Place Classification Algorithm Based on Semantic Segmented Objects
Scene or place classification is one of the important problems in image and video search and recommendation systems. Humans can understand the scene they are located, but it is difficult for machines to do it. Considering a scene image which has several objects, humans recognize the scene based on t...
Saved in:
| Published in | Applied sciences Vol. 10; no. 24; p. 9069 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
MDPI AG
01.12.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2076-3417 2076-3417 |
| DOI | 10.3390/app10249069 |
Cover
| Abstract | Scene or place classification is one of the important problems in image and video search and recommendation systems. Humans can understand the scene they are located, but it is difficult for machines to do it. Considering a scene image which has several objects, humans recognize the scene based on these objects, especially background objects. According to this observation, we propose an efficient scene classification algorithm for three different classes by detecting objects in the scene. We use pre-trained semantic segmentation model to extract objects from an image. After that, we construct a weight matrix to determine a scene class better. Finally, we classify an image into one of three scene classes (i.e., indoor, nature, city) by using the designed weighting matrix. The performance of our scheme outperforms several classification methods using convolutional neural networks (CNNs), such as VGG, Inception, ResNet, ResNeXt, Wide-ResNet, DenseNet, and MnasNet. The proposed model achieves 90.8% of verification accuracy and improves over 2.8% of the accuracy when comparing to the existing CNN-based methods. |
|---|---|
| AbstractList | Scene or place classification is one of the important problems in image and video search and recommendation systems. Humans can understand the scene they are located, but it is difficult for machines to do it. Considering a scene image which has several objects, humans recognize the scene based on these objects, especially background objects. According to this observation, we propose an efficient scene classification algorithm for three different classes by detecting objects in the scene. We use pre-trained semantic segmentation model to extract objects from an image. After that, we construct a weight matrix to determine a scene class better. Finally, we classify an image into one of three scene classes (i.e., indoor, nature, city) by using the designed weighting matrix. The performance of our scheme outperforms several classification methods using convolutional neural networks (CNNs), such as VGG, Inception, ResNet, ResNeXt, Wide-ResNet, DenseNet, and MnasNet. The proposed model achieves 90.8% of verification accuracy and improves over 2.8% of the accuracy when comparing to the existing CNN-based methods. |
| Author | Kim, Byung-Gyu Choi, Young-Ju Yeo, Woon-Ha Heo, Young-Jin |
| Author_xml | – sequence: 1 givenname: Woon-Ha surname: Yeo fullname: Yeo, Woon-Ha – sequence: 2 givenname: Young-Jin surname: Heo fullname: Heo, Young-Jin – sequence: 3 givenname: Young-Ju surname: Choi fullname: Choi, Young-Ju – sequence: 4 givenname: Byung-Gyu orcidid: 0000-0001-6555-3464 surname: Kim fullname: Kim, Byung-Gyu |
| BookMark | eNp9kFtLAzEQhYNUsNY--Qf6rtVctsnmsS1eCoUK6vMymU5qyna3bFak_97YihRB52WGw5lvhnPOOlVdEWOXgt8oZfktbLeCy8xybU9YV3KjhyoTpnM0n7F-jGueygqVC95lk6cSkAbTEmIMPiC0oa4G43JVN6F92wwmEGk5SNIzbaBqA6ZhtaGqTerCrQnbeMFOPZSR-t-9x17v716mj8P54mE2Hc-HKLVuh96R8xkulXGavAKRBGkotx51rp1xTkoyOaBALb3lapRbRI6ZlUYqAtVjswN3WcO62DZhA82uqCEUe6FuVgU06cOSCu4SYWQ85Z4yMmBh5DyIkdSYGTSYWNcH1nu1hd0HlOUPUPDiK87iKM5kFwc7NnWMDfkCQ7uPqm0glH_sXP3a-e_CJ-vziRE |
| CitedBy_id | crossref_primary_10_3390_app12157358 crossref_primary_10_1007_s00521_024_09772_1 crossref_primary_10_1007_s00034_021_01883_7 crossref_primary_10_33851_JMIS_2021_8_2_85 crossref_primary_10_1007_s42979_021_00790_7 crossref_primary_10_1016_j_robot_2024_104619 crossref_primary_10_1007_s10489_022_03867_9 crossref_primary_10_1007_s11042_022_12720_7 |
| Cites_doi | 10.1016/j.cviu.2007.09.014 10.1023/B:VISI.0000029664.99615.94 10.3390/rs12010086 10.1109/CVPR.2018.00132 10.1109/CRV.2011.8 10.1109/CVPR.2016.90 10.1109/CVPR.2017.243 10.1109/TGRS.2019.2893115 10.1109/CVPR.2017.634 10.1016/j.procs.2019.08.236 10.1109/CVPR.2016.308 10.1109/CVPR.2007.383172 10.1109/LGRS.2019.2894399 10.1007/978-3-319-10602-1_48 10.1109/ICCIC.2013.6724252 10.5244/C.30.87 10.1109/TPAMI.2017.2699184 10.1109/CVPRW.2014.131 10.1109/CVPR.2015.7298594 10.1109/CVPR.2019.00293 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION ADTOC UNPAY DOA |
| DOI | 10.3390/app10249069 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2076-3417 |
| ExternalDocumentID | oai_doaj_org_article_0b2f957fe8fe4e7a9a5bfa1526c47c7c 10.3390/app10249069 10_3390_app10249069 |
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c266t-fbebf4cd37b6ef3a1fbe27e89fc686b7bb22e78ac1c62f903589cc0c492723ea3 |
| IEDL.DBID | UNPAY |
| ISSN | 2076-3417 |
| IngestDate | Fri Oct 03 12:39:08 EDT 2025 Sun Oct 26 01:36:22 EDT 2025 Thu Apr 24 23:02:31 EDT 2025 Thu Oct 16 04:40:15 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 24 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c266t-fbebf4cd37b6ef3a1fbe27e89fc686b7bb22e78ac1c62f903589cc0c492723ea3 |
| ORCID | 0000-0001-6555-3464 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2076-3417/10/24/9069/pdf?version=1608290076 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_0b2f957fe8fe4e7a9a5bfa1526c47c7c unpaywall_primary_10_3390_app10249069 crossref_citationtrail_10_3390_app10249069 crossref_primary_10_3390_app10249069 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-12-01 |
| PublicationDateYYYYMMDD | 2020-12-01 |
| PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied sciences |
| PublicationYear | 2020 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Chowanda (ref_5) 2019; 157 ref_13 ref_12 ref_11 ref_19 ref_18 Lowe (ref_1) 2004; 60 Liu (ref_10) 2019; 16 ref_17 ref_16 ref_15 Zheng (ref_9) 2019; 57 Bay (ref_2) 2008; 110 Chen (ref_14) 2017; 40 ref_25 ref_24 ref_23 ref_22 ref_21 ref_20 ref_3 ref_26 ref_8 ref_4 ref_7 ref_6 |
| References_xml | – volume: 110 start-page: 346 year: 2008 ident: ref_2 article-title: Speeded-up robust features (SURF) publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2007.09.014 – volume: 60 start-page: 91 year: 2004 ident: ref_1 article-title: Distinctive image features from scale-invariant keypoints publication-title: Int. J. Comput. Vis. doi: 10.1023/B:VISI.0000029664.99615.94 – ident: ref_11 doi: 10.3390/rs12010086 – ident: ref_26 – ident: ref_12 doi: 10.1109/CVPR.2018.00132 – ident: ref_7 doi: 10.1109/CRV.2011.8 – ident: ref_18 doi: 10.1109/CVPR.2016.90 – ident: ref_21 doi: 10.1109/CVPR.2017.243 – volume: 57 start-page: 4799 year: 2019 ident: ref_9 article-title: A Deep Scene Representation for Aerial Scene Classification publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2019.2893115 – ident: ref_19 doi: 10.1109/CVPR.2017.634 – volume: 157 start-page: 436 year: 2019 ident: ref_5 article-title: Deep Learning for Visual Indonesian Place Classification with Convolutional Neural Networks publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2019.08.236 – ident: ref_17 doi: 10.1109/CVPR.2016.308 – ident: ref_3 doi: 10.1109/CVPR.2007.383172 – ident: ref_23 – ident: ref_8 – ident: ref_25 – ident: ref_4 – volume: 16 start-page: 1200 year: 2019 ident: ref_10 article-title: Siamese convolutional neural networks for remote sensing scene classification publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2019.2894399 – ident: ref_13 doi: 10.1007/978-3-319-10602-1_48 – ident: ref_6 doi: 10.1109/ICCIC.2013.6724252 – ident: ref_15 – ident: ref_20 doi: 10.5244/C.30.87 – volume: 40 start-page: 834 year: 2017 ident: ref_14 article-title: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2699184 – ident: ref_24 doi: 10.1109/CVPRW.2014.131 – ident: ref_16 doi: 10.1109/CVPR.2015.7298594 – ident: ref_22 doi: 10.1109/CVPR.2019.00293 |
| SSID | ssj0000913810 |
| Score | 2.1953208 |
| Snippet | Scene or place classification is one of the important problems in image and video search and recommendation systems. Humans can understand the scene they are... |
| SourceID | doaj unpaywall crossref |
| SourceType | Open Website Open Access Repository Enrichment Source Index Database |
| StartPage | 9069 |
| SubjectTerms | convolutional neural network deep learning scene/place classification semantic segmentation weighting matrix |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF7Ei_YgtirWFzlUUCGYx2Y3ObZiKYIP0EJvYZ9VaNNiW8R_78wmlhxEL97CsLDhm2S__TaTbwjpSCniUHPhU_SdpUAwvmBM-0BWWgjBONUoFO8f2GBI70bJqNbqC2vCSnvgErjrQEY2S7g1qTXUcJGJRFoBrMMU5YorXH2DNKuJKbcGZyFaV5U_5MWg6_F7cIj2eAGWNtcoyDn1N8jWqpiLzw8xmdTopb9Ldqp9odct76dJNkzRIo2aW2CLNKv3cOFdVGbRl3uk94Tn4J7rbYlVPw5orzsZz0D1v069HrCU9iD0bKYA4puCi7Ez4tTeo8RDmMU-GfZvX24GftUXwVdAp0vfSiMtVTrmkhkbixACETdpZhVLmeRSRpHhqVChYgBeECdpplSgaBbxKDYiPiCbxawwh8TTRlEJuUkSyIrVNjMmQEs3JWMQZ9a0ydU3VLmqTMOxd8UkB_GAuOY1XNuksx48L70yfh7WQ8zXQ9Dg2gUg7XmV9vyvtLfJ-Tpjv0129B-THZPtCGW2q2I5IZvL95U5hb3IUp65x-4L_yreGA priority: 102 providerName: Directory of Open Access Journals |
| Title | Place Classification Algorithm Based on Semantic Segmented Objects |
| URI | https://www.mdpi.com/2076-3417/10/24/9069/pdf?version=1608290076 https://doaj.org/article/0b2f957fe8fe4e7a9a5bfa1526c47c7c |
| UnpaywallVersion | publishedVersion |
| Volume | 10 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: ADMLS dateStart: 20120901 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: 8FG dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fi9NAEB60fdB7OL1TsedZ8nCCCrkmm81u8nS0cschWItaOJ_C_qzFXlt6qeL99TeTpiWIiOBbWCZkYWZ35pvMfANworVKYitVyIl3lqODCZUQNkRnZZVSQnJLQPHDUFyO-fur9KrRxU9llQjFp9UlzRBkh3jNUnd4j_FeHom8t7T-7EedS4oFtYbS36T70BYpRuMtaI-Ho_5Xmim3fXvTlpcguqe_wjGR5EVU4NxwRBVf_x48WM-X6tdPNZs1nMzFI1Db7W1qS76frkt9am5_Y278n_0_hv06Ag36G5M5gHtufgh7DV7CQzioT_xN8LqmpX7zBAYjyrgH1RRNqi-qVBr0Z5PFalp-uw4G6A9tgEuf3TWqa2rwYVJRftrgo6Z0z81TGF-cf3l3GdYTGEKDjrsMvXbac2MTqYXziYpxgUmX5d6ITGipNWNOZsrERjCfR0ma5cZEhudMssSp5Bm05ou5ew6BdYZrtII0Rf1763PnIiKPMzpBGOhdB95u1VGYmp6cpmTMCoQppLuiobsOnOyElxtWjj-LDUivOxGi0q4WFqtJUZ_MItK481R6l3nHnVS5SrVXGNYIw6WRpgOvdlbxt48d_aPcC3jICLNXJTHH0CpXa_cSA5tSd6E9OB-OPnWrxEC3tuQ7GNv1PA |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEB5a55Dm0DQv6jYtOqSQFBRLq9WudAp2aQiBPKAxpCexT9fUsY0jt7S_PjOybEQIpZCbWGbRwje7M7M78w3AgdYqia1UISfeWY4GJlRC2BCNlVVKCcktBYoXl-Ksz89v09tGFT-lVWIoPqwOaYZBdojHLFWHdxjv5JHIO1PrT37Vd0mxoNJQek16CWsiRW-8BWv9y-vud-opt5y9KMtLMLqnV-GYSPIiSnBuGKKKr38D1ufjqfrzW41GDSNzuglqubxFbsnP43mpj83fR8yNz1n_G3hde6BBd6EyW_DCjbdho8FLuA1b9Y6_Dw5rWuqjHehd0417UHXRpPyiCtKgOxpMZsPyx13QQ3toAxz65u4QrqHBj0FF-WmDK03XPfe70D_9evPlLKw7MIQGDXcZeu2058YmUgvnExXjAJMuy70RmdBSa8aczJSJjWA-j5I0y42JDM-ZZIlTyR60xpOxewuBdYZr1II0Rfy99blzEZHHGZ1gGOhdGz4v4ShMTU9OXTJGBYYphF3RwK4NByvh6YKV42mxHuG6EiEq7WpgMhsU9c4sIo0rT6V3mXfcSZWrVHuFbo0wXBpp2vBppRX_-tm7_5R7D68YxexVSsw-tMrZ3H1Ax6bUH2vdfQDEbPKt |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Place+Classification+Algorithm+Based+on+Semantic+Segmented+Objects&rft.jtitle=Applied+sciences&rft.au=Woon-Ha+Yeo&rft.au=Young-Jin+Heo&rft.au=Young-Ju+Choi&rft.au=Byung-Gyu+Kim&rft.date=2020-12-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=10&rft.issue=24&rft.spage=9069&rft_id=info:doi/10.3390%2Fapp10249069&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_0b2f957fe8fe4e7a9a5bfa1526c47c7c |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |