Place Classification Algorithm Based on Semantic Segmented Objects

Scene or place classification is one of the important problems in image and video search and recommendation systems. Humans can understand the scene they are located, but it is difficult for machines to do it. Considering a scene image which has several objects, humans recognize the scene based on t...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 10; no. 24; p. 9069
Main Authors Yeo, Woon-Ha, Heo, Young-Jin, Choi, Young-Ju, Kim, Byung-Gyu
Format Journal Article
LanguageEnglish
Published MDPI AG 01.12.2020
Subjects
Online AccessGet full text
ISSN2076-3417
2076-3417
DOI10.3390/app10249069

Cover

Abstract Scene or place classification is one of the important problems in image and video search and recommendation systems. Humans can understand the scene they are located, but it is difficult for machines to do it. Considering a scene image which has several objects, humans recognize the scene based on these objects, especially background objects. According to this observation, we propose an efficient scene classification algorithm for three different classes by detecting objects in the scene. We use pre-trained semantic segmentation model to extract objects from an image. After that, we construct a weight matrix to determine a scene class better. Finally, we classify an image into one of three scene classes (i.e., indoor, nature, city) by using the designed weighting matrix. The performance of our scheme outperforms several classification methods using convolutional neural networks (CNNs), such as VGG, Inception, ResNet, ResNeXt, Wide-ResNet, DenseNet, and MnasNet. The proposed model achieves 90.8% of verification accuracy and improves over 2.8% of the accuracy when comparing to the existing CNN-based methods.
AbstractList Scene or place classification is one of the important problems in image and video search and recommendation systems. Humans can understand the scene they are located, but it is difficult for machines to do it. Considering a scene image which has several objects, humans recognize the scene based on these objects, especially background objects. According to this observation, we propose an efficient scene classification algorithm for three different classes by detecting objects in the scene. We use pre-trained semantic segmentation model to extract objects from an image. After that, we construct a weight matrix to determine a scene class better. Finally, we classify an image into one of three scene classes (i.e., indoor, nature, city) by using the designed weighting matrix. The performance of our scheme outperforms several classification methods using convolutional neural networks (CNNs), such as VGG, Inception, ResNet, ResNeXt, Wide-ResNet, DenseNet, and MnasNet. The proposed model achieves 90.8% of verification accuracy and improves over 2.8% of the accuracy when comparing to the existing CNN-based methods.
Author Kim, Byung-Gyu
Choi, Young-Ju
Yeo, Woon-Ha
Heo, Young-Jin
Author_xml – sequence: 1
  givenname: Woon-Ha
  surname: Yeo
  fullname: Yeo, Woon-Ha
– sequence: 2
  givenname: Young-Jin
  surname: Heo
  fullname: Heo, Young-Jin
– sequence: 3
  givenname: Young-Ju
  surname: Choi
  fullname: Choi, Young-Ju
– sequence: 4
  givenname: Byung-Gyu
  orcidid: 0000-0001-6555-3464
  surname: Kim
  fullname: Kim, Byung-Gyu
BookMark eNp9kFtLAzEQhYNUsNY--Qf6rtVctsnmsS1eCoUK6vMymU5qyna3bFak_97YihRB52WGw5lvhnPOOlVdEWOXgt8oZfktbLeCy8xybU9YV3KjhyoTpnM0n7F-jGueygqVC95lk6cSkAbTEmIMPiC0oa4G43JVN6F92wwmEGk5SNIzbaBqA6ZhtaGqTerCrQnbeMFOPZSR-t-9x17v716mj8P54mE2Hc-HKLVuh96R8xkulXGavAKRBGkotx51rp1xTkoyOaBALb3lapRbRI6ZlUYqAtVjswN3WcO62DZhA82uqCEUe6FuVgU06cOSCu4SYWQ85Z4yMmBh5DyIkdSYGTSYWNcH1nu1hd0HlOUPUPDiK87iKM5kFwc7NnWMDfkCQ7uPqm0glH_sXP3a-e_CJ-vziRE
CitedBy_id crossref_primary_10_3390_app12157358
crossref_primary_10_1007_s00521_024_09772_1
crossref_primary_10_1007_s00034_021_01883_7
crossref_primary_10_33851_JMIS_2021_8_2_85
crossref_primary_10_1007_s42979_021_00790_7
crossref_primary_10_1016_j_robot_2024_104619
crossref_primary_10_1007_s10489_022_03867_9
crossref_primary_10_1007_s11042_022_12720_7
Cites_doi 10.1016/j.cviu.2007.09.014
10.1023/B:VISI.0000029664.99615.94
10.3390/rs12010086
10.1109/CVPR.2018.00132
10.1109/CRV.2011.8
10.1109/CVPR.2016.90
10.1109/CVPR.2017.243
10.1109/TGRS.2019.2893115
10.1109/CVPR.2017.634
10.1016/j.procs.2019.08.236
10.1109/CVPR.2016.308
10.1109/CVPR.2007.383172
10.1109/LGRS.2019.2894399
10.1007/978-3-319-10602-1_48
10.1109/ICCIC.2013.6724252
10.5244/C.30.87
10.1109/TPAMI.2017.2699184
10.1109/CVPRW.2014.131
10.1109/CVPR.2015.7298594
10.1109/CVPR.2019.00293
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.3390/app10249069
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_0b2f957fe8fe4e7a9a5bfa1526c47c7c
10.3390/app10249069
10_3390_app10249069
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c266t-fbebf4cd37b6ef3a1fbe27e89fc686b7bb22e78ac1c62f903589cc0c492723ea3
IEDL.DBID UNPAY
ISSN 2076-3417
IngestDate Fri Oct 03 12:39:08 EDT 2025
Sun Oct 26 01:36:22 EDT 2025
Thu Apr 24 23:02:31 EDT 2025
Thu Oct 16 04:40:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c266t-fbebf4cd37b6ef3a1fbe27e89fc686b7bb22e78ac1c62f903589cc0c492723ea3
ORCID 0000-0001-6555-3464
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2076-3417/10/24/9069/pdf?version=1608290076
ParticipantIDs doaj_primary_oai_doaj_org_article_0b2f957fe8fe4e7a9a5bfa1526c47c7c
unpaywall_primary_10_3390_app10249069
crossref_citationtrail_10_3390_app10249069
crossref_primary_10_3390_app10249069
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Applied sciences
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Chowanda (ref_5) 2019; 157
ref_13
ref_12
ref_11
ref_19
ref_18
Lowe (ref_1) 2004; 60
Liu (ref_10) 2019; 16
ref_17
ref_16
ref_15
Zheng (ref_9) 2019; 57
Bay (ref_2) 2008; 110
Chen (ref_14) 2017; 40
ref_25
ref_24
ref_23
ref_22
ref_21
ref_20
ref_3
ref_26
ref_8
ref_4
ref_7
ref_6
References_xml – volume: 110
  start-page: 346
  year: 2008
  ident: ref_2
  article-title: Speeded-up robust features (SURF)
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2007.09.014
– volume: 60
  start-page: 91
  year: 2004
  ident: ref_1
  article-title: Distinctive image features from scale-invariant keypoints
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/B:VISI.0000029664.99615.94
– ident: ref_11
  doi: 10.3390/rs12010086
– ident: ref_26
– ident: ref_12
  doi: 10.1109/CVPR.2018.00132
– ident: ref_7
  doi: 10.1109/CRV.2011.8
– ident: ref_18
  doi: 10.1109/CVPR.2016.90
– ident: ref_21
  doi: 10.1109/CVPR.2017.243
– volume: 57
  start-page: 4799
  year: 2019
  ident: ref_9
  article-title: A Deep Scene Representation for Aerial Scene Classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2893115
– ident: ref_19
  doi: 10.1109/CVPR.2017.634
– volume: 157
  start-page: 436
  year: 2019
  ident: ref_5
  article-title: Deep Learning for Visual Indonesian Place Classification with Convolutional Neural Networks
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2019.08.236
– ident: ref_17
  doi: 10.1109/CVPR.2016.308
– ident: ref_3
  doi: 10.1109/CVPR.2007.383172
– ident: ref_23
– ident: ref_8
– ident: ref_25
– ident: ref_4
– volume: 16
  start-page: 1200
  year: 2019
  ident: ref_10
  article-title: Siamese convolutional neural networks for remote sensing scene classification
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2019.2894399
– ident: ref_13
  doi: 10.1007/978-3-319-10602-1_48
– ident: ref_6
  doi: 10.1109/ICCIC.2013.6724252
– ident: ref_15
– ident: ref_20
  doi: 10.5244/C.30.87
– volume: 40
  start-page: 834
  year: 2017
  ident: ref_14
  article-title: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2699184
– ident: ref_24
  doi: 10.1109/CVPRW.2014.131
– ident: ref_16
  doi: 10.1109/CVPR.2015.7298594
– ident: ref_22
  doi: 10.1109/CVPR.2019.00293
SSID ssj0000913810
Score 2.1953208
Snippet Scene or place classification is one of the important problems in image and video search and recommendation systems. Humans can understand the scene they are...
SourceID doaj
unpaywall
crossref
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
StartPage 9069
SubjectTerms convolutional neural network
deep learning
scene/place classification
semantic segmentation
weighting matrix
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF7Ei_YgtirWFzlUUCGYx2Y3ObZiKYIP0EJvYZ9VaNNiW8R_78wmlhxEL97CsLDhm2S__TaTbwjpSCniUHPhU_SdpUAwvmBM-0BWWgjBONUoFO8f2GBI70bJqNbqC2vCSnvgErjrQEY2S7g1qTXUcJGJRFoBrMMU5YorXH2DNKuJKbcGZyFaV5U_5MWg6_F7cIj2eAGWNtcoyDn1N8jWqpiLzw8xmdTopb9Ldqp9odct76dJNkzRIo2aW2CLNKv3cOFdVGbRl3uk94Tn4J7rbYlVPw5orzsZz0D1v069HrCU9iD0bKYA4puCi7Ez4tTeo8RDmMU-GfZvX24GftUXwVdAp0vfSiMtVTrmkhkbixACETdpZhVLmeRSRpHhqVChYgBeECdpplSgaBbxKDYiPiCbxawwh8TTRlEJuUkSyIrVNjMmQEs3JWMQZ9a0ydU3VLmqTMOxd8UkB_GAuOY1XNuksx48L70yfh7WQ8zXQ9Dg2gUg7XmV9vyvtLfJ-Tpjv0129B-THZPtCGW2q2I5IZvL95U5hb3IUp65x-4L_yreGA
  priority: 102
  providerName: Directory of Open Access Journals
Title Place Classification Algorithm Based on Semantic Segmented Objects
URI https://www.mdpi.com/2076-3417/10/24/9069/pdf?version=1608290076
https://doaj.org/article/0b2f957fe8fe4e7a9a5bfa1526c47c7c
UnpaywallVersion publishedVersion
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: ADMLS
  dateStart: 20120901
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: 8FG
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fi9NAEB60fdB7OL1TsedZ8nCCCrkmm81u8nS0cschWItaOJ_C_qzFXlt6qeL99TeTpiWIiOBbWCZkYWZ35pvMfANworVKYitVyIl3lqODCZUQNkRnZZVSQnJLQPHDUFyO-fur9KrRxU9llQjFp9UlzRBkh3jNUnd4j_FeHom8t7T-7EedS4oFtYbS36T70BYpRuMtaI-Ho_5Xmim3fXvTlpcguqe_wjGR5EVU4NxwRBVf_x48WM-X6tdPNZs1nMzFI1Db7W1qS76frkt9am5_Y278n_0_hv06Ag36G5M5gHtufgh7DV7CQzioT_xN8LqmpX7zBAYjyrgH1RRNqi-qVBr0Z5PFalp-uw4G6A9tgEuf3TWqa2rwYVJRftrgo6Z0z81TGF-cf3l3GdYTGEKDjrsMvXbac2MTqYXziYpxgUmX5d6ITGipNWNOZsrERjCfR0ma5cZEhudMssSp5Bm05ou5ew6BdYZrtII0Rf1763PnIiKPMzpBGOhdB95u1VGYmp6cpmTMCoQppLuiobsOnOyElxtWjj-LDUivOxGi0q4WFqtJUZ_MItK481R6l3nHnVS5SrVXGNYIw6WRpgOvdlbxt48d_aPcC3jICLNXJTHH0CpXa_cSA5tSd6E9OB-OPnWrxEC3tuQ7GNv1PA
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEB5a55Dm0DQv6jYtOqSQFBRLq9WudAp2aQiBPKAxpCexT9fUsY0jt7S_PjOybEQIpZCbWGbRwje7M7M78w3AgdYqia1UISfeWY4GJlRC2BCNlVVKCcktBYoXl-Ksz89v09tGFT-lVWIoPqwOaYZBdojHLFWHdxjv5JHIO1PrT37Vd0mxoNJQek16CWsiRW-8BWv9y-vud-opt5y9KMtLMLqnV-GYSPIiSnBuGKKKr38D1ufjqfrzW41GDSNzuglqubxFbsnP43mpj83fR8yNz1n_G3hde6BBd6EyW_DCjbdho8FLuA1b9Y6_Dw5rWuqjHehd0417UHXRpPyiCtKgOxpMZsPyx13QQ3toAxz65u4QrqHBj0FF-WmDK03XPfe70D_9evPlLKw7MIQGDXcZeu2058YmUgvnExXjAJMuy70RmdBSa8aczJSJjWA-j5I0y42JDM-ZZIlTyR60xpOxewuBdYZr1II0Rfy99blzEZHHGZ1gGOhdGz4v4ShMTU9OXTJGBYYphF3RwK4NByvh6YKV42mxHuG6EiEq7WpgMhsU9c4sIo0rT6V3mXfcSZWrVHuFbo0wXBpp2vBppRX_-tm7_5R7D68YxexVSsw-tMrZ3H1Ax6bUH2vdfQDEbPKt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Place+Classification+Algorithm+Based+on+Semantic+Segmented+Objects&rft.jtitle=Applied+sciences&rft.au=Woon-Ha+Yeo&rft.au=Young-Jin+Heo&rft.au=Young-Ju+Choi&rft.au=Byung-Gyu+Kim&rft.date=2020-12-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=10&rft.issue=24&rft.spage=9069&rft_id=info:doi/10.3390%2Fapp10249069&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_0b2f957fe8fe4e7a9a5bfa1526c47c7c
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon