdmlqzgIOjCeSpK2WLekhWn9sQfB_9yXNh1UhFU8lEJ5adPm9XtfwvdeAF5ImsuloIUX0IJ6djsL_OcE94SUEcviQmhllwZer3myCV5uw-0BXIy5MFZW6bB_wPQerd2Vhfuai6YsbY5vQOlSbH1bwipm0SFMeYiEfALTzfrN6v0--QRt7LQrErFHhR-OCXS9yuuT1F1nM9L9qC95aoWJfw5Q9zvTyK-fZVX9FICujiAbuz7oTm7mXavm-va3qo7_-W4P4YEjqGQ12D2Cg9wcw5Ejq8RBwe4Y7vXaUb17DN-v-0xLUhdk16lKIoknVkV_Y1GUSJPhYZCPYpAktSG7skLvM8RIUw_Vazuc8pN9FiUpDZHe2_I8WdjT-st5gvdt7Lpja5V6vSlpPtRtjdDaSuzDE9hcXb67SDy3s4OnKcdh0BkVPEYuxhmXURBnCLIyxOlgHIVCRUFGudax9BFQaMG5yqTUha9FzkSc5TxkT2FiapM_A0IjRYuAMak1slOVR7pQtmheqMNYK81OgI3DmWpX9tzuvlGlo77tYzo4QWqdIF0GKTrBCXj7Vs1Q9uMOezF6SvrLEKcYme5oOd871l896vRfGzyHCQ5mfobkqVUzOJx_82cwXV2_StYz96v8AMtlH_w |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKK1QuUAqIUh4-cE1310786K2qqFLa7oVW2ps1dhIRiJxIu6HtpRL_nHEeW5CQijhEkRIntjz2zGfr-8aEfASWw1SyIopZwaJwnAXOOSkiCaB4pgvpbNgauJiL9Cr-vEgWG-R41MIEWuXg-3uf3nnr4clk6M1JU5ZB4xszNpWLWUhhpbl6RLbihMmwAju4u-d5IGBXax0KFh_1cx3J6we4tg2C9JnqMp4GXuLf49N26xu4vYaq-i3-nOyQpwNwpEd9256TjdzvkmcDiKTDFF3ukscdp9MtX5Cfp50CktYFXba2AgTXNLDbvwfvRsFneHnEiRi8aO3psqxwVHjqwdd9VtkWl-J0rW6kpacQfSkP00m4zW8OU_xvE_YDV4FB1xWlzdd6VaPLWwG24SW5Ovl0eZxGw4kLkWNC6shlTAqNGElwASrWGTo_SLALtUqkVXHGhHMaZjjRWSGEzQBcMXMy51JnuUj4K7Lpa5-_JpQpy4qYc3AOUaPNlStsSGaXuEQ76_ge4WM_GzekIw-nYlRm5J19M711TLCOmcYGrbNHovVXTZ-O44HycjSh-WNYGYwYD3x5sLb4P1X15r-r-kC208uLc3N-Oj_bJ0_Cm54Q_JZsornzdwh7VvZ9N6x_AfN3Ahw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pi9QwFA7rLOLJ1VXZFZUcvHZmmrT5sbdlcRkFB0EHxlN5SVusW9LCtOruzf_clzYdVIRVPJRCeWnT5vV7X8L3Xgh5CayApWRllLCSRX47C_znpIgkgOK5LqU1fmng7VqsNsmbbbo9IBdTLoyXVQbsHzF9QOtwZRG-5qKtKp_jmzC2lNvYl7DSXN0hhyJFQj4jh5v1u_OP--QTtPHTLiV1xGScTgl0g8rrC9i-9xnpsRpKnnph4p8D1L3etXD9Fer6pwB0eUTyqeuj7uRq3ndmbm9-q-r4n-_2gNwPBJWej3YPyUHhjslRIKs0QMHumNwdtKN294h8fz1kWtKmpLve1IAknnoV_ZVHUQoux8MhH8UgSRtHd1WN3ueoA9eM1Wt7nPLTfRYlrRyF6H11tlr40_rb2Qrv2_p1x84r9QZT2n5qugahtQPsw2OyuXz14WIVhZ0dIssEDoPNmRQauZjgAlSicwRZSHE6qFUqjUpyJqzVECOgsFIIkwPYMray4FLnhUj5EzJzjStOCGXKsDLhHKxFdmoKZUvji-alNtXWWH5K-DScmQ1lz_3uG3U26ds-Z6MTZN4JsmWSoROckmjfqh3LftxiLydPyX4Z4gwj0y0t53vH-qtHPf3XBs_IDAezeI7kqTMvws_xAyLZHXA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+sublayer+thickness+and+annealing+on+silicon+nanostructures+formation+in+a-Si%3AH%2Fa-SiNx%3AH+superlattices+for+photovoltaics&rft.jtitle=Vacuum&rft.au=Calta%2C+Pavel&rft.au=%C5%A0utta%2C+Pavol&rft.au=Medl%C3%ADn%2C+Rostislav&rft.au=Netrvalov%C3%A1%2C+Marie&rft.date=2018-07-01&rft.pub=Elsevier+Ltd&rft.issn=0042-207X&rft.eissn=1879-2715&rft.volume=153&rft.spage=154&rft.epage=161&rft_id=info:doi/10.1016%2Fj.vacuum.2018.04.009&rft.externalDocID=S0042207X18302938 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0042-207X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0042-207X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0042-207X&client=summon |