An Investigation into Transition Rule Sets for Optimum-time Firing Squad Synchronization Algorithms on One-dimensional Cellular Automata

The firing squad synchronization problem has been studied extensively for more than forty years, and a rich variety of synchronization algorithms have been proposed. In the present paper, we describe a computer-assisted investigation into state transition tables for which optimum-time synchronizatio...

Full description

Saved in:
Bibliographic Details
Published inInterdisciplinary Information Sciences Vol. 8; no. 2; pp. 207 - 217
Main Authors UMEO, Hiroshi, HISAOKA, Masaya, SOGABE, Takashi
Format Journal Article
LanguageEnglish
Published Sendai The Editorial Committee of the Interdisciplinary Information Sciences 2002
Japan Science and Technology Agency
Subjects
Online AccessGet full text
ISSN1340-9050
1347-6157
1347-6157
DOI10.4036/iis.2002.207

Cover

Abstract The firing squad synchronization problem has been studied extensively for more than forty years, and a rich variety of synchronization algorithms have been proposed. In the present paper, we describe a computer-assisted investigation into state transition tables for which optimum-time synchronization algorithms have been designed. We show that the first transition rule set designed by Waksman [(1966) Inf. Control, 9: 66-78] includes fundamental errors which cause unsuccessful firings and that ninety-three percent of the rules are redundant. In addition, the transition rule sets reported by Balzer [(1967) Inf. Control, 10: 22-42], Gerken [(1987), Diplomarbeit, Institut für Theoretische Informatik, Technische Universität Braunschweig, 502] and Mazoyer [(1987) Theor. Comput. Sci., 50: 183-238] are found to include several redundant rules. We also present herein a survey and a comparison of the quantitative aspects of the optimum-time synchronization algorithms developed thus far for one-dimensional cellular arrays.
AbstractList The firing squad synchronization problem has been studied extensively for more than forty years, and a rich variety of synchronization algorithms have been proposed. In the present paper, we describe a computer-assisted investigation into state transition tables for which optimum-time synchronization algorithms have been designed. We show that the first transition rule set designed by Waksman [(1966) Inf. Control, 9: 66-78] includes fundamental errors which cause unsuccessful firings and that ninety-three percent of the rules are redundant. In addition, the transition rule sets reported by Balzer [(1967) Inf. Control, 10: 22-42], Gerken [(1987), Diplomarbeit, Institut für Theoretische Informatik, Technische Universität Braunschweig, 502] and Mazoyer [(1987) Theor. Comput. Sci., 50: 183-238] are found to include several redundant rules. We also present herein a survey and a comparison of the quantitative aspects of the optimum-time synchronization algorithms developed thus far for one-dimensional cellular arrays.
Author HISAOKA, Masaya
UMEO, Hiroshi
SOGABE, Takashi
Author_xml – sequence: 1
  fullname: UMEO, Hiroshi
  organization: Osaka Electro-Communication University, Graduate School of Engineering, Faculty of Information Science and Technology, Department of Informatics
– sequence: 1
  fullname: HISAOKA, Masaya
  organization: Osaka Electro-Communication University, Graduate School of Engineering, Faculty of Information Science and Technology, Department of Informatics
– sequence: 1
  fullname: SOGABE, Takashi
  organization: Osaka Electro-Communication University, Graduate School of Engineering, Faculty of Information Science and Technology, Department of Informatics
BookMark eNqFkEtr4zAUhUVpoa_Z9QcIuq1bPWzLXnQRwvQBhcCksxbXtpwoyFIqyTNkfkF_dpW4ZDuLe66O-HRA5xKdWmcVQjeU3OeElw9ah3tGCEsiTtAF5bnISlqI08OZZDUpyDm6DGFDCGe8rC_Q58ziV_tHhahXELWzWNvo8LsHG_TB_xqNwksVA-6dx4tt1MM4ZEkVftJe2xVefozQ4eXOtmvvrP435czMynkd10PAyS2syrr0JqU6CwbPlTGjAY9nY3QDRLhGZz2YoH587yv0--nn-_wle1s8v85nb1nLSiEyVuWqZjmDKoeOQEkBShCiJUXLKPSi6KumL1TNm5YJqJuO102t6kYVlHZMFPwKZVPuaLew-wvGyK3XA_idpETua5SpRrmvMYlI_O3Eb737GFNPcuNGn74QJM1zQipBOU_U3US13oXgVf-_0McJ34QIK3WEwUfdGnWAK8kOk_jjfbsGL5XlXzIBm-g
Cites_doi 10.1016/S0019-9958(66)90110-0
10.1016/S0019-9958(67)90032-0
10.1007/BF02084165
10.1016/S0304-3975(96)00084-9
10.1016/0304-3975(87)90124-1
10.1007/3-540-19444-4_16
ContentType Journal Article
Copyright 2002 by the Graduate School of Information Sciences (GSIS), Tohoku University
Copyright Japan Science and Technology Agency 2002
Copyright_xml – notice: 2002 by the Graduate School of Information Sciences (GSIS), Tohoku University
– notice: Copyright Japan Science and Technology Agency 2002
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOI 10.4036/iis.2002.207
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Library & Information Science
EISSN 1347-6157
EndPage 217
ExternalDocumentID 10.4036/iis.2002.207
3092584991
10_4036_iis_2002_207
article_iis_8_2_8_2_207_article_char_en
GroupedDBID .4I
29J
2WC
5GY
7.U
AAKPC
ABDBF
ACIPV
ADMLS
ALMA_UNASSIGNED_HOLDINGS
DU5
E3Z
EBD
EBS
EJD
JSF
JSH
KQ8
OK1
OVT
PQQKQ
RJT
RNS
RZJ
TKC
TR2
XSB
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c2677-284e9242a84ad0a61aa6a77c05c21af75f8bf5e93bc27a9bd39b9e9be511d2753
IEDL.DBID UNPAY
ISSN 1340-9050
1347-6157
IngestDate Sat Oct 11 07:09:10 EDT 2025
Sun Jun 29 12:53:25 EDT 2025
Tue Jul 01 03:25:24 EDT 2025
Wed Sep 03 06:28:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2677-284e9242a84ad0a61aa6a77c05c21af75f8bf5e93bc27a9bd39b9e9be511d2753
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.jstage.jst.go.jp/article/iis/8/2/8_2_207/_pdf
PQID 1440087133
PQPubID 1996345
PageCount 11
ParticipantIDs unpaywall_primary_10_4036_iis_2002_207
proquest_journals_1440087133
crossref_primary_10_4036_iis_2002_207
jstage_primary_article_iis_8_2_8_2_207_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2002
PublicationDateYYYYMMDD 2002-01-01
PublicationDate_xml – year: 2002
  text: 2002
PublicationDecade 2000
PublicationPlace Sendai
PublicationPlace_xml – name: Sendai
PublicationTitle Interdisciplinary Information Sciences
PublicationYear 2002
Publisher The Editorial Committee of the Interdisciplinary Information Sciences
Japan Science and Technology Agency
Publisher_xml – name: The Editorial Committee of the Interdisciplinary Information Sciences
– name: Japan Science and Technology Agency
References [4] Goto, E., (1966), “Some puzzles on automata,” in Toward computer sciences, ed. by T. Kitagawa, Kyouritsu, Tokyo, 67-91.
[10] Moore, E.F., (1964), “The firing squad synchronization problem,” in Sequential Machines, Selected Papers, ed. by E.F. Moore, Addison-Wesley, Reading, MA, 213-214.
[12] Umeo, H., (1996), A note on firing squad synchronization algorithms-A reconstruction of Goto’s first-in-the-world optimum-time firing squad synchronization algorithm, Proc. Cellular Automata Workshop, ed. by M. Kutrib and T. Worsche, p. 65.
[8] Mazoyer, J., (1997), A minimal-time solution to the FSSP without recursive call to itself and with bounded slope of signals, draft version, 8.
[9] Minsky, M., (1967), Computation: Finite and infinite machines, Prentice Hall, 28-29.
[15] Vollmar, R., (1979), Algorithmen in Zellularautomaten, Teubner, 192 (in German).
[16] Vollmar, R., (1982), Some remarks about the “Efficiency” of polyautomata, Int. J. Theor. Phys., 21: 1007-1015.
[14] Umeo, H., Sogabe, T., and Nomura, Y., (2000), Correction, optimization and verification of transition rule set for Waksman’s firing squad synchronization algorithm, Proc. Fourth Int. Conf. Cellular Automata for Research and Industry, Springer, Heidelberg, 152-160.
[11] Nishimura, J., Sogabe, T., and Umeo, H., (2000), A design of optimum-time firing squad synchronization algorithm on 1-bit cellular automaton, Tech. Rep. IPSJ, 32-12: 41-44.
[7] Mazoyer, J., (1996), On optimal solutions to the firing squad synchronization problem, Theor. Comput. Sci., 168: 367-404.
[6] Mazoyer, J., (1987), A six-state minimal time solution to the firing squad synchronization problem, Theor. Comput. Sci., 50: 183-238.
[17] Waksman, A., (1966), An optimum solution to the firing squad synchronization problem, Inf. Control, 9: 66-78.
[13] Umeo, H., Nishimura, J., and Sogabe, T., (2000), 1-bit inter-cell communication cellular algorithms (invited lecture), Proc. Tenth Int. Colloq. Differential Equations, Plovdiv, 1999, Int. J. Diff. Eq. Appl., 1A: 433-446.
[1] Balzer, R., (1967), An 8-state minimal time solution to the firing squad synchronization problem, Inf. Control, 10: 22-42.
[3] Goto, E., (1962), A minimal time solution of the firing squad problem, Dittoed Course Notes Appl. Math., Harvard Univ., 298: 52-59, with an illustration in color.
[5] Mazoyer, J., (1986), An overview of the firing squad synchronization problem, Lecture Notes Comput. Sci., 316: 82-93.
[2] Gerken, Hans-D., (1987), über Synchronisations-Probleme bei Zellularautomaten, Diplomarbeit, Institut für Theoretische Informatik, Technische Universität Braunschweig, 1-50 (in German).
Mazoyer, J. (5) 1986; 316
12
14
Mazoyer, J. (6) 1987; 50
16
17
Nishimura, J., Sogabe, T., and Umeo (11) 2000; 32-12
1
2
4
8
9
Vollmar, R. (15) 1979
Goto, E. (3) 1962; 298
Umeo, H., Nishimura, J., and Sogabe (13) 2000; 1A
Mazoyer, J. (7) 1996; 168
10
References_xml – reference: [3] Goto, E., (1962), A minimal time solution of the firing squad problem, Dittoed Course Notes Appl. Math., Harvard Univ., 298: 52-59, with an illustration in color.
– reference: [7] Mazoyer, J., (1996), On optimal solutions to the firing squad synchronization problem, Theor. Comput. Sci., 168: 367-404.
– reference: [11] Nishimura, J., Sogabe, T., and Umeo, H., (2000), A design of optimum-time firing squad synchronization algorithm on 1-bit cellular automaton, Tech. Rep. IPSJ, 32-12: 41-44.
– reference: [1] Balzer, R., (1967), An 8-state minimal time solution to the firing squad synchronization problem, Inf. Control, 10: 22-42.
– reference: [4] Goto, E., (1966), “Some puzzles on automata,” in Toward computer sciences, ed. by T. Kitagawa, Kyouritsu, Tokyo, 67-91.
– reference: [8] Mazoyer, J., (1997), A minimal-time solution to the FSSP without recursive call to itself and with bounded slope of signals, draft version, 8.
– reference: [6] Mazoyer, J., (1987), A six-state minimal time solution to the firing squad synchronization problem, Theor. Comput. Sci., 50: 183-238.
– reference: [15] Vollmar, R., (1979), Algorithmen in Zellularautomaten, Teubner, 192 (in German).
– reference: [17] Waksman, A., (1966), An optimum solution to the firing squad synchronization problem, Inf. Control, 9: 66-78.
– reference: [2] Gerken, Hans-D., (1987), über Synchronisations-Probleme bei Zellularautomaten, Diplomarbeit, Institut für Theoretische Informatik, Technische Universität Braunschweig, 1-50 (in German).
– reference: [16] Vollmar, R., (1982), Some remarks about the “Efficiency” of polyautomata, Int. J. Theor. Phys., 21: 1007-1015.
– reference: [10] Moore, E.F., (1964), “The firing squad synchronization problem,” in Sequential Machines, Selected Papers, ed. by E.F. Moore, Addison-Wesley, Reading, MA, 213-214.
– reference: [14] Umeo, H., Sogabe, T., and Nomura, Y., (2000), Correction, optimization and verification of transition rule set for Waksman’s firing squad synchronization algorithm, Proc. Fourth Int. Conf. Cellular Automata for Research and Industry, Springer, Heidelberg, 152-160.
– reference: [13] Umeo, H., Nishimura, J., and Sogabe, T., (2000), 1-bit inter-cell communication cellular algorithms (invited lecture), Proc. Tenth Int. Colloq. Differential Equations, Plovdiv, 1999, Int. J. Diff. Eq. Appl., 1A: 433-446.
– reference: [12] Umeo, H., (1996), A note on firing squad synchronization algorithms-A reconstruction of Goto’s first-in-the-world optimum-time firing squad synchronization algorithm, Proc. Cellular Automata Workshop, ed. by M. Kutrib and T. Worsche, p. 65.
– reference: [9] Minsky, M., (1967), Computation: Finite and infinite machines, Prentice Hall, 28-29.
– reference: [5] Mazoyer, J., (1986), An overview of the firing squad synchronization problem, Lecture Notes Comput. Sci., 316: 82-93.
– ident: 2
– start-page: 192
  year: 1979
  ident: 15
  publication-title: Teubner
– ident: 17
  doi: 10.1016/S0019-9958(66)90110-0
– volume: 32-12
  start-page: 41
  issn: 0377-1725
  year: 2000
  ident: 11
  publication-title: Tech. Rep. IPSJ
– ident: 4
– ident: 1
  doi: 10.1016/S0019-9958(67)90032-0
– ident: 12
– ident: 16
  doi: 10.1007/BF02084165
– ident: 10
– volume: 298
  start-page: 52
  issn: 0917-2270
  year: 1962
  ident: 3
  publication-title: Dittoed Course Notes Appl. Math., Harvard Univ.
– ident: 14
– volume: 168
  start-page: 367
  year: 1996
  ident: 7
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/S0304-3975(96)00084-9
– volume: 50
  start-page: 183
  year: 1987
  ident: 6
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/0304-3975(87)90124-1
– volume: 316
  start-page: 82
  issn: 0302-9743
  year: 1986
  ident: 5
  publication-title: Lecture Notes Comput. Sci.
  doi: 10.1007/3-540-19444-4_16
– volume: 1A
  start-page: 433
  issn: 0020-7020
  year: 2000
  ident: 13
  publication-title: Int. J. Diff. Eq. Appl.
– ident: 9
– ident: 8
SSID ssj0032369
Score 1.3008085
Snippet The firing squad synchronization problem has been studied extensively for more than forty years, and a rich variety of synchronization algorithms have been...
SourceID unpaywall
proquest
crossref
jstage
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 207
SubjectTerms Balzer’s algorithm
cellular automaton
firing squad synchronization problem
Gerken’s algorithm
Goto’s algorithm
Mazoyer’s algorithm
Waksman’s algorithm
Title An Investigation into Transition Rule Sets for Optimum-time Firing Squad Synchronization Algorithms on One-dimensional Cellular Automata
URI https://www.jstage.jst.go.jp/article/iis/8/2/8_2_207/_article/-char/en
https://www.proquest.com/docview/1440087133
https://www.jstage.jst.go.jp/article/iis/8/2/8_2_207/_pdf
UnpaywallVersion publishedVersion
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Interdisciplinary Information Sciences, 2002, Vol.8(2), pp.207-217
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1347-6157
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0032369
  issn: 1340-9050
  databaseCode: KQ8
  dateStart: 19940101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZYhwQv3BGFbfID7C1N6sZx_BhNVBOIDSiVBi-R40vJSJOyJkLjF_CzOXbcquMBIV5yPUkcf_G5OOeC0EtmhBgrTQI94bGdreKBULBFGDOFUVpq55vz7iw5ncdvLujFTqkv61Z5CXrRQtvVaNGMLleh78SwLNdhGpIwzUlOIhbmK2X20H5CQQ0foP352fvsszOw4ijgEe0jhGMbBkdZ7_QeA8O2t3G-CbBgN8TR7f7JN5TNO129Etc_RFXtyJ3pffRl0-Le3eTbqGuLkfz5RzLH_3qlB-ie10Zx1pM9RLd0_Qgd-lgGfIx9sJIFD3su8Bj9ymq8k54DTpV122An9ZwDGP7YVRrPdLvGcDk-B6607JaBLWOPp6WdSMSz751QeHZdS5ect48FxVm1aK7K9utyjWHvvNaBssUH-sQh-ERXlXWaxVnXNtAo8QTNp68_nZwGvqBDIEnCWACiUIO9R0QaCxWJZCxEIhiTEZVkLAyjJi0M1XxSSMIEL9SEF1zzQoNWqAgYVk_RoG5q_QzhSHEqeGLMWIOFn0pOY8KIpBPDk1gxOUSvNrjmqz5vRw72jsU_hz631Tddhw9R0mOzpfLIOCqLikdme9xGwwFLGaKDzUeS-2G_zu2f8ii1dv8QHW8_nL824Pm_Er5Ad10lGjf9c4AG7VWnD0EhaosjtPf2Q3rkB8BvmgEPYw
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLagQ4IXxlUUNuQH2Fua1I3j-DGaVk2T2BCl0uAlcnwpGWlS1kRo_AJ-9o4dt-p4QIiXXE8Sx8c5F-c75yD0jhkhxkqTQE94bGereCAUbBHGTGGUltphcz6cJ6fz-OySXu6U-rKwyiuwixbarkaLZnS1Cn0nhmW5DtOQhGlOchKxMF8pcx_tJRTM8AHam59_zL44ByuOAh7RPkI4tmFwlPWg9xgEtr2NwybAgt1RRw_6J98xNh929Urc_BRVtaN3pvvo66bFPdzk-6hri5H89Ucyx_96pSfosbdGcdaTPUX3dP0MHfpYBnyEfbCSZR72UuA5-p3VeCc9B5wq67bBTus5ABj-1FUaz3S7xnA5vgCptOyWgS1jj6elnUjEsx-dUHh2U0uXnLePBcVZtWiuy_bbco1h76LWgbLFB_rEIfhYV5UFzeKsaxtolHiB5tOTz8engS_oEEiSMBaAKtTg7xGRxkJFIhkLkQjGZEQlGQvDqEkLQzWfFJIwwQs14QXXvNBgFSoCjtVLNKibWr9COFKcCp4YM9bg4aeS05gwIunE8CRWTA7R-w1f81WftyMHf8fyP4c-t9U3XYcPUdLzZkvlOeOoLFc8Z7bHbTQciJQhOtgMktx_9uvc_imPUuv3D9HRduD8tQGv_5XwDXrkKtG46Z8DNGivO30IBlFbvPVD_xZDag5u
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Investigation+into+Transition+Rule+Sets+for+Optimum-time+Firing+Squad+Synchronization+Algorithms+on+One-dimensional+Cellular+Automata&rft.jtitle=Interdisciplinary+Information+Sciences&rft.au=UMEO%2C+Hiroshi&rft.au=HISAOKA%2C+Masaya&rft.au=SOGABE%2C+Takashi&rft.date=2002&rft.pub=The+Editorial+Committee+of+the+Interdisciplinary+Information+Sciences&rft.issn=1340-9050&rft.eissn=1347-6157&rft.volume=8&rft.issue=2&rft.spage=207&rft.epage=217&rft_id=info:doi/10.4036%2Fiis.2002.207&rft.externalDocID=article_iis_8_2_8_2_207_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1340-9050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1340-9050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1340-9050&client=summon