Direct and inverse scattering in the time domain for a dissipative wave equation. I. Scattering operators

This is the first part of a series of papers devoted to direct and inverse scattering of transient waves in lossy inhomogeneous media. The medium is assumed to be stratified, i.e., it varies only with depth. The wave propagation is modeled in an electromagnetic case with spatially varying permittivi...

Full description

Saved in:
Bibliographic Details
Published inJournal of mathematical physics Vol. 27; no. 6; pp. 1667 - 1682
Main Authors Kristensson, G., Krueger, R. J.
Format Journal Article
LanguageEnglish
Published Melville, NY American Institute of Physics 01.06.1986
Subjects
Online AccessGet full text
ISSN0022-2488
1089-7658
DOI10.1063/1.527083

Cover

Abstract This is the first part of a series of papers devoted to direct and inverse scattering of transient waves in lossy inhomogeneous media. The medium is assumed to be stratified, i.e., it varies only with depth. The wave propagation is modeled in an electromagnetic case with spatially varying permittivity and conductivity. The objective in this first paper is to analyze properties of the scattering operators (impulse responses) for the medium and to introduce the reader to the inverse problem, which is the subject of the second paper in this series. In particular, imbedding equations for the propagation operators are derived and the corresponding equations for the scattering operators are reviewed. The kernel representations of the propagation operators are shown to have compact support in the time variable. This property implies that transmission and reflection data can be extended from one round trip to arbitrary time intervals. The compact support of the propagator kernels also restricts the admissible set of transmission kernels consistent with the model employed in this paper. Special cases of scattering and propagation kernels that can be expressed in closed form are presented.
AbstractList This is the first part of a series of papers devoted to direct and inverse scattering of transient waves in lossy inhomogeneous media. The medium is assumed to be stratified, i.e., it varies only with depth. The wave propagation is modeled in an electromagnetic case with spatially varying permittivity and conductivity. The objective in this first paper is to analyze properties of the scattering operators (impulse responses) for the medium and to introduce the reader to the inverse problem, which is the subject of the second paper in this series. In particular, imbedding equations for the propagation operators are derived and the corresponding equations for the scattering operators are reviewed. The kernel representations of the propagation operators are shown to have compact support in the time variable. This property implies that transmission and reflection data can be extended from one round trip to arbitrary time intervals. The compact support of the propagator kernels also restricts the admissible set of transmission kernels consistent with the model employed in this paper. Special cases of scattering and propagation kernels that can be expressed in closed form are presented.
Author Krueger, R. J.
Kristensson, G.
Author_xml – sequence: 1
  givenname: G.
  surname: Kristensson
  fullname: Kristensson, G.
  organization: Division of Electromagnetic Theory, Royal Institute of Technology, S‐100 44 Stockholm, Sweden
– sequence: 2
  givenname: R. J.
  surname: Krueger
  fullname: Krueger, R. J.
  organization: Applied Mathematical Sciences, Ames Laboratory—United States Department of Energy, Iowa State University, Ames, Iowa 50011
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7917639$$DView record in Pascal Francis
BookMark eNp9kE9LxDAQxYMouLsKfoQcPOihNWnSJD3K-m9hwYN6Lmk61chuU5O44rc3urqCqJcZZvi9B--N0XbvekDogJKcEsFOaF4Wkii2hUaUqCqTolTbaERIUWQFV2oXjUN4JIRSxfkI2TPrwUSs-xbbfgU-AA5Gxwje9vfpheMD4GiXgFu31OnunMcatzYEO-hoV4BfdBrw9Jwu1-d4luObbwc3gNfR-bCHdjq9CLD_uSfo7uL8dnqVza8vZ9PTeWYKIWIGTVOVrCxUowxlnDPDBVOiYoRJKXQFRAgKoCtectOIFK81rdSN6rgskgWboMO176BTkEXndW9sqAdvl9q_1rKiUrAqYUdrzHgXgoduQ1BSvzdZ03rdZELzH6ix8SNs9NoufhMcrwXhC_zP_E925fyGq4e2Y29R4pJe
CODEN JMAPAQ
CitedBy_id crossref_primary_10_1163_156939395X00415
crossref_primary_10_1007_BF00940580
crossref_primary_10_1063_1_530214
crossref_primary_10_1364_JOSAA_12_001513
crossref_primary_10_1364_JOSAA_13_002200
crossref_primary_10_2528_PIERB09060805
crossref_primary_10_1109_8_535386
crossref_primary_10_1063_1_529748
crossref_primary_10_1063_1_529468
crossref_primary_10_1016_j_wavemoti_2009_11_005
crossref_primary_10_1109_15_385894
crossref_primary_10_1063_1_533274
crossref_primary_10_1108_03321640910969584
crossref_primary_10_1137_S0036139992241157
crossref_primary_10_1109_TAP_1987_1144033
crossref_primary_10_1163_156939396X00199
crossref_primary_10_1109_8_244646
crossref_primary_10_1163_156939392X01921
crossref_primary_10_1088_0266_5611_8_6_003
crossref_primary_10_1088_0266_5611_8_6_009
crossref_primary_10_1088_0266_5611_13_2_004
crossref_primary_10_1016_0370_1573_91_90026_I
crossref_primary_10_1063_1_528150
crossref_primary_10_1088_0022_3727_30_23_011
crossref_primary_10_1088_0266_5611_18_6_305
crossref_primary_10_1016_0165_2125_89_90024_3
crossref_primary_10_1163_156939392X01570
crossref_primary_10_1364_JOSAA_10_000886
crossref_primary_10_1029_94RS03377
crossref_primary_10_1163_156939393X01065
crossref_primary_10_1007_BF02677124
crossref_primary_10_1109_8_273309
crossref_primary_10_1063_1_529808
crossref_primary_10_1016_0377_0427_92_90168_W
crossref_primary_10_1088_0266_5611_11_1_002
crossref_primary_10_1088_0266_5611_32_3_035005
crossref_primary_10_1163_156939395X00866
crossref_primary_10_1163_156939398X00818
crossref_primary_10_1088_0266_5611_6_6_014
crossref_primary_10_1016_0165_2125_90_90039_7
crossref_primary_10_1016_S0378_4754_99_00097_X
crossref_primary_10_1088_0266_5611_4_3_008
crossref_primary_10_1163_156939396X01143
crossref_primary_10_1088_0266_5611_10_5_001
crossref_primary_10_1029_93RS00590
crossref_primary_10_1080_17415977_2018_1442447
crossref_primary_10_1063_1_2752135
crossref_primary_10_1163_156939393X00390
crossref_primary_10_1080_00411459108204707
crossref_primary_10_1063_1_527084
crossref_primary_10_1364_JOT_83_000518
crossref_primary_10_1163_156939392X00463
crossref_primary_10_1088_0266_5611_13_3_010
crossref_primary_10_1364_JOSAA_10_000740
crossref_primary_10_1364_JOSAA_10_002402
crossref_primary_10_1063_1_531739
crossref_primary_10_1088_0266_5611_22_4_014
crossref_primary_10_1016_j_wavemoti_2016_07_004
crossref_primary_10_1088_0305_4470_37_26_010
crossref_primary_10_1063_1_529666
crossref_primary_10_1088_0266_5611_10_1_003
crossref_primary_10_1063_1_530361
crossref_primary_10_1088_0266_5611_5_3_010
crossref_primary_10_1088_1742_6596_486_1_012010
crossref_primary_10_1109_15_584930
crossref_primary_10_1016_0165_2125_89_90034_6
crossref_primary_10_1016_S0045_7825_99_00464_8
crossref_primary_10_1063_1_531849
crossref_primary_10_1007_BF02096095
crossref_primary_10_1063_1_531606
crossref_primary_10_1364_JOSAA_9_001091
crossref_primary_10_1016_0165_2125_95_00053_4
crossref_primary_10_1121_1_2959734
crossref_primary_10_1016_S0378_4754_99_00099_3
crossref_primary_10_1063_1_531085
crossref_primary_10_1016_0022_247X_91_90105_9
crossref_primary_10_1016_0096_3003_93_90017_9
crossref_primary_10_1063_1_530279
crossref_primary_10_1063_1_532216
crossref_primary_10_1121_1_419907
crossref_primary_10_1016_j_sigpro_2006_02_014
crossref_primary_10_1163_156939396X00487
crossref_primary_10_1016_0165_2125_93_90045_H
crossref_primary_10_1088_0266_5611_11_4_014
crossref_primary_10_1088_0266_5611_7_3_002
crossref_primary_10_1029_94RS03170
crossref_primary_10_1163_156939392X00049
crossref_primary_10_1063_1_2401751
crossref_primary_10_1088_0266_5611_14_1_005
crossref_primary_10_1109_22_330123
crossref_primary_10_1364_OL_16_001924
crossref_primary_10_1088_1751_8113_41_6_065203
crossref_primary_10_1016_S0165_2125_97_81254_1
crossref_primary_10_1063_1_527667
crossref_primary_10_1016_S0378_4754_99_00101_9
crossref_primary_10_1163_156939398X00755
crossref_primary_10_1063_1_530140
crossref_primary_10_2528_PIER93091000
crossref_primary_10_1137_S0036139993250580
crossref_primary_10_1109_22_390200
crossref_primary_10_1109_8_301707
crossref_primary_10_1121_1_4756949
crossref_primary_10_1364_JOSAA_10_001941
crossref_primary_10_1063_1_531753
crossref_primary_10_1088_0266_5611_9_6_013
crossref_primary_10_1016_0165_2125_92_90032_W
crossref_primary_10_1163_156939398X00061
crossref_primary_10_1238_Physica_Regular_061a00468
crossref_primary_10_1016_0165_2125_96_00008_X
crossref_primary_10_1029_91RS00116
crossref_primary_10_1016_S0165_2125_97_00037_1
crossref_primary_10_1088_0266_5611_3_4_014
crossref_primary_10_1063_1_528588
Cites_doi 10.1063/1.1665939
10.1063/1.523064
10.1063/1.1666330
10.1090/qam/481676
10.1063/1.526661
10.1063/1.527084
10.1137/0145017
10.1016/0022-247X(75)90029-3
10.1063/1.1666623
10.1016/0022-247X(83)90115-4
10.1063/1.525307
10.1090/qam/508770
10.1121/1.390166
ContentType Journal Article
Copyright American Institute of Physics
1987 INIST-CNRS
Copyright_xml – notice: American Institute of Physics
– notice: 1987 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1063/1.527083
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Physics
EISSN 1089-7658
EndPage 1682
ExternalDocumentID 7917639
10_1063_1_527083
jmp
GroupedDBID -DZ
-~X
0ZJ
186
1UP
2-P
29L
4.4
41~
5GY
5VS
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
AAYJJ
ABJNI
ABTAH
ACBRY
ACGFS
ACIWK
ACKIV
ACLYJ
ACNCT
ACZLF
ADCTM
AEJMO
AENEX
AETEA
AFATG
AFDAS
AFFNX
AFHCQ
AFMIJ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AI.
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
DU5
EBS
EJD
ESX
F5P
FDOHQ
FFFMQ
HAM
H~9
M6X
M71
M73
MVM
N9A
NEUPN
NPSNA
O-B
OHT
P2P
PQQKQ
RDFOP
RIP
RNS
ROL
RQS
TN5
UPT
VH1
WH7
XJT
XOL
XSW
YQT
YYP
ZCG
ZKB
ZY4
AAGWI
AAYXX
ABJGX
AMVHM
CITATION
BDMKI
IQODW
ID FETCH-LOGICAL-c266t-ebb953528b8c13443c463869303776a9e0661eea9454cb6765dcd7ab8f472c263
ISSN 0022-2488
IngestDate Mon Jul 21 09:13:40 EDT 2025
Thu Apr 24 23:07:00 EDT 2025
Wed Oct 01 03:50:59 EDT 2025
Fri Jun 21 00:29:25 EDT 2024
Sun Jul 14 10:05:27 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords ELASTICITY
MATHEMATICAL OPERATORS
INVERSE SCATTERING PROBLEM
WAVE PROPAGATION
ELECTROMAGNETIC RADIATION
VISCOSITY
DIELECTRIC PROPERTIES
DIELECTRIC MATERIALS
DISPERSION RELATIONS
Wave equation
Lossy medium
Electromagnetic wave
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c266t-ebb953528b8c13443c463869303776a9e0661eea9454cb6765dcd7ab8f472c263
PageCount 16
ParticipantIDs crossref_primary_10_1063_1_527083
scitation_primary_10_1063_1_527083
crossref_citationtrail_10_1063_1_527083
pascalfrancis_primary_7917639
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 19860600
PublicationDateYYYYMMDD 1986-06-01
PublicationDate_xml – month: 06
  year: 1986
  text: 19860600
PublicationDecade 1980
PublicationPlace Melville, NY
PublicationPlace_xml – name: Melville, NY
PublicationTitle Journal of mathematical physics
PublicationYear 1986
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Corones, Krueger (r2) 1983; 95
Beezley, Krueger (r20) 1985; 26
Bruckstein, Levy, Kailath (r11) 1985; 45
Corones (r23) 1975; 50
Weston, Krueger (r13) 1973; 14
Corones, Davison, Krueger (r4) 1983; 74
Kristensson, Krueger (r1) 1986; 27
Krueger (r16) 1978; 36
Krueger (r17) 1981; AP‐29
Weston (r12) 1972; 13
Weston (r14) 1974; 15
Jaulent (r18) 1976; 17
Jaulent (r19) 1982; 23
Krueger (r15) 1976; 34
(2024020522481259200_r17) 1981; AP-29
(2024020522481259200_r18) 1976; 17
(2024020522481259200_r2) 1983; 95
(2024020522481259200_r12) 1972; 13
(2024020522481259200_r13) 1973; 14
2024020522481259200_r3
(2024020522481259200_r23) 1975; 50
(2024020522481259200_r11) 1985; 45
(2024020522481259200_r19) 1982; 23
(2024020522481259200_r4) 1983; 74
2024020522481259200_r8
2024020522481259200_r7
2024020522481259200_r6
2024020522481259200_r5
2024020522481259200_r10
2024020522481259200_r21
2024020522481259200_r9
(2024020522481259200_r16) 1978; 36
2024020522481259200_r22
(2024020522481259200_r15) 1976; 34
(2024020522481259200_r1) 1986; 27
(2024020522481259200_r20) 1985; 26
(2024020522481259200_r14) 1974; 15
References_xml – volume: 27
  start-page: 1683
  issn: 0022-2488
  year: 1986
  ident: r1
  article-title: Direct and inverse scattering in the time domain for a dissipative wave equation. II. Simultaneous reconstruction of dissipation and phase velocity profiles
  publication-title: J. Math. Phys.
– volume: 50
  start-page: 361
  issn: 0022-247X
  year: 1975
  ident: r23
  article-title: Bremmer series that correct parabolic approximations
  publication-title: J. Math. Anal. Appl.
– volume: 23
  start-page: 2286
  issn: 0022-2488
  year: 1982
  ident: r19
  article-title: Inverse scattering problems for LCRG transmission lines
  publication-title: J. Math. Phys.
– volume: 74
  start-page: 1535
  issn: 0001-4966
  year: 1983
  ident: r4
  article-title: Direct and inverse scattering in the time domain via invariant imbedding equations
  publication-title: J. Acoust. Soc. Am.
– volume: 13
  start-page: 1952
  issn: 0022-2488
  year: 1972
  ident: r12
  article-title: On the inverse problem for a hyperbolic dispersive partial differential equation
  publication-title: J. Math. Phys.
– volume: 17
  start-page: 1351
  issn: 0022-2488
  year: 1976
  ident: r18
  article-title: Inverse scattering problems in absorbing media
  publication-title: J. Math. Phys.
– volume: AP‐29
  start-page: 253
  issn: 0018-926X
  year: 1981
  ident: r17
  article-title: Numerical aspects of a dissipative inverse problem
  publication-title: IEEE Trans. Antennas Propag.
– volume: 15
  start-page: 209
  issn: 0022-2488
  year: 1974
  ident: r14
  article-title: On inverse scattering
  publication-title: J. Math. Phys.
– volume: 45
  start-page: 312
  issn: 0036-1399
  year: 1985
  ident: r11
  article-title: Differential methods in inverse scattering
  publication-title: SIAM J. Appl. Math.
– volume: 34
  start-page: 129
  issn: 0033-569X
  year: 1976
  ident: r15
  article-title: An inverse problem for a dissipative hyperbolic equation with discontinuous coefficients
  publication-title: Quart. Appl. Math.
– volume: 14
  start-page: 406
  issn: 0022-2488
  year: 1973
  ident: r13
  article-title: On the inverse problem for a hyperbolic dispersive partial differential equation. II
  publication-title: J. Math. Phys.
– volume: 26
  start-page: 317
  issn: 0022-2488
  year: 1985
  ident: r20
  article-title: An electromagnetic inverse problem for dispersive media
  publication-title: J. Math. Phys.
– volume: 36
  start-page: 235
  issn: 0033-569X
  year: 1978
  ident: r16
  article-title: An inverse problem for an absorbing medium with multiple discontinuities
  publication-title: Quart. Appl. Math.
– volume: 95
  start-page: 393
  issn: 0022-247X
  year: 1983
  ident: r2
  article-title: Obtaining scattering kernels using invariant imbedding
  publication-title: J. Math. Anal. Appl.
– ident: 2024020522481259200_r3
– volume: 13
  start-page: 1952
  year: 1972
  ident: 2024020522481259200_r12
  article-title: On the inverse problem for a hyperbolic dispersive partial differential equation
  publication-title: J. Math. Phys.
  doi: 10.1063/1.1665939
– ident: 2024020522481259200_r21
– volume: 17
  start-page: 1351
  year: 1976
  ident: 2024020522481259200_r18
  article-title: Inverse scattering problems in absorbing media
  publication-title: J. Math. Phys.
  doi: 10.1063/1.523064
– ident: 2024020522481259200_r22
– volume: 14
  start-page: 406
  year: 1973
  ident: 2024020522481259200_r13
  article-title: On the inverse problem for a hyperbolic dispersive partial differential equation. II
  publication-title: J. Math. Phys.
  doi: 10.1063/1.1666330
– volume: 34
  start-page: 129
  year: 1976
  ident: 2024020522481259200_r15
  article-title: An inverse problem for a dissipative hyperbolic equation with discontinuous coefficients
  publication-title: Quart. Appl. Math.
  doi: 10.1090/qam/481676
– volume: AP-29
  start-page: 253
  year: 1981
  ident: 2024020522481259200_r17
  article-title: Numerical aspects of a dissipative inverse problem
  publication-title: IEEE Trans. Antennas Propag.
– volume: 26
  start-page: 317
  year: 1985
  ident: 2024020522481259200_r20
  article-title: An electromagnetic inverse problem for dispersive media
  publication-title: J. Math. Phys.
  doi: 10.1063/1.526661
– volume: 27
  start-page: 1683
  year: 1986
  ident: 2024020522481259200_r1
  article-title: Direct and inverse scattering in the time domain for a dissipative wave equation. II. Simultaneous reconstruction of dissipation and phase velocity profiles
  publication-title: J. Math. Phys.
  doi: 10.1063/1.527084
– volume: 45
  start-page: 312
  year: 1985
  ident: 2024020522481259200_r11
  article-title: Differential methods in inverse scattering
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/0145017
– volume: 50
  start-page: 361
  year: 1975
  ident: 2024020522481259200_r23
  article-title: Bremmer series that correct parabolic approximations
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(75)90029-3
– volume: 15
  start-page: 209
  year: 1974
  ident: 2024020522481259200_r14
  article-title: On inverse scattering
  publication-title: J. Math. Phys.
  doi: 10.1063/1.1666623
– ident: 2024020522481259200_r10
– volume: 95
  start-page: 393
  year: 1983
  ident: 2024020522481259200_r2
  article-title: Obtaining scattering kernels using invariant imbedding
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(83)90115-4
– volume: 23
  start-page: 2286
  year: 1982
  ident: 2024020522481259200_r19
  article-title: Inverse scattering problems for LCRG transmission lines
  publication-title: J. Math. Phys.
  doi: 10.1063/1.525307
– ident: 2024020522481259200_r8
– ident: 2024020522481259200_r7
– ident: 2024020522481259200_r9
– volume: 36
  start-page: 235
  year: 1978
  ident: 2024020522481259200_r16
  article-title: An inverse problem for an absorbing medium with multiple discontinuities
  publication-title: Quart. Appl. Math.
  doi: 10.1090/qam/508770
– ident: 2024020522481259200_r5
– ident: 2024020522481259200_r6
– volume: 74
  start-page: 1535
  year: 1983
  ident: 2024020522481259200_r4
  article-title: Direct and inverse scattering in the time domain via invariant imbedding equations
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.390166
SSID ssj0011844
Score 1.544583
Snippet This is the first part of a series of papers devoted to direct and inverse scattering of transient waves in lossy inhomogeneous media. The medium is assumed to...
SourceID pascalfrancis
crossref
scitation
SourceType Index Database
Enrichment Source
Publisher
StartPage 1667
SubjectTerms Exact sciences and technology
Function theory, analysis
Mathematical methods in physics
Physics
Title Direct and inverse scattering in the time domain for a dissipative wave equation. I. Scattering operators
URI http://dx.doi.org/10.1063/1.527083
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  customDbUrl:
  eissn: 1089-7658
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0011844
  issn: 0022-2488
  databaseCode: AMVHM
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLagE4IJcdlAFBgyCImHKmWJHTvhbUKFFqkD0RbtLbIdR5q0tWUtQ-LXc3yJk0K5vkSp5dqRvy_Hxzk3hJ4rXWVCJzpKCCHGzEgj0IqAy0SY9Gq5VLbYxPiYDWf03Ul60phibHTJWvbVt61xJf-DKrQBriZK9h-QDYNCA9wDvnAFhOH6Vxg7eeUTKBn_Ct1bKZsw00eqGK3SVI_vlYtzcep8CoUxyqysJ_Wl7n011Yf0Z5fwu98bmS8Ek2aMxVJbO_zqF0rsecj6aiK6LOaNdejjaDIdHE8m760rwdumfTaoHTD63ixVukC8jDX-US1XfzHfdGr40JqoiRZIqCvdV0tclw3AM6stPmPmanP4rThmrjDRT2Ie9CrzxaGfJvzQ1cHZzKT9ww4X_A45HE5BJbuKdhLYBA47aOdo_Gk4DmYnOO7SOr28eeg6WzEjL-vJNvSXm0sBsJ5VrgbKLroOaovzoGgpKdM76JYHBh85qtxFV_R8D932Jw3s5fhqD-2OA27w65pfz3106hiFgVHYMwo3jIImDH_DhlHYMQoDo7DALUZhwygcGIVHr3DDJxz4dA_N3gymr4eRL8YRKdDh1pGWMrepgGSmYkIpURREtymkSThnItegu8Zai5ymVEnGWVqqkguZVZQnMAS5jzrzxVw_QJgQXuVZyqXIcxOwB4dowUUFBwGZUU10F72ol7io19MUTDkrrMcEI0VcODC66GnouXTZWbb0OdhAKXT0ZOiiZwG13wyypdPl4iJ0KJZl9fAPMz1CN5oX6THqrC--6ANQadfyiSfid79po1M
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+and+inverse+scattering+in+the+time+domain+for+a+dissipative+wave+equation.+I%3A+Scattering+operators&rft.jtitle=Journal+of+mathematical+physics&rft.au=KRISTENSSON%2C+G&rft.au=KRUEGER%2C+R.+J&rft.date=1986-06-01&rft.pub=American+Institute+of+Physics&rft.issn=0022-2488&rft.volume=27&rft.issue=6&rft.spage=1667&rft.epage=1682&rft_id=info:doi/10.1063%2F1.527083&rft.externalDBID=n%2Fa&rft.externalDocID=7917639
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2488&client=summon