Direct and inverse scattering in the time domain for a dissipative wave equation. I. Scattering operators
This is the first part of a series of papers devoted to direct and inverse scattering of transient waves in lossy inhomogeneous media. The medium is assumed to be stratified, i.e., it varies only with depth. The wave propagation is modeled in an electromagnetic case with spatially varying permittivi...
        Saved in:
      
    
          | Published in | Journal of mathematical physics Vol. 27; no. 6; pp. 1667 - 1682 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Melville, NY
          American Institute of Physics
    
        01.06.1986
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0022-2488 1089-7658  | 
| DOI | 10.1063/1.527083 | 
Cover
| Abstract | This is the first part of a series of papers devoted to direct and inverse scattering of transient waves in lossy inhomogeneous media. The medium is assumed to be stratified, i.e., it varies only with depth. The wave propagation is modeled in an electromagnetic case with spatially varying permittivity and conductivity. The objective in this first paper is to analyze properties of the scattering operators (impulse responses) for the medium and to introduce the reader to the inverse problem, which is the subject of the second paper in this series. In particular, imbedding equations for the propagation operators are derived and the corresponding equations for the scattering operators are reviewed. The kernel representations of the propagation operators are shown to have compact support in the time variable. This property implies that transmission and reflection data can be extended from one round trip to arbitrary time intervals. The compact support of the propagator kernels also restricts the admissible set of transmission kernels consistent with the model employed in this paper. Special cases of scattering and propagation kernels that can be expressed in closed form are presented. | 
    
|---|---|
| AbstractList | This is the first part of a series of papers devoted to direct and inverse scattering of transient waves in lossy inhomogeneous media. The medium is assumed to be stratified, i.e., it varies only with depth. The wave propagation is modeled in an electromagnetic case with spatially varying permittivity and conductivity. The objective in this first paper is to analyze properties of the scattering operators (impulse responses) for the medium and to introduce the reader to the inverse problem, which is the subject of the second paper in this series. In particular, imbedding equations for the propagation operators are derived and the corresponding equations for the scattering operators are reviewed. The kernel representations of the propagation operators are shown to have compact support in the time variable. This property implies that transmission and reflection data can be extended from one round trip to arbitrary time intervals. The compact support of the propagator kernels also restricts the admissible set of transmission kernels consistent with the model employed in this paper. Special cases of scattering and propagation kernels that can be expressed in closed form are presented. | 
    
| Author | Krueger, R. J. Kristensson, G.  | 
    
| Author_xml | – sequence: 1 givenname: G. surname: Kristensson fullname: Kristensson, G. organization: Division of Electromagnetic Theory, Royal Institute of Technology, S‐100 44 Stockholm, Sweden – sequence: 2 givenname: R. J. surname: Krueger fullname: Krueger, R. J. organization: Applied Mathematical Sciences, Ames Laboratory—United States Department of Energy, Iowa State University, Ames, Iowa 50011  | 
    
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7917639$$DView record in Pascal Francis | 
    
| BookMark | eNp9kE9LxDAQxYMouLsKfoQcPOihNWnSJD3K-m9hwYN6Lmk61chuU5O44rc3urqCqJcZZvi9B--N0XbvekDogJKcEsFOaF4Wkii2hUaUqCqTolTbaERIUWQFV2oXjUN4JIRSxfkI2TPrwUSs-xbbfgU-AA5Gxwje9vfpheMD4GiXgFu31OnunMcatzYEO-hoV4BfdBrw9Jwu1-d4luObbwc3gNfR-bCHdjq9CLD_uSfo7uL8dnqVza8vZ9PTeWYKIWIGTVOVrCxUowxlnDPDBVOiYoRJKXQFRAgKoCtectOIFK81rdSN6rgskgWboMO176BTkEXndW9sqAdvl9q_1rKiUrAqYUdrzHgXgoduQ1BSvzdZ03rdZELzH6ix8SNs9NoufhMcrwXhC_zP_E925fyGq4e2Y29R4pJe | 
    
| CODEN | JMAPAQ | 
    
| CitedBy_id | crossref_primary_10_1163_156939395X00415 crossref_primary_10_1007_BF00940580 crossref_primary_10_1063_1_530214 crossref_primary_10_1364_JOSAA_12_001513 crossref_primary_10_1364_JOSAA_13_002200 crossref_primary_10_2528_PIERB09060805 crossref_primary_10_1109_8_535386 crossref_primary_10_1063_1_529748 crossref_primary_10_1063_1_529468 crossref_primary_10_1016_j_wavemoti_2009_11_005 crossref_primary_10_1109_15_385894 crossref_primary_10_1063_1_533274 crossref_primary_10_1108_03321640910969584 crossref_primary_10_1137_S0036139992241157 crossref_primary_10_1109_TAP_1987_1144033 crossref_primary_10_1163_156939396X00199 crossref_primary_10_1109_8_244646 crossref_primary_10_1163_156939392X01921 crossref_primary_10_1088_0266_5611_8_6_003 crossref_primary_10_1088_0266_5611_8_6_009 crossref_primary_10_1088_0266_5611_13_2_004 crossref_primary_10_1016_0370_1573_91_90026_I crossref_primary_10_1063_1_528150 crossref_primary_10_1088_0022_3727_30_23_011 crossref_primary_10_1088_0266_5611_18_6_305 crossref_primary_10_1016_0165_2125_89_90024_3 crossref_primary_10_1163_156939392X01570 crossref_primary_10_1364_JOSAA_10_000886 crossref_primary_10_1029_94RS03377 crossref_primary_10_1163_156939393X01065 crossref_primary_10_1007_BF02677124 crossref_primary_10_1109_8_273309 crossref_primary_10_1063_1_529808 crossref_primary_10_1016_0377_0427_92_90168_W crossref_primary_10_1088_0266_5611_11_1_002 crossref_primary_10_1088_0266_5611_32_3_035005 crossref_primary_10_1163_156939395X00866 crossref_primary_10_1163_156939398X00818 crossref_primary_10_1088_0266_5611_6_6_014 crossref_primary_10_1016_0165_2125_90_90039_7 crossref_primary_10_1016_S0378_4754_99_00097_X crossref_primary_10_1088_0266_5611_4_3_008 crossref_primary_10_1163_156939396X01143 crossref_primary_10_1088_0266_5611_10_5_001 crossref_primary_10_1029_93RS00590 crossref_primary_10_1080_17415977_2018_1442447 crossref_primary_10_1063_1_2752135 crossref_primary_10_1163_156939393X00390 crossref_primary_10_1080_00411459108204707 crossref_primary_10_1063_1_527084 crossref_primary_10_1364_JOT_83_000518 crossref_primary_10_1163_156939392X00463 crossref_primary_10_1088_0266_5611_13_3_010 crossref_primary_10_1364_JOSAA_10_000740 crossref_primary_10_1364_JOSAA_10_002402 crossref_primary_10_1063_1_531739 crossref_primary_10_1088_0266_5611_22_4_014 crossref_primary_10_1016_j_wavemoti_2016_07_004 crossref_primary_10_1088_0305_4470_37_26_010 crossref_primary_10_1063_1_529666 crossref_primary_10_1088_0266_5611_10_1_003 crossref_primary_10_1063_1_530361 crossref_primary_10_1088_0266_5611_5_3_010 crossref_primary_10_1088_1742_6596_486_1_012010 crossref_primary_10_1109_15_584930 crossref_primary_10_1016_0165_2125_89_90034_6 crossref_primary_10_1016_S0045_7825_99_00464_8 crossref_primary_10_1063_1_531849 crossref_primary_10_1007_BF02096095 crossref_primary_10_1063_1_531606 crossref_primary_10_1364_JOSAA_9_001091 crossref_primary_10_1016_0165_2125_95_00053_4 crossref_primary_10_1121_1_2959734 crossref_primary_10_1016_S0378_4754_99_00099_3 crossref_primary_10_1063_1_531085 crossref_primary_10_1016_0022_247X_91_90105_9 crossref_primary_10_1016_0096_3003_93_90017_9 crossref_primary_10_1063_1_530279 crossref_primary_10_1063_1_532216 crossref_primary_10_1121_1_419907 crossref_primary_10_1016_j_sigpro_2006_02_014 crossref_primary_10_1163_156939396X00487 crossref_primary_10_1016_0165_2125_93_90045_H crossref_primary_10_1088_0266_5611_11_4_014 crossref_primary_10_1088_0266_5611_7_3_002 crossref_primary_10_1029_94RS03170 crossref_primary_10_1163_156939392X00049 crossref_primary_10_1063_1_2401751 crossref_primary_10_1088_0266_5611_14_1_005 crossref_primary_10_1109_22_330123 crossref_primary_10_1364_OL_16_001924 crossref_primary_10_1088_1751_8113_41_6_065203 crossref_primary_10_1016_S0165_2125_97_81254_1 crossref_primary_10_1063_1_527667 crossref_primary_10_1016_S0378_4754_99_00101_9 crossref_primary_10_1163_156939398X00755 crossref_primary_10_1063_1_530140 crossref_primary_10_2528_PIER93091000 crossref_primary_10_1137_S0036139993250580 crossref_primary_10_1109_22_390200 crossref_primary_10_1109_8_301707 crossref_primary_10_1121_1_4756949 crossref_primary_10_1364_JOSAA_10_001941 crossref_primary_10_1063_1_531753 crossref_primary_10_1088_0266_5611_9_6_013 crossref_primary_10_1016_0165_2125_92_90032_W crossref_primary_10_1163_156939398X00061 crossref_primary_10_1238_Physica_Regular_061a00468 crossref_primary_10_1016_0165_2125_96_00008_X crossref_primary_10_1029_91RS00116 crossref_primary_10_1016_S0165_2125_97_00037_1 crossref_primary_10_1088_0266_5611_3_4_014 crossref_primary_10_1063_1_528588  | 
    
| Cites_doi | 10.1063/1.1665939 10.1063/1.523064 10.1063/1.1666330 10.1090/qam/481676 10.1063/1.526661 10.1063/1.527084 10.1137/0145017 10.1016/0022-247X(75)90029-3 10.1063/1.1666623 10.1016/0022-247X(83)90115-4 10.1063/1.525307 10.1090/qam/508770 10.1121/1.390166  | 
    
| ContentType | Journal Article | 
    
| Copyright | American Institute of Physics 1987 INIST-CNRS  | 
    
| Copyright_xml | – notice: American Institute of Physics – notice: 1987 INIST-CNRS  | 
    
| DBID | AAYXX CITATION IQODW  | 
    
| DOI | 10.1063/1.527083 | 
    
| DatabaseName | CrossRef Pascal-Francis  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | CrossRef | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Applied Sciences Mathematics Physics  | 
    
| EISSN | 1089-7658 | 
    
| EndPage | 1682 | 
    
| ExternalDocumentID | 7917639 10_1063_1_527083 jmp  | 
    
| GroupedDBID | -DZ -~X 0ZJ 186 1UP 2-P 29L 4.4 41~ 5GY 5VS AAAAW AABDS AAEUA AAPUP AAYIH AAYJJ ABJNI ABTAH ACBRY ACGFS ACIWK ACKIV ACLYJ ACNCT ACZLF ADCTM AEJMO AENEX AETEA AFATG AFDAS AFFNX AFHCQ AFMIJ AGKCL AGLKD AGMXG AGTJO AHSDT AI. AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 DU5 EBS EJD ESX F5P FDOHQ FFFMQ HAM H~9 M6X M71 M73 MVM N9A NEUPN NPSNA O-B OHT P2P PQQKQ RDFOP RIP RNS ROL RQS TN5 UPT VH1 WH7 XJT XOL XSW YQT YYP ZCG ZKB ZY4 AAGWI AAYXX ABJGX AMVHM CITATION BDMKI IQODW  | 
    
| ID | FETCH-LOGICAL-c266t-ebb953528b8c13443c463869303776a9e0661eea9454cb6765dcd7ab8f472c263 | 
    
| ISSN | 0022-2488 | 
    
| IngestDate | Mon Jul 21 09:13:40 EDT 2025 Thu Apr 24 23:07:00 EDT 2025 Wed Oct 01 03:50:59 EDT 2025 Fri Jun 21 00:29:25 EDT 2024 Sun Jul 14 10:05:27 EDT 2019  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 6 | 
    
| Keywords | ELASTICITY MATHEMATICAL OPERATORS INVERSE SCATTERING PROBLEM WAVE PROPAGATION ELECTROMAGNETIC RADIATION VISCOSITY DIELECTRIC PROPERTIES DIELECTRIC MATERIALS DISPERSION RELATIONS Wave equation Lossy medium Electromagnetic wave  | 
    
| Language | English | 
    
| License | CC BY 4.0 | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-c266t-ebb953528b8c13443c463869303776a9e0661eea9454cb6765dcd7ab8f472c263 | 
    
| PageCount | 16 | 
    
| ParticipantIDs | crossref_primary_10_1063_1_527083 scitation_primary_10_1063_1_527083 crossref_citationtrail_10_1063_1_527083 pascalfrancis_primary_7917639  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 1900 | 
    
| PublicationDate | 19860600 | 
    
| PublicationDateYYYYMMDD | 1986-06-01 | 
    
| PublicationDate_xml | – month: 06 year: 1986 text: 19860600  | 
    
| PublicationDecade | 1980 | 
    
| PublicationPlace | Melville, NY | 
    
| PublicationPlace_xml | – name: Melville, NY | 
    
| PublicationTitle | Journal of mathematical physics | 
    
| PublicationYear | 1986 | 
    
| Publisher | American Institute of Physics | 
    
| Publisher_xml | – name: American Institute of Physics | 
    
| References | Corones, Krueger (r2) 1983; 95 Beezley, Krueger (r20) 1985; 26 Bruckstein, Levy, Kailath (r11) 1985; 45 Corones (r23) 1975; 50 Weston, Krueger (r13) 1973; 14 Corones, Davison, Krueger (r4) 1983; 74 Kristensson, Krueger (r1) 1986; 27 Krueger (r16) 1978; 36 Krueger (r17) 1981; AP‐29 Weston (r12) 1972; 13 Weston (r14) 1974; 15 Jaulent (r18) 1976; 17 Jaulent (r19) 1982; 23 Krueger (r15) 1976; 34 (2024020522481259200_r17) 1981; AP-29 (2024020522481259200_r18) 1976; 17 (2024020522481259200_r2) 1983; 95 (2024020522481259200_r12) 1972; 13 (2024020522481259200_r13) 1973; 14 2024020522481259200_r3 (2024020522481259200_r23) 1975; 50 (2024020522481259200_r11) 1985; 45 (2024020522481259200_r19) 1982; 23 (2024020522481259200_r4) 1983; 74 2024020522481259200_r8 2024020522481259200_r7 2024020522481259200_r6 2024020522481259200_r5 2024020522481259200_r10 2024020522481259200_r21 2024020522481259200_r9 (2024020522481259200_r16) 1978; 36 2024020522481259200_r22 (2024020522481259200_r15) 1976; 34 (2024020522481259200_r1) 1986; 27 (2024020522481259200_r20) 1985; 26 (2024020522481259200_r14) 1974; 15  | 
    
| References_xml | – volume: 27 start-page: 1683 issn: 0022-2488 year: 1986 ident: r1 article-title: Direct and inverse scattering in the time domain for a dissipative wave equation. II. Simultaneous reconstruction of dissipation and phase velocity profiles publication-title: J. Math. Phys. – volume: 50 start-page: 361 issn: 0022-247X year: 1975 ident: r23 article-title: Bremmer series that correct parabolic approximations publication-title: J. Math. Anal. Appl. – volume: 23 start-page: 2286 issn: 0022-2488 year: 1982 ident: r19 article-title: Inverse scattering problems for LCRG transmission lines publication-title: J. Math. Phys. – volume: 74 start-page: 1535 issn: 0001-4966 year: 1983 ident: r4 article-title: Direct and inverse scattering in the time domain via invariant imbedding equations publication-title: J. Acoust. Soc. Am. – volume: 13 start-page: 1952 issn: 0022-2488 year: 1972 ident: r12 article-title: On the inverse problem for a hyperbolic dispersive partial differential equation publication-title: J. Math. Phys. – volume: 17 start-page: 1351 issn: 0022-2488 year: 1976 ident: r18 article-title: Inverse scattering problems in absorbing media publication-title: J. Math. Phys. – volume: AP‐29 start-page: 253 issn: 0018-926X year: 1981 ident: r17 article-title: Numerical aspects of a dissipative inverse problem publication-title: IEEE Trans. Antennas Propag. – volume: 15 start-page: 209 issn: 0022-2488 year: 1974 ident: r14 article-title: On inverse scattering publication-title: J. Math. Phys. – volume: 45 start-page: 312 issn: 0036-1399 year: 1985 ident: r11 article-title: Differential methods in inverse scattering publication-title: SIAM J. Appl. Math. – volume: 34 start-page: 129 issn: 0033-569X year: 1976 ident: r15 article-title: An inverse problem for a dissipative hyperbolic equation with discontinuous coefficients publication-title: Quart. Appl. Math. – volume: 14 start-page: 406 issn: 0022-2488 year: 1973 ident: r13 article-title: On the inverse problem for a hyperbolic dispersive partial differential equation. II publication-title: J. Math. Phys. – volume: 26 start-page: 317 issn: 0022-2488 year: 1985 ident: r20 article-title: An electromagnetic inverse problem for dispersive media publication-title: J. Math. Phys. – volume: 36 start-page: 235 issn: 0033-569X year: 1978 ident: r16 article-title: An inverse problem for an absorbing medium with multiple discontinuities publication-title: Quart. Appl. Math. – volume: 95 start-page: 393 issn: 0022-247X year: 1983 ident: r2 article-title: Obtaining scattering kernels using invariant imbedding publication-title: J. Math. Anal. Appl. – ident: 2024020522481259200_r3 – volume: 13 start-page: 1952 year: 1972 ident: 2024020522481259200_r12 article-title: On the inverse problem for a hyperbolic dispersive partial differential equation publication-title: J. Math. Phys. doi: 10.1063/1.1665939 – ident: 2024020522481259200_r21 – volume: 17 start-page: 1351 year: 1976 ident: 2024020522481259200_r18 article-title: Inverse scattering problems in absorbing media publication-title: J. Math. Phys. doi: 10.1063/1.523064 – ident: 2024020522481259200_r22 – volume: 14 start-page: 406 year: 1973 ident: 2024020522481259200_r13 article-title: On the inverse problem for a hyperbolic dispersive partial differential equation. II publication-title: J. Math. Phys. doi: 10.1063/1.1666330 – volume: 34 start-page: 129 year: 1976 ident: 2024020522481259200_r15 article-title: An inverse problem for a dissipative hyperbolic equation with discontinuous coefficients publication-title: Quart. Appl. Math. doi: 10.1090/qam/481676 – volume: AP-29 start-page: 253 year: 1981 ident: 2024020522481259200_r17 article-title: Numerical aspects of a dissipative inverse problem publication-title: IEEE Trans. Antennas Propag. – volume: 26 start-page: 317 year: 1985 ident: 2024020522481259200_r20 article-title: An electromagnetic inverse problem for dispersive media publication-title: J. Math. Phys. doi: 10.1063/1.526661 – volume: 27 start-page: 1683 year: 1986 ident: 2024020522481259200_r1 article-title: Direct and inverse scattering in the time domain for a dissipative wave equation. II. Simultaneous reconstruction of dissipation and phase velocity profiles publication-title: J. Math. Phys. doi: 10.1063/1.527084 – volume: 45 start-page: 312 year: 1985 ident: 2024020522481259200_r11 article-title: Differential methods in inverse scattering publication-title: SIAM J. Appl. Math. doi: 10.1137/0145017 – volume: 50 start-page: 361 year: 1975 ident: 2024020522481259200_r23 article-title: Bremmer series that correct parabolic approximations publication-title: J. Math. Anal. Appl. doi: 10.1016/0022-247X(75)90029-3 – volume: 15 start-page: 209 year: 1974 ident: 2024020522481259200_r14 article-title: On inverse scattering publication-title: J. Math. Phys. doi: 10.1063/1.1666623 – ident: 2024020522481259200_r10 – volume: 95 start-page: 393 year: 1983 ident: 2024020522481259200_r2 article-title: Obtaining scattering kernels using invariant imbedding publication-title: J. Math. Anal. Appl. doi: 10.1016/0022-247X(83)90115-4 – volume: 23 start-page: 2286 year: 1982 ident: 2024020522481259200_r19 article-title: Inverse scattering problems for LCRG transmission lines publication-title: J. Math. Phys. doi: 10.1063/1.525307 – ident: 2024020522481259200_r8 – ident: 2024020522481259200_r7 – ident: 2024020522481259200_r9 – volume: 36 start-page: 235 year: 1978 ident: 2024020522481259200_r16 article-title: An inverse problem for an absorbing medium with multiple discontinuities publication-title: Quart. Appl. Math. doi: 10.1090/qam/508770 – ident: 2024020522481259200_r5 – ident: 2024020522481259200_r6 – volume: 74 start-page: 1535 year: 1983 ident: 2024020522481259200_r4 article-title: Direct and inverse scattering in the time domain via invariant imbedding equations publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.390166  | 
    
| SSID | ssj0011844 | 
    
| Score | 1.544583 | 
    
| Snippet | This is the first part of a series of papers devoted to direct and inverse scattering of transient waves in lossy inhomogeneous media. The medium is assumed to... | 
    
| SourceID | pascalfrancis crossref scitation  | 
    
| SourceType | Index Database Enrichment Source Publisher  | 
    
| StartPage | 1667 | 
    
| SubjectTerms | Exact sciences and technology Function theory, analysis Mathematical methods in physics Physics  | 
    
| Title | Direct and inverse scattering in the time domain for a dissipative wave equation. I. Scattering operators | 
    
| URI | http://dx.doi.org/10.1063/1.527083 | 
    
| Volume | 27 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - HOST customDbUrl: eissn: 1089-7658 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0011844 issn: 0022-2488 databaseCode: AMVHM dateStart: 19850101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLagE4IJcdlAFBgyCImHKmWJHTvhbUKFFqkD0RbtLbIdR5q0tWUtQ-LXc3yJk0K5vkSp5dqRvy_Hxzk3hJ4rXWVCJzpKCCHGzEgj0IqAy0SY9Gq5VLbYxPiYDWf03Ul60phibHTJWvbVt61xJf-DKrQBriZK9h-QDYNCA9wDvnAFhOH6Vxg7eeUTKBn_Ct1bKZsw00eqGK3SVI_vlYtzcep8CoUxyqysJ_Wl7n011Yf0Z5fwu98bmS8Ek2aMxVJbO_zqF0rsecj6aiK6LOaNdejjaDIdHE8m760rwdumfTaoHTD63ixVukC8jDX-US1XfzHfdGr40JqoiRZIqCvdV0tclw3AM6stPmPmanP4rThmrjDRT2Ie9CrzxaGfJvzQ1cHZzKT9ww4X_A45HE5BJbuKdhLYBA47aOdo_Gk4DmYnOO7SOr28eeg6WzEjL-vJNvSXm0sBsJ5VrgbKLroOaovzoGgpKdM76JYHBh85qtxFV_R8D932Jw3s5fhqD-2OA27w65pfz3106hiFgVHYMwo3jIImDH_DhlHYMQoDo7DALUZhwygcGIVHr3DDJxz4dA_N3gymr4eRL8YRKdDh1pGWMrepgGSmYkIpURREtymkSThnItegu8Zai5ymVEnGWVqqkguZVZQnMAS5jzrzxVw_QJgQXuVZyqXIcxOwB4dowUUFBwGZUU10F72ol7io19MUTDkrrMcEI0VcODC66GnouXTZWbb0OdhAKXT0ZOiiZwG13wyypdPl4iJ0KJZl9fAPMz1CN5oX6THqrC--6ANQadfyiSfid79po1M | 
    
| linkProvider | EBSCOhost | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+and+inverse+scattering+in+the+time+domain+for+a+dissipative+wave+equation.+I%3A+Scattering+operators&rft.jtitle=Journal+of+mathematical+physics&rft.au=KRISTENSSON%2C+G&rft.au=KRUEGER%2C+R.+J&rft.date=1986-06-01&rft.pub=American+Institute+of+Physics&rft.issn=0022-2488&rft.volume=27&rft.issue=6&rft.spage=1667&rft.epage=1682&rft_id=info:doi/10.1063%2F1.527083&rft.externalDBID=n%2Fa&rft.externalDocID=7917639 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2488&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2488&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2488&client=summon |